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The recently observed blueshift of the surface plasmon of Ag with increasing parallel momentum and
of the Mie resonance of small Ag particles with decreasing radius are discussed in terms of a model for
the dynamical response of a two-component s-d electron system. In the case of flat Ag surfaces, the 5s
conduction electrons are treated as a semi-infinite homogeneous electron gas while the influence of the
fully occupied 4d bands is described via a polarizable medium which extends up to a certain distance
from the surface. Using the time-dependent density-functional approach it is shown that the absence of
the s-d screening interaction in the surface region leads to a positive dispersion of the surface plasmon in
agreement with the data. A self-energy approach is introduced which allows us to establish a qualitative
relation between the scattering processes at a flat metal surface and those at the surface of a spherical
particle. Using this approach it is argued that the blueshift of the Mie resonance of Ag particles can also
be understood in terms of a reduced s-d interaction in the region where the s electrons spill out into the
vacuum. Finally, it is shown that the polarizability of simple metal particles exhibits above the Mie reso-
nance a collective excitation which is the analogue of the dipolar surface plasmon observed on the flat
surfaces of various simple metals. This feature seems to have been observed in recent absorption spectra
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on large K clusters.

I. INTRODUCTION

Electron-energy-loss measurements on all low-index
crystal faces of Ag have recently shown! ™3 that the sur-
face plasmon disperses towards higher frequencies with
increasing parallel momentum. This positive dispersion
is in striking contrast to the behavior of the ordinary sur-
face plasmons on all simple metals (Al, Na, K, Cs) (Refs.
4 and 5) which show a negative dispersion at small wave
vectors. This initial negative slope is a direct conse-
quence of the fact that the centroid of the fluctuating
charge associated with the surface plasmon of a simple
metal is located outside the nominal metal surface.®’
Similarly, the Mie resonance in optical-absorption spec-
tra from small Ag particles was recently observed to shift
to higher frequencies with decreasing particle size.® 1!
Again, this blueshift is opposite to the redshift that is
seen for the Mie resonance of small simple metal parti-
cles.'>!3 The redshift in the latter case is related to the
so-called spill-out effect, i.e., to the fact that, just as on
the flat surface, the centroid of the charge fluctuation as-
sociated with the Mie resonance is located outside the
particle surface. The important conclusion from these
data is, therefore, that the presence of the Ag 4d elec-
trons influences, in a fundamental manner, the mecha-
nism that determines the initial dispersion of the surface
plasmon and the size dependence of the Mie resonance.

In principle, the 4d band of Ag can affect the dynami-
cal surface response in two distinct ways: First, the s-d
hybridization modifies the single-particle energies and
wave functions. As a result, the nonlocal density-density
response function exhibits band-structure effects.
Second, the effective time-varying fields are modified due
to the mutual polarization of the s and d electron densi-
ties. In the present work we focus on the role of the
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second mechanism for the following reason: At the
parallel wave vectors of interest, the frequency of the Ag
surface plasmon lies below the region of interband transi-
tions involving the filled 4d states or higher-lying unoccu-
pied s-p states which begin at about 3.9 eV. Thus, the
single-particle transitions that contribute to the collective
surface excitations all occur within the s-p band close to
the Fermi energy where it displays excellent nearly free-
electron character. The interband transitions enter there-
fore only as virtual transitions and should not play the
principal role that governs the wave-vector dispersion of
the Ag surface plasmon. Since these virtual transitions
depend on the surface band structure, their effect should
be different for various crystal faces. Thus, these transi-
tions are presumably responsible for the fact that the
slopes of the surface plasmons differ for the three low-
index faces of Ag.!”® The common positive dispersion
on all of these faces, on the other hand, i.e., the funda-
mental sign reversal compared to the dispersion found for
the simple metals, is apparently caused by a more basic
mechanism that modifies the intraband transitions within
the nearly-free-electron s-p band.

Similar arguments can be made for the size dependence
of the Ag Mie resonance since its frequency lies even
lower than that of the Ag surface plasmons. Thus, the
relevant single-particle transitions that contribute to the
Mie collective mode primarily involve states that have s-p
character similar to those in simple metal particles.
Transitions involving the more tightly bound d levels, on
the other hand, can contribute only in a virtual fashion
and should therefore not play the most important role for
the size dependence of the Mie resonance.

The main goal of this paper is to show that the second
mechanism mentioned above, namely, the mutual polar-
ization between the Ag 5s and 4d states, does indeed have
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a significant effect on the dispersion of the collective sur-
face modes of Ag and that this mechanism is the main
physical origin of the observed positive dispersion of the
Ag surface plasmon and of the Ag Mie resonance. Essen-
tially, the 5s and 4d electrons will be treated as a two-
component system whose electrostatic interaction ex-
tends only up to a certain distance from the surface. In
particular, this interaction is absent in the region where
the 5s electron density spills out into the vacuum. Since
the electrons oscillate in this region with the unscreened
plasma frequency, this mechanism causes an increase of
the surface-plasmon frequency. This effect becomes more
important with increasing parallel wave vector and with
decreasing particle radius because of the greater relative
weight of the surface region. As a result, both the
surface-plasma frequency and the Mie resonance exhibit
a positive dispersion with increasing momentum and with
decreasing radius, respectively.

It is well known that in the bulk the s-d polarization is
responsible for the large renormalization of the Ag
volume plasma frequency. This may be seen as follows: '
The volume dielectric properties of Ag can be qualitative-
ly represented by a Drude term €,(w) appropriate for the
5s electrons and a “bound” contribution €,(w) whose fre-
quency dependence is primarily governed by the inter-
band transitions from the occupied 4d band to the 5s con-
duction bands near the Fermi level. Thus, the measured
dielectric function can be decomposed as e(w)
=¢,(w)+e€4(w)—1. Near to the region of the collective
modes of Ag, €,(w) is real and has a value of about 5 to
6. As a result of this bound term, the volume plasma fre-
quency is reduced from the unscreened value, w,=9.2
eV, to the observed value which is approximately given
by o, ~w, /V'Ree;~3.76 eV. Accordingly, the fre-
quency of the surface plasmon in the long-wavelength
limit is given by o] ~o, /\/1+Reed~3 64 eV whereas
the unscreened value is co =w, /V2=6.5¢eV. Similarly,
the frequency of the Mie resonance in the large particle
limit is given by o} ~w, /\/2+Reed 3.50 eV whereas
the unscreened value is 0y =0, /V3=5.3eV. As will be
shown below, the renormahzatlon of these surface collec-
tive modes due to the mutual s-d polarization is less pro-
nounced at finite parallel wave vectors or at finite particle
radii because of the spillout of the 5s electrons into the
vacuum.

