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Strongly correlated electron materials. I. Theory of the quasiparticle structure
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En this paper we give a method for analyzing the renormalized electronic structure of the Hubbard
systems. The first step is the determination of e8'ective interactions from the random-phase approx-
imation (RPA) and from an extended RPA (ERPA) that introduces vertex efFects within the bubble
polarization. The second step is the determination of the density of states deduced from the spectral
functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances
in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we
analyze the conditions for which there is only one type of resonance and the causes that lead to
the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective
interactions within the strong-coupling theory and we give the conditions for obtaining coupling and
superconductivity.

I. INTRODUCTION

The Hubbard model is currently used for analyzing
the electronic structure of two apparently different sys-
tems, the heavy-fermion compounds and some transi-
tion materials such as the superconducting cuprates.
We think that if we are able to analyze the conditions
within the Hubbard model that lead to the different
quasiparticle structure of these systems, we can bet-
ter understand the electronic structure of these mate-
rials and their respective phenomenologies. The analysis
of the electronic structure is carried out along the fol-
lowing lines: effective interaction~self-energy —+spectral
functions —+renorrnalized density of states. The most
simple Feynman graph series for obtaining an effective
interaction is the random-phase approximation (RPA).
The other more complex effective interaction worked out
in this paper is determined by considering vertex ef-
fects in the bubble polarization. 5 The series defined with
this effective interaction is an extension of the random-
phase approximation and henceforth we term it ERPA.
The corresponding self-energy deduced from the differ-
ent effective interactions is calculated following the so-
called GW approximation. The self-energies calculated
by using the RPA or ERPA effective interaction will be
called henceforth RPA or ERPA self-energies, respec-
tively. They lead, from a qualitative point of view, to
similar spectroscopic patterns. However, the enhance-
ment of the effective masses in the heavy-fermion state
can be better obtained by the ERPA than by the RPA.
The density of states (DOS) is determined from the the
imaginary part of the interacting-system Green's func-
tions, and we also obtain a self-consistent DOS. The self-
consistency produces quantitative changes in the elec-
tronic structure, but maintains, from a qualitaive point
of view, the same pattern for this structure.

We would like to emphasize two aspects of the elec-
tronic structure of these systems.

(i) The appearance of three features in the quasi-
particle DOS (Refs. 1, 3, 8, and 9) for each state
of the Hartree-Fock non-interacting system (Kampf and
Schrieffer and Zlatic, Ghatak, and Benermann show
this concept clearly). The two features at the extremes
yield the upper and lower Hubbard energy bands.
The middle-energy resonance is responsible for the ap-
pearance of the heavy-fermion state when this resonance
is such that the corresponding effective mass is largely
enhanced. ' It is necessary to remark that this profile
with three resonances is characteristic of the electronic
structure of the Ce compounds, while in U compounds it
can disappear because the 5f band is wider than the 4f
one.

(ii) A gradual transition takes place from a heavy-
fermion state to a Hubbard state when changing the
bandwidth and band occupation. In the resulting Hub-
bard state each strongly correlated m symmetry yields
a band whose location is dependent on its own occupa-
tion. Therefore, although this state has only one band
for each m symmetry, it also presents m splitting, due to
the different location of each m band (see, for instance,
Thalmeier and Falicov in Ref. 10 and Czycholl in Ref. 8).
This result is similar to that arising from the unrestricted
Hartree-Fock approximaton.

The study of the strong-coupling equations of the su-
perconductivity can be added to the analysis of the elec-
tronic structure, considering as pair potentials interac-
tions similar to those used for finding the self-energy.
The objective of the superconductivity section is to test
the possibility that a dynamical screening of the strong
repulsive interaction U becomes sufBcient for obtaining
superconductivity and to give the band conditions that
make it possible.

II. HAMILTONIAN

The many-body Hamiltonian considered in this work
is the standard multiband Hubbard Hamiltonian:
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ct = ) (knlm)e '"'R'ct
k) cx
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where X is the number of lattice sites. Henceforth the m
I

= HLDF + HU
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where HLDF is the local-density formalism Hamiltonian,
index j runs over all lattice sites, and m, and m' are the
symmetries of the strongly correlated orbital.

