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Freezing of the quantum Hall liquid at v = —and—
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We compare the free energy computed from the ground-state energy and low-lying excitations of
the two-dimensional Wigner solid and the fractional quantum Hall liquid, at magnetic 6lling factors
v =

~ and —.We find that the Wigner solid melts into the fractional quantum Hall liquid at roughly
the same temperature as that of some recent luminescence experiments, while it remains a solid at
the lower temperatures characteristic of the transport experiments. We propose this melting as a
consistent interpretation of both sets of experiments.

The phase boundary between the fractional quantum
Hall liquid, or Laughlin liquid (LL), and the Wigner solid
(Ws) has been a subject of active research for some time
now. Recent transport experiments have shown clear
evidence of an insulating state that first appears just
above v = 1/5, disappears as v approaches 1/5, then
reappears strongly at all smaller v. This insulating phase
has generally been interpreted to be a manifestation of
a pinned Wigner solid, although recently an alternative
theory has been put forward where disorder plays a cen-
tral role in driving the phase transitions.

The ground state in a two-dimensional electron system
at filling factor v = 1/7 and 1/9 remains unclear. Exper-
imentally, there is a weak signature, a dip in the deriva-
tive of P „with respect to the magnetic Geld B, in the
transport data at v = 1/7 (Refs. 2 and 5) at somewhat el-
evated temperatures in the best samples available today.
But it disappears upon lowering the temperature to that
typical of magnetotransport experiments, 20—100 mK.
At v = 1/9, there has been no report of any transport
anomaly. On the other hand, magneto-optical lumines-
cence experiments, ' done at somewhat higher tempera-
tures of 400—600 mK, show features in the luminescence
spectrum at v = 1/7 and 1/9 that are similar to those at
v = 1/3 and 1/5. The authors have interpreted these fea-
tures as due to the formation of the quantum Hall liquid
at these filing factors. To explain the discrepancy with
the transport studies, they suggest that the background
resistivity, caused by magnetic-Geld-induced. localization
due to disorder, becomes so high at v ( 1/5 that the
quantum Hall states are unobservable in transport.

In this paper, we compare the free energies of the
Wigner solid and the Laughlin liquid at v = 1/7 and 1/9,
and we Gnd that at temperatures approximating those of
the luminescence experiments the Wigner solid will melt
into a Laughlin liquid, but at the temperatures of the
typical transport experiments, the Wigner solid remains
the stable state. Our calculation is necessarily only semi-
quantitative, as disorder effects at these low filling factors
will have a significant effect on the ground-state energy
of the solid and the roton gap of the liquid. Nonetheless,

our results appear to provide a consistent interpretation
for both sets of experiments.

Previous calculations of the ground-state energy of the
liquid and solid ' have used variational wave functions
confined to the lowest Landau level. Then the only rele-
vant dimensionless parameter is the magnetic filling fac-
tor v, and it was found that the melting transition takes
place at v = 1/6. 5. Physically, this high magnetic-field
limit implies that as the magnetic Geld B goes to infinity
the magnetic length E, where l2 = hc/eB, goes to zero
and the ion-disk radius a = (urn) ~ goes to zero, but the
filling factor v = 2E /a remains constant. This works
well at zero temperature, but at Gnite temperature, we
find ourselves comparing thermal energies of the order
k~T to Coulomb energies that go as e /E -+ oo, and we
must forgo the assumption that no Landau-level mixing
occurs and introduce another dimensionless parameter
r, = a/a~, where a~ = h e/m*e is the Bohr radius, e
is a dielectric constant, and m* is an efFective mass. For
the electron-doped GaAs heterojunctions used in the ex-
periments we use the values e = 12.8 and m* = 0.068.
Then a Gnite value B of the Inagnetic Geld requires a fi-
nite ion-disk radius a, and we can reasonably compare
thermal energies k~ T to Coulomb energies of the order
e2/a.

Price, Platzman, and He have recently calculated the
ground-state energy of the Laughlin liquid at v = 1/7
and 1/9 as a function of r„using a variational wave
function that included Landau-level mixing. Zhu and
Louie have also calculated the ground-state energy of
the Wigner solid at these filling factors when r, = 2 and
20, and they Gnd that the ground-state energy of the
solid is lower than that of the liquid for all r, . Platzman
and Price have also calculated the free energy of both
liquid and solid at v = 1/3 and 1/5, and find a curious
reentrant freezing behavior in certain ranges of r, as the
temperature is raised from zero. Here we will use the
same method to find the free energies at v = 1/7 and 1/9,
and we will provide an estimated melting temperature as
a function of r, .

