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Lower and upper Hubbard bands: A slave-boson treatment
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We analyze the single-particle spectral density and the optical conductivity of the single-band Hub-
bard model in the insulating Mott phase within the slave-boson technique. We show that the boson Auc-

tuations around the saddle-point solution build up the lower and upper Hubbard bands and give rise to
the optical conductivity which describes transitions between these incoherent bands. We find that the
Brinkman-Rice metal-insulator transition is characterized by the simultaneous vanishing of the jump in
the chemical potential, the single-particle spectral density gap, and the optical gap.

In a recent paper the single-particle spectral density
and the optical conductivity for the three-band infinite-U
Hubbard model near and in the charge-transfer insulating
phase were analyzed using the slave-boson approach. ' It
was shown that the metal —charge-transfer-insulator tran-
sition can be interpreted as a softening of an auxiliary
Bose excitation. The energy of the boson mode, in the in-
sulating phase, at zero doping, was related to the jump of
the chemical potential for adding or removing a particle.
Furthermore the presence of the collective excitations re-
sulted in broad features both in the optical absorption
and in the single-particle spectral density, reminiscent of
the pioneering Hubbard picture in terms of lower and
upper bands. It was conjectured that a similar descrip-
tion must hold also for the single-band finite-U Hubbard
model and results for the zero momentum boson excita-
tions were presented to support this suggestion.

In this paper we undertake to extend that analysis, by
using the slave-boson technique introduced by Kotliar
and Ruckenstein to deal with the finite-U Hubbard mod-
el. Our results are the following: (1) In the Mott insu-
lating phase, above the Brinkman-Rice metal-insulator
transition point, the slave bosons have, at Gaussian lev-
el, two dispersive modes. The mode at low energies is the
holon mode previously found in a number of theories of

I

the single-band infinite-U Hubbard and t-J models. The
mode at high energies is associated with the finite-U
charge-transfer energy and corresponds to the exciton
mode of the three-band model. (2) The contributions
from these Gaussian modes lead to the formation of the
lower and upper Hubbard bands in the single-particle
spectral density and to the high-energy broad absorption
above the optical gap in the conductivity. (3) Upon dop-
ing, new quasiparticle states are introduced at the bottom
and the top of the upper and lower Hubbard bands, re-
spectively. (4) In Ref. 1 the Brinkman-Rice transition,
present in the saddle-point treatment of the Hubbard
model of Kotliar and Ruckenstein, was associated with
the softening of the high-energy mode at zero momen-
tum, whose energy equals the jump Ap in the chemical
potential in the Mott phase. We show that, in analogy
with the three-band infinite-U Hubbard model, both the
single-particle and optical gaps are equal to Ap and van-
ish at the metal-insulator transition. (5) Finally, in the
limit of vanishing hopping amplitude, our solution recov-
ers the atomic limit, as in the original Hubbard work.

Our starting point is the four slave-boson functional-
integral representation of the Hubbard model introduced
by Kotliar and Ruckenstein. The partition function can
be written in terms of the Lagrangian

r(r) = ry z,".z,.c,'.c,.+ y—c,'. (aZar+Xr'. r ~)c,.+ yd, ' ayar+XI" + V —y XI." d,
~) J)~ l) CT 1 0

+ y e,'(aZar+~, "r).
, + y p,'.(asar+~,"r—XI2')p,.—y ~', ",

where the sum over i and j is restricted to nearest-
neighbor sites of a d-dimensional square lattice. The
Bose fields d;, p;, and e, represent doubly, singly occu-
pied with a given spin, and empty sites, respectively. The
atomic single-particle level is taken to be the zero
of the energy. The fields z,. are given by
z; =g~; (e;p; +p, d;)g~; where the factors g&, and

gz, can be chosen in a quite arbitrary way as far as the
functional integral is solved exactly. Kotliar and Ruck-
enstein showed that a particular choice must be done in
order to recover the results of the Gutzwiller approach at

I

the saddle-point level. In what follows the actual choice
of the g factors is to some extent irrelevant and for the
time being we will leave them unspecified.

The time-independent Lagrange multipliers A, ';" and
A. I

' introduced in Eq. (1) enforce at each lattice site the
constraints e,. e,. +d, d;+g p; p; =1 and d,. d;+p, p;
=c; c; necessary to ensure the equivalence with the
original Hubbard model.