The dynamical response calculations for the model dis-
cussed above will be carried out in detail for the case of
the surface-plasmon dispersion on flat Ag surfaces. In or-
der to evaluate the surface excitation spectra we use the
time-dependent local-density approximation'®> (TDLDA)
which has led to an excellent overall description of the
dispersion of both the ordinary monopole surface
plasmon and of the so-called multipole surface plasmon
for various simple metals (Al, Na, K, Cs).*> In principle,
the same model could be applied also to determine the
absorption spectrum of small Ag particles. This calcula-
tion would require the same computational effort as the
evaluation of the absorption cross section of jellium parti-
cles. In order to simplify this step, we first rewrite the
surface response function at small g by introducing an
effective local dielectric function which involves a com-
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plex surface self-energy. This self-energy accounts for the
quantum-mechanical scattering processes occurring in
the surface region. The shift and finite width of the sur-
face plasmon are directly related to the real and imagi-
nary parts of this self-energy, respectively. Since these
scattering events typically occur within a thin region of
the dimension of an electronic screening length, we then
assume that the self-energy processes at the surface of a
spherical particle in the limit of large radii are similar to
those at a flat metal surface in the long-wavelength limit.
On the basis of this analogy we can express the complex
particle polarizability in terms of a corresponding self-
energy which determines the shift and broadening of the
classical Mie resonance. These arguments show that the
blueshift of the Ag Mie resonance with decreasing radius
has the same physical origin as the blueshift of the Ag
surface plasma frequency with increasing parallel
momentum.

An additional interesting result of these calculations is
the identification of a new quasicollective excitation in
small metal particles that has, to our knowledge, gone
largely unnoticed until now. In the case of the simple
metals, the analogy between the scattering processes at a
flat surface and at the surface of a spherical particle sug-
gests that the local-field enhancement caused by the dipo-
lar surface plasmon® at the flat surface gives rise to a cor-
responding collective electronic excitation in simple met-
al particles. A spectral feature in the relevant frequency
range above the Mie resonance has indeed been found by
Ekardt!® in his microscopic calculations of the particle
polarizability. Recent absorption spectra on relatively
large K clusters (500 and 900 atoms) also exhibit a weak
structure at this frequency.!> We believe that this mode
represents an excitation that has dipolar angular charac-
ter but with an additional node in the radial distribution
of the dynamical surface screening charge compared to
that of the principal Mie plasma oscillation. In the case
of Ag particles, this mode cannot be resolved because of
the close proximity of the Mie resonance to the volume-
type collective excitation.

In a recent paper, Tarriba and Mochan!’ presented a
model for the dynamical response of Ag surfaces which is
based on a lattice of polarizable dipoles embedded in a
homogeneous electron gas with cavities at the sites of the
lattice. This model can be viewed as complementary to
ours in the sense that it includes the crystalline structure
while it neglects the detailed nonlocal response properties
of the s electron distribution near the surface. In an al-
ternative approach, Feibelman'® suggested that the cen-
troid of the induced surface charge at ¢ =0 might be
shifted inward due to band-structure effects in the surface
region. The importance of the polarizable background
for the surface plasmon dispersion of Ag was emphasized
by Lipparini and Pederiva'® who used sum-rule argu-
ments to estimate the linear coefficient. Several years
ago, in their work on the surface corrections to the Van
der Waals reference plane of the noble metals, Zaremba
and co-workers? represented the centroid of the induced
density by a superposition of s and d contributions which
were taken from independent calculations for the jellium
model and dielectric solid, respectively. For the optical
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case, Apell and Holmberg?! modified this approach by
taking into account the actual macroscopic fields in the
bulk. However, in none of these calculations was a
sufficiently detailed evaluation of the s electron response
performed. As the results discussed below demonstrate, a
self-consistent treatment of the combined s-d electron
system is crucial for an adequate description of the
surface-plasmon dispersion of Ag.

This paper is organized as follows. In Sec. II we briefly
review the calculation of the excitation spectra of flat
simple metal surfaces. It is shown that, in the limit of
small g, the exact surface response function can be ex-
pressed in terms of an effective local dielectric function
involving a complex self-energy. Section III constitutes
the main part of this work, namely, the evaluation of the
electronic excitations at flat Ag surfaces for the two-
component s-d electron system. In Sec. IV, the complex
polarizability of small simple metal particles is discussed
in terms of a similar self-energy as for the flat surface. In
Sec. V we combine the arguments of the two previous
sections in order to obtain an expression for the polariz-
ability of small Ag particles. A summary is given in Sec.
VI. A preliminary discussion of the results for the Ag
surface plasmons dispersion was presented in Ref. 22 and
for the Ag Mie resonance in Ref. 11.

II. SIMPLE METAL SURFACES

Let us first review the excitation spectra of simple met-
al surfaces in order to introduce various quantities and to
illustrate the essential features of the surface-plasmon
dispersion. In the absence of retardation effects, the
probability of exciting electron-hole pairs or collective
modes at a flat simple metal surface via inelastic scatter-
ing of electrons can be calculated from the imaginary
part of the surface response function which may be ex-
pressed as®> (atomic units are used throughout unless
stated otherwise):

g(q,0)= [dze¥sn(z,q,0) , 2.1)
where g =|q,/ is the absolute value of the parallel com-
ponent of the transferred momentum and &n(z,q,w) is
the surface charge density induced by an external poten-
tial of the form ¢, (r,t)=—(27/q)exp(qz +i[q; 1,
—wt]). We adopt the jellium model whose positive
charge background is assumed to occupy the half-space
z<0. Within the TDLDA, !’ the induced density is de-
rived from the expression

dn(z,q,w)= fdz’)((z,z’,q,a))gbscf(z’,q,w) (2.2)
with
¢scf:¢ext+8¢+8ch (23)

and ¢.,,(z)=—(27/q)exp(gz). The independent-particle
response function Y is calculated within the local-density
approximation (LDA) for a semi-infinite electron gas
with a volume density given by 7 =3/(4#7r}). The Pois-
son equation for the induced potential reads as