Because the temperatures of interest are so low, we
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need only know the lowest-lying modes uk of both the
solid and the liquid to calculate the free energy. Then
the free energy is

I" = E+T) ln(1 —e "/ ),

where E is the ground-state energy and the uI, are the
lowest-lying excitations of either the liquid or the solid.
For the Wigner solid these excitations are the lower-
hybrid. , essentially transverse magnetophonons u@ . We
evaluated the free energy E of the solid using the
ground-state energy E from Ref. 11, and the harmonic
magnetophonons w& calculated in the same way as, e.g. ,

Bonsall and Maradudin, but with a strong magnetic
field. The sum in (1) for the solid phase was evaluated
by averaging over the Brillioun zone by the method of
Cunningham, so the result is exact in the harmonic ap-
proximation. It is useful, however, to examine the form
of the transverse magnetophonons in the long-wavelength
limit

/' v e2/e)~„'= 0.526
I

—
l

(ka)'/'.
(r, 2aii ) (2)

Substituting into (1) we find

—E —0.701
I

—
I

T /,r. 2a i"' (ve/. )
and the free energy of the solid phase goes as T / at low
temperatures.

On the liquid side, since we are interested primarily in
the lowest-lying modes of the magnetoroton spectrum,
we can approximate the magnetoroton mod. e by

LL (k —kR) + +R)
2mR

as a power of T, while the free energy of the liquid re-
mains nearly constant. When the temperature begins to
approach the roton gap energy, however, the free energy
of the liquid begins to fall exponentially as the states
become occupied. Because the density of states at the
roton gap energy is very large, this exponential rise is
very rapid and the liquid free energy quickly falls below
that of the solid.

Figure 1 shows the difference in free energy I —I'
as a function of T at v = 1/7 and 1/9. The density
r, = 2.3 was chosen to match the density of one of the lu-
minescence experiments. The difference in ground-state
energies favors the solid at zero temperature, and as the
temperature begins to rise, the solid is favored slightly
more since the magnetophonon modes are beginning to
be occupied while the magnetoroton modes are not. Once
the temperature becomes some substantial fraction of the
magnetoroton gap, however, the exponential character of
the free energy of the liquid begins to assert itself as the
magnetoroton modes become available, and the liquid
free energy rapidly drops below that of the solid. The
slope at which the curves cross zero shows that the mag-
nitude of the roton gap AR has much more eKect on the
melting temperature than does any difference in ground-
state energies LE = E —E, unless LE is very small.
Otherwise a change in AE, which shifts the curves up or
down on the energy axis, changes the melting tempera-
ture by only a small amount.
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where mR is an effective mass for the magnetorotons near
the minimum. Here we have used the magnetoroton spec-
trum calculated in the lowest Landau level. Rappe, Zhu,
and Louie have very recently calculated the magnetoro-
ton spectrum as a function of r, for v = 1/3, and find that
at r, = 20, the magnetoroton spectrum has fallen only
about 10'Fo below the lowest Landau-level value. At v =
1/7 and 1/9 the amount of Landau-level mixing found in
Ref. 10 is more than an order of magnitude less than that
found at v = 1/3, so using the lowest Landau-level spec-
trum is an excellent approximation. Assuming that only
the modes in the vicinity of the minimum contribute, the
free energy per particle of the liquid is

k~LL ELL( ) (2 )i/2 & Ts/2 —Aa/T
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which goes exponentially at small T & AR.
Because the excitations of the liquid display a gap, at

very low temperatures T « AR even the lowest-lying
modes at, . ie minimum kR remain unoccupied, while the
low-lying a. 'des of the solid, which have no gap, begin
to 611 immediately. The free energy of the solid then falls