Our idea now is to'study the model at half-filling in the
Mott phase. This must be understood in the sense of con-
sidering the limit of vanishing particle or hole doping
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6~0—.Despite the fact that the mean-field values of the
parameters and the Bose excitations depend on which
side the zero doping limit is actually being considered,
the continuity is recovered in evaluating physical quanti-
ties.

The mean-field theory is obtained by substituting the
Bose fields with a c number, ( d, ) =do, ( e, ) =eo, and

(p; ) =pa . At the mean-field level the constraints are
satisfied only on average with the Lagrange multipliers
taken to be constant throughout the sample as
(A, ; ) =A,o and (X ) =A, In Table I of Ref. 5 the
analysis of the mean-field paramagnetic solution is syn-
thetically reported. At zero doping, as U increases, the
saddle-point solution recovers the Brinkman-Rice metal-
insulator transition at U = U, . In the Mott phase (5=0,
U ) U, ) the Bose fields e and d are not condensed, while

po = I/&2 independent of cr. It follows that at Gauss-
ian level the fluctuations of the e and d Bose fields are ac-
tually decoupled from those of the p fields. This fact is a
consequence of the particular boson interaction term
which derives from the hopping term of the original Hub-

I

eq~X= g(eq d
q )I (q, iso ) —q, —v

(2)

where

bard model. In this way our task of considering charge
fluctuations described by the e and d fields is enormously
simplified, because the Gaussian Auctuations of these two
fields can be treated by means of a 2 X 2 matrix, where the
other boson fields only appear through their mean-field
values. Furthermore, as was realized by Jolicoeur and Le
Guillou, in the finite-U Hubbard model it is impossible
to study the fluctuations by fully reducing to the so-called
"radial" gauge, which amounts to absorb the phases of
the four Bose fields in the Lagrange multipliers. In what
follows we will see that in the insulating Mott phase it is
more convenient to work directly in the "Cartesian"
gauge where all Bose fields maintain their own phase.

By integrating out the fermion degrees of freedom the
Lagrangian for the e, and d; fluctuating fields is

I (q, ice )=
—i co,+ A,(')"+X(q)

&(q)

x(q)

i~.+X,"'+U —2X,"'+r(q)

X(q)= pog, g~T g—2te„+ G(k, ice„)=— pog, g—ze E,
k, n, o.

(4)

where ek=&,cos(k ) and E=2l I" copo(co)deal, po(~)
being the uncorrelated density of states. The factors g,
and gz are the saddle-point values of the corresponding
functions g, and g2 . G(k, ice„)=1/(ice„Ek+p) is-
the c-fermion single-particle Green function at the
saddle-point level. Ek=lo ' —2g,g2po(co+do) tek is the
quasiparticle band, which is obtained at mean-field level
and has a width vanishing at the metal-insulator transi-
tion (E&—+kz ' when 5~0, U ) U, ). While working in
the Matsubara framework the T=0 limit is everywhere
understood. By inserting Eq. (4) in (3) and taking the
determinant we get

detl (q, ice, )=~„—iso (U —2A, O
')

+X,"'(X,"'+U —2X,"')
—p 2~ ig z ee /d ( 2A,O'"+ U —2A,z

'
) . (5)

In order to solve Eq. (5), we borrow from Table I of
Ref. 5 the values for A,o" and Xo

' in the 6=0—limit:

A,o"=A,o '=( U/2)(1+()

and g=(1 —U, /U)"~ ' with U, =4pogigzE. It is easy to
verify that U —2A, O

'= + Ug, A.o"+ U —2A, &
'=( U/

The self-energy appearing in Eq. (3) is obtained by con-
tracting the four-leg vertex originated from the hopping
term

2)(1+g), and 2ko" + U —2AO = U.
Having defined y = 1 —e /d, Eq. (5) then reads

cg,+ice Ug+( UU, /4)yq=Q .