8¢"(z,q,0)—q*8¢(z,q,0)= —47dn(z,q,0) (2.4)
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and the exchange-correlation term is given by
8V, .(z,q,0)=[3V,.(n)/0n ]|,,:,,O<z)5n(z,q,w) , (2.5)

where ¥V, is the local ground-state exchange-correlation
potential. In a random-phase approximation (RPA)
treatment of the dynamical response this term is omitted
from the self-consistent potential ¢

Figure 1(a) shows the frequency dependence of the
surface loss function, Img(q,w), for K (r,=5) at
several wave vectors g. The volume plasma
frequency of this system in the jellium model is
o, =V4nrn =4.2 V. The main peak near
o=,/ v2=3.0 eV corresponds to the usual monopole
surface plasmon whose frequency w(q) first shifts down-
wards at small g and subsequently increases for g larger
than about 0.15 A ~!. The width of this peak is caused by
coupling of the surface plasmon to the excitation of
electron-hole pairs. The weaker spectral feature above
®,, ~0.80,=3.4 eV corresponds to the so-called “dipo-
lar” surface plasmon whose charge fluctuation normal to
the surface has an extra node compared to the ‘“mono-
pole” charge distribution associated with the ordinary
surface plasmon.> In Sec. IV we will show that an analo-
gous “multipole” excitation in addition to the standard
Mie resonance exists also in the absorption spectrum of
simple metal particles.

The calculated momentum dispersion of both mono-
pole and dipole surface plasmons for K is compared in
Fig. 1(b) with the experimental results obtained from
electron-energy-loss spectra.®> Since the theoretical re-
sults do not include the influence of core polarization, the
frequencies of these modes have been scaled down by a
factor 0.92 in order to make them coincide with the mea-
sured surface-plasma frequency at ¢ =0. The LDA re-
sults for the monopole and dipole surface plasmons lie at
slightly lower frequencies than those obtained within the
RPA since the exchange-correlation term makes the in-
duced potential slightly more attractive than the bare
Coulomb contribution. The overall agreement between
the calculated and measured dispersions is seen to be re-
markably good. Similar agreement is found for other
simple metals (Al, Na, Cs).> In all cases, the monopole
surface plasmon at small g seems to be somewhat better
described by the RPA response treatment while at larger
g the data agree better with the results obtained within
the TDLDA. This trend is presumably related to the na-
ture of the local-density approximation which becomes
more appropriate for short-wavelength perturbations.
The data for the dipole plasmon of K are much better
represented by the TDLDA results than by those ob-
tained within the RPA. For other simple metals, on the
other hand, the experimental uncertainties are larger, so
that a unique identification with either response calcula-
tion is less feasible.

The initial negative slope of the monopole surface
plasmon that is found for all simple metals, is closely re-
lated to the position of the surface screening charge rela-
tive to the edge of the jellium background.® This may be
seen by expanding the surface loss function at small g:’
elw)—1+gd(w)elw)—1] (2.6)
elw)+1—qgd(ow)elw)—1] "’ )

glg,w)=
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FIG. 1. (a) Frequency dependence of the surface loss func-
tion Img(q,®) (in a.u.), Eq. (2.1), for K at several wave vectors
g. The main peak corresponds to the ordinary monopole sur-
face plasmon, the weaker feature above w,, to the dipolar sur-
face plasmon. (b) Dispersion of monopole and multipole surface
plasmons for K. The squares denote the experimental results,
the solid curves represent the theoretical surface modes ob-
tained within both the TDLDA and RPA. The vertical bars in-
dicate the uncertainties of the calculated frequencies (Ref. 5).
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where e(w)=1 —wﬁ /w? is the Drude dielectric function,
and d(w) is the centroid of the surface screening charge
induced by an electric field normal to the surface, mea-
sured from the edge of the positive charge background

d(w)=fdzz§n(z,0,co)/fdz on(z,0,w) . 2.7)

The second surface response function d,(w) for electric
fields parallel to the surface vanishes in this geometry.’
From the pole of the surface response function we find
that the dispersion relation of the surface plasmon at
small g is given by®’

wy(g)=w;[1—Lg Red(w,)+0(g?)] . (2.8)

Since Red(w,) is positive for all simple metals,"?*2° the
surface scattering processes cause a linear redshift at
small g. Such a shift is to be expected since with increas-
ing g the induced potential samples a region of lower
average density.*

For the purpose of the discussion in the following sec-
tions, we now introduce an effective local dielectric func-
tion €(q,w) as

w?
—z—p , (2.9)
0°+2(q,w0)

where the self-energy is given by

elg,w)=1

2

2 (2.10)

3(q,0)=qd(0)w?—w?) .

With these definitions the surface response function ac-
quires the simple form

elg,0)—1 _ “’? .11
elg,0)+t1  w?—0*—3(q,0) '

g(g,0)=

Note that this expression is exact to lowest order in gq.
Thus the true nonlocal surface response at small ¢ has
been reformulated in terms of a ‘“classical” dielectric
function whose self-energy accounts for the quantum-
mechanical surface effects and the nonlocal aspects of the
response. Equation (2.11) shows that the effects described
by the complex self-energy lead to the damping of the
surface plasmon and to the shift of its frequency from the
classical value.

For completeness we point out that Imd(w), and ac-
cordingly also Im3(q,®), can be expressed in terms of
the golden rule formula?%?’

Im3(g,0)=q(0?—0?)
T

k h(k
Xz' fo de ]((’ ) l<k’|¢scf|k>l2 ’

where k’=V k2+2w and h(k)=min[2w,k?—k?]. Here,
kp is the Fermi wave vector and ¢, is the long-
wavelength limit of the self-consistent potential appear-
ing in the response equation (2.2). (The frequency-
dependent prefactor cancels a corresponding inverse fre-
quency variation of ¢.;) The primed sum denotes the
summation over possible final-state channels. This for-
mula allows a convenient identification of the electronic
transitions that contribute to the total absorption cross

(2.12)
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section, in particular, those that correspond to ‘““internal”
excitation (the excited electron propagates towards the
interior of the bulk) and, above threshold, to emission
into the vacuum.