The creation operator corrresponding to o, bands is
related with the ct operator by means of the relation

kn kn
0

k, a

+—) ) ) (kn, k'Pirl(k+ q)g, (k' —q)g)
k, k' q n, P,(,g

XX Ck~Ck, &C~k q~„C(k+q) (3)

where in our case the interaction terms, using the Hub-
bard approximation, are given by

index includes the orbital and spin indices. The anihila-
tion operators are related in a similar form. Equation (1)
can be also written in the form of a general Hamiltonian

(kn, k'pl@I(k+ q)(, (k' —q)i1) = —) (knlm)(k'plm')(ml(k+ q)(}(m'l{k' —q)f7)
m$ 77l

kn, k'P —) Im, m')U(m, m'I (k+ q)(, (k' —q)r)

with U = (jm, gm'Ivlgm, gm'). The Hamiltonians (1)
and {3)only differ by the constant UN(n)/2, where (n)
is the average occupation value of the strongly correlated
orbital. The difFerence between Ijm) and Im) is that Ijm)
is an m orbital centered at R~, lattice site j, while Im)
is a wave function centered at R~ = 0, and it is defined

by Im) = ~N IOm).

III. DIELECTRIC FUNCTIONS

The dielectric functions corresponding to the Hamilto-
nian (1) and (3) ean be deduced from the dynamically

I

screened effective interactions V(q, ~) between states
arising from localized orbitals.

The RPA can provide, at least qualitatively, the pat-
tern of the electronic structure of the systems we treat.
Other diagrammatic series can yield quantitative im-
provements, such as, for instance the electron-hole ladder
series and the so-called t matrix. ' However, we at-
tempt to discriminate the eKects of these series both in
the quasiparticle structure and in the superconductivity
and therefore, in this work, we start with the RPA, which
is the most simplified approximation. The RPA efFective
interaction Vo(q, u) can be deduced from the following
equation [see diagrams of Figs. 1(a) and l(c)]:

kn, k'p —) Im, m')V (q, cu)(m, m'I (k+ q)(, (k' —q)i)
~

(1
kn k'p ) Im, m')U(m m'I (k+ q)(, (k' —q)r)

)

where

+ kn, k'p UIIo(q, ~) —) lm, m')V'(q, ~)(m, m'I (k+ q)& (k' —q)&
(N

Il (q, ~) = —) ) .1((p —q)&lm")I' l(palm")I' ~
o" o + o+ +so eo g+

p, p, , v m" r p (i —q)~ » (&—q)~

This equation is correct if the U energy is independent on
the m and m' orbitals and one supposes that each a band
hybridizes with only one m orbital. If these conditions
are not valid, Vo(q, w) should be obtained by a matrieial
treatment, since U and 0 are then matrices with respect

to the m and m' indices. Vo(q, ~) satisfies the equation

V (q, cu) = U+ UII (q, a)V (q, a). (6)
A calculation of V(q, w) with ERPA ean be obtained

by calculating vertex eKects and including them in the
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parameter, we have a different approximation for the
dielectric function. For a = 0, the above expression
corresponds to the RPA; for a = 1, to ERPA; and for
a = 1/2, to the Geldart-Vosko-Hubbard (GVH) approx-
imation to the dielectric function, appropriated for ex-
tremely short-ranged bare interactions. The polarization
function IIo can be written as IIo(cu) = F(w) + F( w),—
where F(u) is given by

0
= = -o

F(~) =). ~+ 2: —x'+ i0+

and JVo (2:) stands for the contribution of the m orbital
to the DOS in the noninteracting system.