By going to real frequencies ice,~cu, Eq. (7) has two
roots

co, =
—,'[+Up+[(Ug) + UU, yq]'

cozq= —,
' [+Ug —[( Ug) + UU, yq]'

which in the large-U limit reduce to

co,q= —,
' U(+g+g)+ —,'( U, /g)yq,

co2q= —,
' U(+g —g) —4( U, /g)yq

depending on 6=0—.
These collective modes show the same "phenomenolo-

gy" found in the three-band infinite-U Hubbard model
[compare Eq. (5) of Ref. 1]. The mode at high positive
(nega, tive) energy at 5=0+ (5=0 ) is the equivalent of
the exciton mode in the three-band infinite-U Hubbard
model. Its energy at q=O was previously derived in Ref.
1 and shown to be equal to the jump in the chemical po-
tential, at zero doping, for adding or removing a
particle. This is clearly seen by noticing that
bp, = p(5 = 0+ )

—p(5 = 0 ) =go '(5=Q+ )
—gz '(5=Q )

= Ug.
The mode at low energy is the holon mode of the

single-band infinite- U Hubbard model. In fact, the
single-band infinite-U limit is recovered from the above
equation by sending U~ ~; at 6=0 the exciton mode
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is pushed to —~ and we are left with the holon mode
only with energy co =(U, /4)y .

We want now to evaluate, at the G-aussian level, the
one-particle spectral density A (co) of the original fer-
mions which are expressed in terms of the c fermions
and e, d, and p and Bose fields as c =z c . A (co) is
given by 3 (co) = —

( I/n)1m';;(co)sgnco with

&;J( )= —pog', g,'(;( ), (0))(b;( )b, (0)), (10)

with

Z =( —1) U/[(Ug) + UU, y ]'

The fermion single-particle spectral density is then
given by

&( )c=o(g,g2po/2N, ) gIZ I5(co —ko' '+co ),
q, a

N, being the number of lattice sites. We recall that A,o
' is

the energy of the renormalized atomic level and coincides
with the chemical potential at 6=0—.Notice that in ob-
taining Eq. (12) we have taken the bare atomic energy
level as the reference zero. By inserting in Eq. (12) the
expressions of the collective modes found in Eqs. (8) and
(9) we reconstruct the lower and upper Hubbard bands
whose energy positions are at the bare atomic level co-0
and U. Specifically the gap between the two bands is
given by Ug=b, p and their width b, R'is of the order of
the bare band width, A8'-aU„with n ranging from
1/v'2 at U = U, to —,

' for U)) U, . As soon as the system
is doped, mean-field quasiparticle states start to appear at
go' '(5=0 ), i.e. , at the top (bottom) of the lower (upper)
Hubbard band for 5 (0 (5)0).

At this point a possible criticism to our treatment may
arise from the absence of magnetism in the scenario we
are illustrating. In the present discussion we focused
mainly on the role of charge fIuctuations which are
relevant in order to understand the high-energy features
of the electron and optical spectra. However, our expec-
tation is that the inclusion of magnetic correlations,
which will appear to higher orders in the loop expansion,
should be mostly important as far as the low-energy
behavior is concerned, but will not substantially modify,
at high energies, the picture we have obtained. Actually,
in this framework it is possible to recover the atomic lim-
it t —+0, i.e., zero kinetic energy. This is done by letting
U, ~0 and IZ I

~1, so that Ao
'= U, co&q= U, co2q=0 at

6 0 and ko 0~ co )q 0& co2q U at 6 0

where we introduced in Eq. (10) the boson combination
b, =e, +d;. Notice that in the Mott phase the mean-field
contribution to A (co) is identically zero and only the
Auctuating contributions from the e and the d fields ap-
pear in Eq. (10) since e and d have vanishing condensate
in the insulating limit. The other boson fields are set
equal to their mean-field values. From the Auctuation
matrix we get

D(q, ico )—= (b(q, ico, )b (q, ico„))= g Z 1

@=1,2 v aql CO CO

The atomic spectral density reads

2"' "(co)=(g,g2po/2)[5(co)+5(co —U)] . (13)

Let us now comment on the specific form of the g j
and g2 factors. As far as the model is exactly solved, the
g& and g2 could be chosen in a quite general way.
Kotliar and Ruckenstein showed that in order to
recover the uncorrelated limit (U =0) a particular
form must be chosen, namely, g, =f~R(d d, p p )

and g2 =fKR(e e,p p ) with ficR(x,y) = (1—x—y) ' . On the other hand, this choice gives the
wrong spectral weight in the atomic limit, as is apparent
from Eq. (13). This is not entirely surprising. The point
is that, at the present level of approximation, the sum
rule for the integrated spectral density is not expected to
be satisfied. More generally we can derive what the sum
rule would be, when the single-particle spectral density is
evaluated bv neglecting vertex corrections in
(c; (r)z,. (r)cj (0)z (0)) and just convoluting the Fer-
mi and the Bose propagators. For the integrated spectral
density we obtain

dcodco= zz +1—c c z, z 14

By expressing the original fermion
ck =pogig2/+N. Xpck+p bp we get

IIJ (q, ico )=2[(2t) /N, ]Tg sin (k )
n, k

as usual, i.e.,

X Q(k —q/2, ico„)

X 0(k+q/2, ico„+ico ) .