Figure 2(a) shows the frequency dependence of the
self-energy =(q,w) for a volume density corresponding to
Na (density parameter 7, =4). These results are obtained
from TDLDA calculations of the centroid function
d(®).** Re3(q,w) is seen to be positive approximately
up to the multipole surface plasma frequency
®,,=0.80,=4.7 eV. This is a consequence of the fact
that the centroid of the surface screening charge is locat-
ed in the tail of the ground-state electron density, i.e.,
outside of the edge of the positive background. Accord-
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FIG. 2. (a) Frequency dependence of the self-energy 2(q,),
Eq. (2.9), for the semi-infinite electron gas with bulk electronic
density corresponding to Na (r,=4) and ¢=0.05 a.u. Solid
curve: real part, dashed curve: imaginary part. (b) Logarithm of
the surface loss function Img(g,®), Eq. (2.11), for Na at ¢ =0
(solid curve), g=0.025 a.u. (dashed curve), and ¢=0.05 a.u.
(dotted curve). (c) Logarithm of normalized particle polariza-
bility Ima(R,w)/R?3, Eq. (4.3), for Na at R — o (solid curve),
R =40 a.u. (dashed curve), and R =20 a.u. (dotted curve).
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ing to Eq. (2.10), the low-frequency limit of ReZ(q,w) is,
in fact, just determined by the position of the static image
plane d(0). Beyond the multipole frequency, screening at
the surface becomes less efficient and the charge centroid
shifts towards the interior of the metal. As w approaches
the threshold of transparency w,=5.9 eV, Red(w)
diverges towards — ».”?*25 The self-energy, on the oth-
er hand, vanishes at this frequency since the external
electron cannot excite a volume plasmon of infinite wave-
length. Im3(q,w) shows a strong enhancement near
@,,."**? Similar features at nearly the same relative fre-
quency are found for other jellium systems with different
volume densities. The strength of this mode, however,
depends sensitively on the value of r,. For the low-
density alkali metals with their more diffuse density
profile at the surface, the multipole plasmon is much
stronger and more narrow than in the case of Al.

In Fig. 2(b) the surface loss function Img(q,®) calcu-
lated from Eq. (2.11) is shown for several values of g. [In
the loss function for ¢ =0, a damping parameter ¥ =0.2
eV is included in the Drude function €(w).] The main
loss feature near o, =, /V'2=4.2 eV corresponds to the
excitation of the surface plasmon which is redshifted and
broadened as a result of the self-energy processes. The
smaller peak above w,, =0.8w,=4.7 eV corresponds to
the excitation of the multipole surface plasmon. In con-
trast to the monopole surface plasmon, it exhibits a posi-
tive dispersion at small q. The comparison of these re-
sults with exact loss function demonstrates that the self-
energy formulation at small g yields an accurate represen-
tation of the physical mechanisms that are responsible for
the shift and broadening of the collective surface excita-
tions.

We finally point out that, as can be seen in Fig. 2(a),
3(qg,w) exhibits a weak second spectral feature close to
the threshold for emission, i.e., near o =~® where ®=3.1
eV is the work function.?* In the present case, this
feature is dominated by the main dipolar surface-plasmon
peak. For higher bulk densities?* or for submonolayer
alkali-metal overlayers,?® on the other hand, this thresh-
old excitation mechanism can become quite prominent.
The increased loss probability in this range is not caused
by the larger one-electron density of states close to the
top of the surface barrier. Instead, it was recently shown
to be a consequence of surface screening processes and of
matrix element effects. 2’

III. Ag SURFACES

In this section we extend the response formalism de-
scribed above in order to include the main influence of
the filled 4d bands on the surface-plasmon dispersion re-
lation of Ag. As discussed in the Introduction, we focus
on the modification of the intraband transitions due to
the mutual s-d polarization since the frequency of the Ag
surface collective excitations lies below the region of in-
terband transitions. Thus, we assume that the S5s elec-
trons can be characterized by the nonlocal surface
response function x(z,z’,q,») of a semi-infinite jellium
system. The neutralizing positive background is located
in the half-space z =0. The influence of the 4d electrons
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is represented via the same local dielectric function €,(w)
as in the bulk; the position of the boundary up to which
this polarizable medium is assumed to extend is denoted
by z;. This distance which is the only free parameter in
our model, should be located somewhere between the
edge of the positive background and the first plane of nu-
clei. Figure 3(a) shows in a schematic way the model on
which our calculations are based. The frequency depen-
dence of the real and imaginary parts of the bound term
€,(w) and of the real part of the measured dielectric func-
tion €(w) are shown in Fig. 3(b).

The electronic surface excitations of Ag will be calcu-
lated from the surface response function g(q,w) as
defined in Eq. (2.1). The Poisson equation for the in-
duced potential, however, now reads as

8¢"(z,q,0)—q*8d(z,q,0)=—47dn(z,q,0)/€,(z,0) ,
(3.1)

where €,(z,0)=€,(w)O(z; —z). At the boundary of the
polarizable medium representing the d states, the total
electrostatic potential ¢ =¢,,,+ 6¢ satisfies the boundary
condition (z; =z,+8)

€)' (z; ,q,0)=¢'(z] ,q,0) . (3.2)

In order to solve the response equation for the model
outlined above we write the Coulomb part of the self-
consistent potential as
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This latter term is introduced to ensure the discontinuity

of the Coulomb potential specified in Eq. (3.2). The
coefficient a is determined as follows. Let us define
$1(z4,9,0)=—27b (3.6)

with

b=fdz'e_qlzdﬁ‘lsgn(zd—z’)8n(z’,q,a))/ed(z’,a)) .