FIG. 1. The difference in free energy between the Wigner
solid and the Laughlin liquid at v = 1/7 and 1/9, with
r, = 2.3. The solid line is computed using the theoretical
value for the gap AR, assuming no disorder, and the dashed
line includes an estimate of disorder-induced lowering of the
Wigner solid ground-state energy and uses A~ ——0.4 K at
v = 1/7 and Aa = 0.25 K at v = 1/9. The free energy is
given in units of (e /e)/2aii.
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The phase boundaries for v = 1/7 and 1/9 are shown
in Fig. 2. The relationship of the melting temperature,
shown as the solid lines, to the size of the magnetoroton
gap, shown as the dash-dotted lines, is clearly visible.
Melting, as a rule, will occur roughly at some constant
fraction of the magnetoroton gap. The dashed lines in
Fig. 2 show the predicted classical Kosterlitz-Thouless
melting temperature. The melting temperatures we find
are roughly comparable to the Kosterlitz-Thouless melt-
ing temperature, although there is no theoretical reason
to expect them to be closely related.

Disorder in the sample will have varying efFects on the
ground-state and temperature-dependent parts of (5) and
(3). Impurities will cause the background charge in the
sample to become slightly nonuniform, and the Wigner
solid will adjust by compressing somewhat in areas of
high background charge and expanding somewhat in ar-
eas of low background charge. The Laughlin liquid, since
it is incompressible, to lowest order cannot do this, and
the difference in ground-state energies LE = E —E
will change in favor of the solid at very low temperatures.
In Ref. 10, the shift in energy due to impurities is esti-
mated roughly as
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FIG. 2. The phase boundary between Wigner solid and
Laughlin liquid (solid line) at v = 1/7 and 1/9. The dashed
line is the classical Kosterlitz-Thouless melting temperature
and the dash-dotted line is the theoretical gap AR. Disorder
efFects are not included in this diagram.
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where vq
——(0.138e /ma) / is the transverse sound ve-

locity in the absence of the magnetic field and ( is the
correlation length for the distorted WS. If we assume
( = 5a, we find that the shift in ground-state energy is
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FIG. 3. A qualitative phase diagram at finite but constant
r, . The area marked "LL" is the liquid region, and the areas
marked "WS" are the solid regions. Temperature is given in
arbitrary units.

about —0.0055jr„very significant at v = 1/7 and only
slightly less so at v = 1/9.

On the other hand, the magnetoroton gap of the liquid
is significantly reduced by disorder. is i~ At v = 1/5, the
measured gap (presumably the quasielectron-quasihole
gap) is 1.1 K, while the single-mode approximation of
Ref. 18 which we have used gives 6R ——5.6 K for the
sample of Ref. 2. The luminescence measurements give
gaps on the order of, but smaller than, 0.4 K at v = 1/7,
and 0.25 K at v = 1/9 for a sample with r, = 2.3. The
presence of disorder will open a small gap in the magne-
tophonon spectrum, but this gap will have a negligible
efFect on the free energy of the solid, since it is centered
at the origin of the Brillioun zone, where the density of
states is small.

The result of moving the ground-state energy of the
solid down by —0.0055/r, and using A~ = 0.4 K at
v = 1/7 and AR = 0.25 K at v = 1/9, reduced from
the corresponding theoretical results, is shown in Fig. 1.
In spite of the shift in ground-state energy favoring the
solid at low temperatures, the exponential drop in the
free energy of the liquid near the magnetoroton gap tem-
perature moves the melting temperature down to about
400 mK for both v = 1/7 and 1/9. Because the measured
gaps are, strictly speaking, not the magnetoroton gap,
but either the quasielectron-quasihole gap or the magne-
toroton mode at small k, the actual gap AR will be sig-
nificantly lower than the measurements given above, and
the melting temperature will be proportionately lower as
well. Of course, we do not know the precise amount of
disorder in the samples, but our calculation shows that
the Wigner solid may melt at a temperature equivalent
or slightly below those of the luminescence experiments,
while remaining a solid at the lower temperatures of the
transport experiments.

With this melting in mind, we would like to propose a
modification, shown in Fig. 3, to the phase diagram given
in Ref. 7. The phase boundary at v = 1/7 and 1/9 no
longer extends down to zero temperature, as the previous
authors proposed. The ground state remains the Wigner
solid at these filling factors, but as the temperature is
raised the solid at v = 1/7 and 1/9 quickly gives way to
a fractional quantum Hall state. Our finite-temperature
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phase transition thus provides a possible explanation
for both the relatively high-temperature magneto-optical
results, '" and the lower-temperature magneto-transport
results. '
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