(15)

By performing the analytic continuation iso ~co+i0
we obtain

which acquires different values in the metallic and insu-
lating phase, and in general would differ from unity. In
order to get the correct spectral weight, at the present or-
der of approximation, one would be tempted to adjust the
g factors depending on which saddle-point solution is ac-
tually being taken. In the Mott limit, to recover unity in
Eq. (14), the average product g,g2 needs to be a function
of U/c which approaches 2 in the atomic limit. The pos-
sible functional forms for the g's leading to the above
mean values have to be different from the Kotliar-
Ruckenstein choice for which g,g 2

——4 in the Mott phase
(and therefore the mean-field analysis of the Brinkman-
Rice point would differ from the results of the Gutzwiller
approach). We think, however, that to settle the problem
of a proper choice of the g factors requires further
analysis.

Let us now consider the optical conductivity. The
current operator in the x direction is J;
=it+ [c; c;+ „c;+„c;] —or in momentum space
Jq, = (2t/+N, )gi, —sin(k„)cj, q~2 cq+ ~2 .

The optical conductivity is obtained by Reer (q, co )= —1m[II~(q, co)/co] with
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ImIIJ""(q, co)=2 f g sin (k„)(2t) dz

X
I f (z +co)—f (z) ]

X 1m'"(k —q/2, z)

X 1m' (k+q/2, z +co)
(16)

o (co) =2(2p og,g zt)~m2—2—2 2

S

I zp, I I Z'„I
(18)

P& &
=(1/N, )gi f(E~+& )I 1 f (El,+& )]sin —(k„) where

the limit T~O is understood before taking the limit
5~0 (i.e., Ez+ ~0). From Eq. (18) we see that, in the+&i,2

Mott phase, the optical absorption starts at co=Up,
the same energy which controls the gap in the
one-particle spectral density, and extends up to
maxI ~» —~z~ ] = I ( Ug) +2UU, ]' . Upon doping, the

ImQ (k, z)= — Q ImD (p, E&+ —z)
S p

X [b (Et,+ z)+f—(Ek+ )] .

(17)
In the above equations, f (x) and b (x) are the Fermi

and the Bose functions, respectively, and it is understood
that the chemical potential is subtracted from Ek+ . To
make further progress in Eq. (16) we consider the case
co&0 and T =0. For the q=O limit of the optical con-
ductivity (at 5=0+—) we obtain

presence of quasiparticle states gives rise to a Drude ab-
sorption already at mean-field level.

We are now in a position to draw a general picture for
the Hubbard model from our slave-boson treatment up to
the first nontrivial corrections beyond mean field. We
have shown that the slave-boson fluctuations, at Gaussian
level, build up the lower and upper Hubbard bands and
give rise to the optical conductivity which describes tran-
sitions between these incoherent bands. As doping is
turned on, quasiparticles start to appear and a redistribu-
tion of spectral weight is expected. It follows that near
the metal-insulator transition the spectral density and the
optical conductivity have two distinct contributions: (i) a
coherent one which derives form quasiparticles and con-
trols the low-energy behavior and (ii) an incoherent one,
which mainly contributes to the high-energy features of
the spectra. The incoherent contribution is the result of
the complicated motion of a quasiparticle surrounded by
the cloud of charge excitations it leaves behind and be-
comes the leading one in the insulating phase. This pic-
ture agrees with the available numerical results on finite
clusters and has strong analogies with the exact solution
which can be obtained in infinite dimension. ' '" In this
last case however the Brinkman-Rice transition appears
to be first order" with a finite jump of the chemical po-
tential at the transition. Whether this discrepancy must
be ascribed to the d = ~ limit or to the approximations
used in this paper is an interesting open problem.
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Further, we recall that in our Gaussian approximation the
broadening of the incoherent lower and upper Hubbard
bands are related to the dispersion of the collective modes
while the same broadening has a diff r..=nt source at d = ~
where momentum dependence is absent.