(3.7
From Eq. (3.5) we have
+¢5(z5,q,0)=—2ma . (3.8)
Thus,
¢'(zf,q,0)=—2m(A+ta) (3.9
with
A=e"4p . (3.10)
The condition (3.2) then implies
€;w)(A—a)=A+a (3.11)
or
Ol o). (3.12)
€ilw)+1

The final expression for the Coulomb potential therefore

P=de Tt (3.3)  reads as
where ¢.,(z)=— (27 /q )exp(gz) and (2,q,0)=¢.(2,9,0)+8(z,q,0) , (3.13)
27 1, —qlz—z' ’ ’
¢1(z,q,w)=7fdze 12-218n(2",q,0)/€4(2,0) ,  where
3.4 - 2 2 —qlz—
G4 ¢ext(z7q’w)=_—Eeqz+_7ro'd(a))e alz zd‘eqzd (3.14)
by(z,q,0)=2Tge 1! (3.5) ‘ 7
229 q ) ) and
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5$(Z,q,a))=—251fdz’8n(z’,q,co)/ed(z’,w)[e‘qlz—z'l—#ad(w)e

The presence of the polarizable medium representing the
4d states is seen to cause a renormalization of the exter-
nal potential and of the Coulomb response kernel. Apart
from these modifications the structure of the response
equation is the same as that for the simple metals dis-
cussed in the previous section. We have solved these new
response equations self-consistently without further ap-
proximations. Since we are here concerned only with the
surface-plasmon dispersion, propagating bulk-plasmon
modes do not need to be taken into account.

Figure 4 shows several calculated surface excitation
spectra at different values of g. The boundary of the po-
larizable medium is in this case located at z;=0. The
main peak in these spectra corresponds to the surface
plasmon which is seen to shift to higher frequencies with
increasing q. The spectra weight above 3.8 eV corre-
sponds to transitions from the d band as illustrated in
Fig. 3(b). We have found no evidence for the existence of
a multipole surface-plasmon mode. The frequency range
between the ordinary surface plasmon and the interband
transitions is presumably too narrow to sustain this
higher-order collective surface excitation.

Typical surface densities induced by the external po-
tential are shown in Fig. 5. At low frequencies, the densi-
ty is localized within a few A of the surface with only the
weak Friedel oscillations decaying more slowly towards
the interior. Near the surface-plasma frequency, on the
other hand, the induced density is seen to extend much
farther into the bulk because of the close proximity to the
transparency threshold of Ag. This behavior differs from
that on the simple metals where the density fluctuation of
the surface plasmon remains rather concentrated near the
surface because of the larger frequency separation from
the volume plasmon. 2

The dispersion of the Ag surface plasmon for z; =0 is
compared in Fig. 6(a) with the corresponding dispersion
in the absence of the s-d interaction, i.e., for a semi-
infinite electron gas with r,=3. In the latter case, the
surface plasmon exhibits the behavior that is typical for

In[im g(q,w)]

w (eV)

FIG. 4. Frequency dependence of logarithm of surface loss
function Img(q,w) for Ag at several wave vectors g for z; =0
(TDLDA).
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—qlz—z,| —qlz'—z,]
d e d

sgn(z; —z')] . (3.15)

[
all simple metals,> with a negative initial slope given by
d(w), the centroid of the screening charge in the ¢ =0
limit.*~7 The LDA response leads to slightly lower fre-
quencies than the RPA because the more attractive in-
duced potential in the surface region pulls the surface
charge somewhat farther into the vacuum. The s-d in-
teraction is seen to cause not only an overall lowering of
the plasma frequency by about 3 eV but also a strong up-
ward distortion of the dispersion with g: In the RPA, the
negative slope at small ¢ has disappeared so that the plas-
ma frequency now rises monotonically with g. Only in
the LDA treatment is there a remnant of a weak
minimum at very small g.

The variation of the surface-plasmon dispersion with
the parameter z; is shown in Fig. 6(b). For the sake of
clarity, only the RPA curves are plotted; the LDA results
lie slightly lower. In the limit of small g, these curves
converge, as they should, to the frequency wy which is
determined solely by the bulk dielectric function and
therefore must be independent of z;. At finite g, the
dispersion is seen to be positive for z; <0. Thus, the ab-
sence of the s-d interaction in the vacuum region causes a
blueshift of the surface-plasma frequency with increasing
g. This effect becomes more pronounced as z, is shifted
deeper inside since the unscreened portion of the plasma
oscillation is enhanced. Conversely, if the boundary z, is
located outside the surface, the induced surface density is
more fully screened at all g, so that the dispersion shows
an initial negative slope just as on the simple metal sur-
faces.

In the jellium model, the edge of the positive back-
ground is located half a lattice spacing above the first
plane of nuclei. In the case of the Ag (111), (001), and
(110) faces, this distance d, amounts to 1.18, 1.02, and
0.72 A, respectively. The theoretical results in Fig. 6(b)
show that, for z; in the range —d,=<z; =0, the surface-
plasmon dispersion within our model is positive and that
the overall slope agrees qualitatively with the data. For
the Ag (001) and (111) crystal faces these are indicated by
the dotted and dashed lines, respectively.!”3 These
curves have been rigidly shifted downwards by 0.06 eV in
order to make them coincide with w¥(q=0) obtained
from the measured bulk dielectric function.*® For the
(110) face the dispersion along the rows is similar to that
on Ag (111) whereas across the rows, the dispersion is
nearly the same as on Ag (001). For completeness, the
measured dispersion of the Ag bulk plasmon®' is also
shown in Fig. 6(b). Obviously, the dependency of the
dispersion on the crystal face and the anisotropy on the
(110) face are beyond the scope of the present model since
it is based on a homogeneous polarizable medium that is
abruptly terminated at a fixed distance from the surface.
Crystallinity could be approximately incorporated, for
example, by treating the 4d states as polarizable shells lo-
cated at the sites of an fcc lattice. It is possible, however,
that band-structure effects must also be taken into ac-
count in order to understand the more detailed aspects of
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8 n(z,q,w) (a.u.)

FIG. SO.ﬂInduced density 6n(z,q,w) for
g=0.15 A (TDLDA). (a) o=1.0 eV; (b)
0=3.7 eV. Solid curves: real part; dashed
curves: imaginary part.

z (a.u.)

the observed dispersions.

The dispersions shown in Fig. 6 are the main result of
this work. It is clear that even in the low-frequency
range where essentially only intraband transitions within
the nearly free-electron s-p band of Ag contribute, the
polarization influence of the lower-lying filled 4d band
has a very strong effect on the surface-plasmon disper-
sion. An alternative way of interpreting these results is
the following: The large redshift from the bare plasmon
frequency w,(q) to the screened one, w¥(q), due to the
mutual polarization of s and d states, depends strongly on
q: It is largest in the limit of small g because the induced
field decays very slowly into the solid (see illustration in
Fig. 7). With increasing g, this field decays more rapidly
and the s-d interaction is gradually “switched off.”” This
g-dependent reduction of the mutual s-d polarization
leads to an upward skewing of the surface-plasmon
dispersion.

For the purpose of the discussion in Sec. V on the Ag
particles, we conclude this section by giving a reformula-
tion of the above results at small g in terms of a complex

self-energy. In analogy to Eq. (2.11), we write the Ag sur-
face loss function at small ¢ in the form

e(q,w)—1
elg,0)+1 "~

where the effective dielectric function is now given by

glg,w)= (3.16)

602

——7——P——+A(w)
o*+2(q,0)

with A(w)=¢€,(w)—1. At frequencies close to the surface
plasmon the self-energy can be parametrized as

3(q,0)=gD(w)w*?,

elg,w)=1 (3.17)

(3.18)

where wf~w,/V2+ReA=~3.64 eV. Thus, as in Eq.
(2.11), the exact nonlocal surface response at small q is
rewritten in terms of a “classical” dielectric function
whose self-energy accounts for the quantum-mechanical
surface effects and the nonlocal aspects of the response.
According to the poles of g(q,w), the dispersion of the
Ag surface plasmon at small g is given by
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FIG. 6. (a) Dispersion of surface plasmon of
Ag for z;=0 (lower curves) and of semi-
infinite electron gas with r, =3 (upper curves).
Solid lines: RPA response treatment; dashed
lines: TDLDA. (b) Dispersion of surface
plasmon of Ag for z; =0 and z;, ==+0.8 A cal-
culated within RPA (solid curves). The dotted
and dashed lines denote the measured disper-
sions for the (001) and (111) faces of Ag, re-
spectively (see text) (Refs. 1 and 3). The trian-
gles indicate the measured dispersion of the
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FIG. 7. Schematic illustration of induced density 6n(z,q,w)
associated with Ag surface plasmon and corresponding electro-
static potential 8¢4(z,g,w). With increasing g, > g, the range of
this potential decreases and its overlap with the polarizable
medium €, representing the 4d states is reduced. Thus, the s-d
screening interaction is gradually “switched off.”

0*(q)=~w*[1—0.5¢D,+0(g?)], (3.19)

where D, =ReD(w?). The experimental curves' ~* in Fig.
6(b) for the (111) and (001) faces correspond to D, = —0.4
and —0.8 ;\, respectively. The two orthogonal directions
on the Ag(110) face yield nearly the same coefficients. As
we have shown above, our calculations give slopes of
similar magnitude if the boundary of the polarizable
medium representing the d states is located between the
first plane of Ag nuclei and the edge of the background
that neutralizes the s electrons. In Sec. V we will use this
approximate representation of the surface loss function to
estimate the complex polarizability of Ag particles.

IV. SIMPLE METAL PARTICLES

We now show that the electronic excitations at simple
metal surfaces discussed in Sec. II have a close relation-
ship to those observed in optical-absorption spectra of
small simple metal particles. A similar correspondence
was derived earlier by Apell and Ljungbert?? using a rath-
er different approach. The particle radii we are consider-
ing here extend up to about 100 A, i.e., R <<c¢ /w so that
retardation effects are negligible. Moreover, we only dis-
cuss here the interaction of the particles with light, i.e.,
only the excitation of the dipole mode is of interest. The
complex dipole polarizability of small jelliumlike metal
particles may be calculated by using the time-dependent
density-functional approach.!> In analogy to the
response function of the flat surface, we write this polari-
zability as

_p3€R,0)—1
AR ) =R )2
where R is the radius of the positive background. The
effective local dielectric function €(R,®) is given by
2
‘2#— . (4.2)
o +2(R,w)

4.1)

e(R,w)=1—
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The complex self-energy 2(R,w) accounts for scattering
processes and nonlocal effects at the surface of the parti-
cle. Using this definition the particle polarizability takes
the form

@l

03 —0*—3(R,0)

a(R,w)=R? 4.3)

with wy=w,/V'3. Thus 2(R,w) determines the shift
and broadening of the classical Mie resonance.

Since we are here concerned with a qualitative discus-
sion of the absorption spectra of small metal particles, we
will not attempt to calculate the self-energy from first
principles. Instead we now make the assumption that, in
the limit of large R, the response properties at the surface
of a spherical particle should become similar to those at a
flat metal surface in the long-wavelength limit. This as-
sumption seems justified since the quantum-mechanical
scattering processes contributing to the self-energy occur
within a very narrow region in the vicinity of the surface.
In analogy to the definition (2.10) we therefore approxi-
mate Z(R,w) as

S(R,0)=R " 'd(o)o; —0?), 4.4)

where d(w) should have a similar magnitude and spectral
dependence as the corresponding centroid for the flat sur-
face. Inserting Eq. (4.4) into (4.3), it is easily verified that
the above choice of 2(R,w) is consistent with the static
limit of the particle polarizability which is given by

a(R,0)=[R +d(0)]*. (4.5)

This expression indicates the well-known fact that the
effective radius of the particle is larger than R since the
centroid of the polarization charge is located outside the
edge of the positive background.** An explicit 1/R
dependence of a slightly different self-energy was derived
earlier by Zaremba and Persson®* in their approximate
self-consistent scheme for the evaluation of the particle
polarizability. Since the variable 1/R is a measure of the
surface-to-volume ratio, it plays the same role as g in the
case of the flat surface. Thus, the results shown in Fig.
2(a) for the self-energy of the flat surface can be taken as
representative of the corresponding self-energy for spher-
ical metal particles.

From Egs. (4.3) and (4.4) we obtain the following ex-
pression for the size dependence of the Mie resonance at
large R:

oy(R)=wy[1—R 'Red(wy)+O(R72)].  (4.6)
Since Red(w,,) >0 for simple metals, the surface scatter-
ing processes cause a linear redshift with decreasing ra-
dius and the linear coefficient is given by the centroid of
the dynamical screening charge in the large R limit. This
size dependence of the Mie resonance agrees with the one
found by Apell and Ljungbert. 32

Figure 2(c) shows the frequency dependence of the
imaginary part of the polarizability of a Na particle in
the limit R — o and for two finite radii, calculated from
Eq. (4.1). The main spectral feature near w,;=3.4 eV
corresponds to the Mie resonance which is redshifted and
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broadened due to the self-energy processes at the surface
of the particle. The comparison with the results shown in
Fig. 2(b) suggests that the other peak above the Mie reso-
nance is caused by a similar local-field enhancement as
the multipole surface plasmon on the flat surface. This
mode exhibits a blueshift with decreasing particle size.

A comparison of our results for the frequency depen-
dence of Ima(R,w)/R> with the exact calculations of
Ekardt'® and with the self-energy calculations of Zarem-
ba and Persson is shown in Fig. 8 for a Na particle of
radius R =23.3 a.u. Apart from the fine structure caused
by interlevel transitions which is, of course, absent in the
self-energy approaches, there is remarkable overall agree-
ment between these different calculations. In particular,
the close resemblance of our results to the full quantum-
mechanical calculations indicates that the ansatz for the
particle self-energy in (4.4) is reasonable. Nevertheless,
our results differ in some important aspects from those in
Ref. 34. While the redshift of the Mie plasmon from 3.4
to about 3.0 eV obtained in the present work agrees well
with the one found by Ekardt, the results in Ref. 34 show
a curious double peak structure. This arises from a very
large self-energy effect close to the ionization threshold
which in this particular example happens to lie at about
®=3.1 eV, i.e., just below the Mie resonance. As dis-
cussed above, our results also exhibit a feature near this
threshold but it is very much weaker than the one found
in Ref. 34. Similar discrepancies exist at other bulk den-
sities (compare Fig. 7 in Ref. 34 and Fig. 2 of Ref. 24).

It is evident from Fig. 8 that the detailed calculations
in Ref. 16 show a spectral feature between the main Mie
resonance and the volume plasma frequency. It seems
plausible that this peak has the same physical origin as
the multipole surface plasmon at w,, on the flat surface.
The nature of this excitation could be investigated in
more detail by determining the position of the dynamical
charge centroid in jellium particles. If an inward shift is
found as the frequency increases from the Mie resonance
to the volume plasma frequency, this would be convinc-
ing evidence for the similarity of the particle surface
scattering processes and those at the flat metal surface.
Such a resonance-type behavior of the centroid of the in-
duced density in the vicinity of w,, seems to have indeed
been found in microscopic calculations of the particle po-
larizability.>> As shown in Fig. 8 this feature should
disperse towards higher frequencies with decreasing par-
ticle radius. Moreover, the relative intensity of this mode
should be considerably stronger for metals with lower
average density (see Fig. 2 in Ref. 24). In the approach
by Zaremba and Persson> neither the self-energy or the
particle polarizability show any structure in the vicinity
of this multipole surface-plasma resonance. Presumably
this peak is absent in their approach because of the addi-
tional approximations made in the evaluation of the elec-
trostatic potential entering the expression for the self-
energy.

Recent measurements of the absorption cross section
of large K particles (500 and 900 atoms) (Ref. 12) do
indeed show spectral weight at 2.9 eV, i.e., exactly where
we would expect this new collective particle resonance to
occur. We suggest performing additional measurements
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FIG. 8. Frequency dependence of logarithm of normalized
polarizability for Na particle of radius R=23.3 a.u. Solid
curve: present self-energy approach, Eq. (4.3); dashed curve: mi-
croscopic results of Ekardt (Ref. 16); dot-dashed curve: self-
energy approach of Zaremba and Persson (Ref. 34). The verti-
cal arrows denote the frequencies of the Mie plasmon at
0y =3.4 eV and of the “dipolar” particle surface plasmon at
©,,=4.7 eV, both in the limit R= o, and of the volume
plasmon at w,=35.9 eV.

on large Na, K, Rb, and Cs clusters for varying diameters
in order to separate this mode for the main Mie plasma
resonance.

As can be seen in Fig. 8, the microscopic calculations
of Ima(R,w) by Ekardt also show a spectral feature close
to the bulk-plasma frequency of Na. Since the self-energy
of the flat surface vanishes at the transparency threshold,
the ansatz made in Eq. (4.4) does not allow for volume-
type plasmons in metal particles. Obviously, the analogy
between surface scattering processes at a flat surface and
a particle surface breaks down in this frequency range.
The approach used in Ref. 34 also does not include such
volume-type plasmon excitations.

V. Ag PARTICLES

In this section we now combine the ideas discussed in
Secs. III and IV in order to investigate the optical-
absorption spectra of spherical Ag particles in the limit
of large radii. As pointed out in the Introduction, small
Ag particles exhibit a blueshift of the Mie resonance peak
as a function of decreasing particle radius.®™!! The ear-
lier measurements were usually taken for Ag clusters em-
bedded in various matrices where the resonance shifts in-
duced by the surrounding medium are actually of the
same order or larger than the shifts associated with the
finite particle size. The matrix effect can, in fact, be so
strong that it leads to a redshift of the resonance.*® How-
ever, the recent experiments on gas-phase Ag particles es-
tablish unequivocally the blueshift of the Mie resonance
compared to the classical limit.!®!! This behavior is in
striking contrast to the redshift of the Mie resonance of
the alkali-metal clusters. As we have discussed in the
previous section, this redshift is closely related to the
spill-out effect. Thus, just as in the case of the Ag
surface-plasmon dispersion, the presence of the filled 4d
levels changes the sign of the variation of the particle res-
onance frequency.
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The model for combined 5s-4d response that we have
used in Sec. III for the evaluation of the surface-plasmon
dispersion could, in principle, also be applied to deter-
mine the absorption spectrum of Ag particles. Such a
calculation requires the same nonlocal response function
for the s electrons as in the case of jellium particles.
However, the potential associated with the dynamically
induced density will now be screened due to the presence
of the polarizable medium representing the fully occupied
4d states. Since we are only concerned with the limit of
large R, this medium can be represented by the same
bound dielectric contribution €;(w) as in the volume. As
a result of the s-d interaction the Mie resonance frequen-
cy is reduced from its unscreened value
=w,/V'3=5.3eV to o} ~w,/V/2+Ree,;~3.5eV.

The important feature of our model is now, like in the
case of a flat Ag surface, that this s-d interaction is ab-
sent in the surface region where the 5s electrons spill out
into the vacuum. Since part of the density fluctuation as-
sociated with the Mie resonance oscillates with the un-
screened plasma frequency, this mechanism leads to an
increase of the resonance frequency. Moreover, this
effect becomes more pronounced with decreasing particle
radius because of the larger surface-to-volume ratio.
Thus, the Mie resonance frequency exhibits a blueshift
with decreasing particle size.

The physical situation is therefore similar to the one il-
lustrated schematically in Fig. 7 with the z axis replaced
by the radial coordinate r: Since the radial component of
the induced potential is proportional to r in the interior,
the overlap with the polarizable medium representing the
d states is largest for large particle radii [see 8¢(g,) in
Fig. 7]. As the particle size is decreased, the induced po-
tential falls off more rapidly [roughly like 8¢(q,)] so that
this overlap is gradually reduced. Thus, as a function of
decreasing radius, the resonance frequency is shifted up
towards the unscreened plasma frequency.

Instead of calculating the particle absorption spectrum
quantum mechanically within this model, we now employ
a similar self-energy approach as in the previous section
for the simple metal particles. Thus, we write the
effective particle dielectric function as

w2

€R,0)=1——5——"——+A(0)
o*+2(R,0)
with A(w)=¢€,(w)— 1. Furthermore, we assume that the
self-energy processes at the surface of a sufficiently large
Ag particle are similar to those at a flat Ag surface. Us-
ing this approximation we obtain from (3.18)

3(R,0)~R "'D(w)o** .

(5.1

(5.2)

With this self-energy, the size dependence of the Ag Mie
resonance at large R is given by

o3 (R)=0}[1—0.5R "Dy (0¥ /o})*+O(R ?)],
(5.3)

where w};~w,/V3+ReA~3.5 eV and Dy, =ReD(wjy).
Because of the closeness of the frequencies w} and wj,
this result shows that the linear coefficient for the Mie

0.1 0.2 0.3
1/R (A7)

FIG. 9. Variation of Ag Mie resonance with inverse of parti-
cle radius. The dots denote experimental data for positively
charged gas-phase particles. The + symbols are for Ag parti-
cles in an Ar matrix [Ref. 9(a)]. The solid line is a fit through

these data and the frequency expected in the limit of large R
(Ref. 11).

resonance should be nearly the same as that of the sur-
face plasmon. Figure 9 shows the variation of the Ag
Mie resonance with particle radius. 10,11 The solid line
corresponds to D,,~—0.85 A which agrees quite well
with the slope expected from the dispersion of the Ag
surface plasmons.

The above considerations apply to neutral Ag surfaces
and particles. For the positively charged clusters studied
in Refs. 10 and 11, the effective centroid of the induced
s-d surface density should be located somewhat farther
inside the metal, leading to an enhancement of the blue-
shift. Conversely, the centroids of negatively charged Ag
clusters are presumably located outside the surface which
should cause a redshift of the Mie resonance with de-
creasing radius. Such a reversal of the shift upon nega-
tive charging has indeed been observed. *’

We point out that the observed resonance frequencies
of small metal particles may be influenced by various oth-
er effects. In the present case, slight frequency shifts
could, for example, result from the rather high tempera-
ture of the sputtered clusters [2000—3000 K (Ref. 38)].
In the bulk, raising the temperature from 300 to about
700 K leads to a redshift of the Ag volume plasma fre-
quency of about 0.1 eV.3® At higher temperatures, the
plasmon loss feature broadens considerably and its main
position shifts to higher frequencies. Nevertheless, the
resonance frequencies of the small clusters studied here
agree quite well with those of Ag clusters in solid Ar at
10 K.° Also, the interatomic spacing might not be the
same as in the bulk and the concentration of defects
might be rather large. These effects, which all produce
shifts of the resonance frequency, become particularly
severe in very small Ag clusters where the discrete atomic
geometry must also be taken into consideration. Transi-
tions between the cluster levels then become important
and the description of the absorption spectra in terms of
macroscopic quantities becomes inappropriate.

VI. CONCLUSION

The dispersion of the Ag surface plasmon and of the
Ag Mie resonance have been discussed in terms of a mod-
el for the dynamical response of the 5s-4d electron sys-
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tem. This model makes use of the fact that the frequen-
cies of these collective modes lie below the region of tran-
sitions involving the d states. The primary physical effect
is therefore the influence of the s-d polarization on the
electronic transitions between the low-lying nearly-free-
electron s-p states. The nonlocal response properties of
these states are treated within the time-dependent
density-functional scheme and the d states are represent-
ed via a polarizable medium that extends up to a certain
distance from the surface. The key feature of this ap-
proach is that the s and d electronic densities are con-
sidered in a combined, self-consistent manner, i.e., they
are not assumed to respond independently of one another
to the applied perturbation. Since the s-d interaction is
absent in the region where the s electrons spill out into
the vacuum, a part of the collective density fluctuation
oscillates with the unscreened plasma frequency, leading
to a blueshift of the effective s-d surface plasmon.

In the case of the electronic excitations at a flat Ag sur-
face, we obtain the plasmon dispersion within this model
from a direct solution of the appropriate response equa-
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tions in real space. For the Ag particles we use instead a
self-energy formulation in conjunction with an effective
dielectric function and assume that the scattering pro-
cesses at the surface of a sufficiently large particle are
similar to those occurring at a flat metal surface. This
analogy suggests that the linear coefficients of the Ag sur-
face plasmon at small parallel momenta and of the Mie
resonance at small inverse radii should be rather similar.
This agrees with the experimental data.

With regard to the simple metal particles we have
shown that the self-energy approach yields very good
overall agreement with the full quantum-mechanical re-
sults for the complex polarizability. This leads us to an
interesting new interpretation of a previously unidentified
spectral feature at frequencies between the Mie resonance
and the volume plasmon, namely a quasicollective excita-
tion analogous to the multipole surface plasmon that is
seen both theoretically and experimentally on all simple
metal surfaces. Recent absorption spectra for large K
clusters do indeed provide evidence for the fact that this
mode also exists in small metal particles.
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