A. Dielectric functions in Ce systems

FIG. 1. Diagramatic expressions representing (a) the polar-
ization in the RPA, (b) the polarization in the ERPA, (c)
efFective interaction in the RPA, and (d) the efFective inter-
action in the ERPA.

polarization II(w) (Refs. 5 and 6) [see Figs. 1(b) and
(Id)j:

V(q, w) = U+ UII(q, cu)V(q, u),

where

II(q, (u) = II (q, (u) —II (q, u))UII(q, a).
The band structure e is that obtained with the local-

density formalism (LDF5. Due to the localization of the
m electrons, it is generally accepted that the effective
interactions arising from the U energy should depend
slowly on the quasimomentum. Therefore, in Hubbard
systems, the variations of these interactions versus ~ are
much larger than those versus q. We thus consider
an effective screened interaction V(w), which is the av-
erage of V(q, u) over the first Brillouin zone. The sup-
pression of the q dependence in the polarization is valid
in the f systems due to the narrowness of the f bands.
In the transition compounds this approximation can be
discussed in some cases according to the value of the ef-
fective width of the active band near EF. However, in
the Y-Ba-Cu-0 compounds, the bands that are close to
EF present effects of strong correlation, and therefore
we consider that the independence of V on q can be a
reasonable hypothesis. The possible effects of the q de-
pendence in this latter compound is not the purpose of
the present work.

Then the RPA, ERPA, and any intermediate effective
interaction between both cases can be written as

V(~) = = U [1 —UII(cu)]
e(Ld)

where

IIo(u))
1+aUIIo(~) '

with 11 (~) = ~ Q IIo(q, u). For each value of the a

The DOS in the Ce systems has the following general
characteristics.

(i) The presence of two narrow and high DOS struc-
tures located very close to EF. The splitting of these
f structures is due to hybridization with other extended
states located at the same energies. In the case of the
heavy-fermion state these structures can be extremely
high and narrow, and the material presents a giant en-
hancement of effective masses (m, s is around 10—1000
times the free electron mass mo), which brings about a
very large electronic specific heat (p'/po = m, g/mo).

(ii) The Fermi level can be located on the gap or pseu-
dogap which splits off these two structures. In some cases
there is a real gap in the partial density of f electrons
that does not appear in the total DOS. The extended
states near EF constitute a Fermi liquid which does not
affect the heavy-fermion properties of the system, at least
in a fundamental way.

We have developed a method in Ref. 10 in which a
non-energy dependent potential arising from the Hub-
bard Hamiltonian is added to the LDF and we have par-
tially obtained some of these characteristics. However, we
are convinced that the electronic structure of the these
Ce compounds and the enhancement of the effective mass
require the introduction of the energy-dependent poten-
tials. We choose for the DOS of the noninteracting sys-
tem an analytical expression which presents similar fea-
tures to those obtained in our calculations of Ref. 10,
which allows us to deduce analytical expressions for e(a)
and to study its dependence on the band parameters. A
first approximation to fVo(u), which is valid for the case
of the Ce-based heavy-fermion metals, is

JV (~) = ) JV ((u) = )
m m

~, =-m

(~ —(-)'+ =-'

(12)

The subindex m runs over all the orbitals (for instance,
the 4f orbitals) and all spin directions. Therefore JVo (w)
represents the partial DOS corresponding to one orbital
and one spin direction. If A « A and:-~ && (
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where p~ = A~ + (~ is the splitting between the two
resonances and I' = A + = . In the Ce compounds
whose n electron count (n = P n~) is less than or
equal to 1, we can consider, for the sake of simplicity,
one m orbital and so n = n y+ n g. If we deal with a
non-magnetic compound (n-CeA12, CeRu2, CeOsz, etc.),
n can be evenly divided between both spin directions
and thus n y

= n g. In a magnetic compound such
as p-CeA12, n is not evenly divided between both spin
directions; for instance, in this case n = nmy = 0.8.

The dielectric-response function in the different ap-
proximations when one considers only one m symmetry
in (12) can be written as

u2 —A~
6 (d (14)

where 0 and Y have the following expressions in the case
of a nonmagnetic Ce compound:

0 = (p —iI') + (1 —a)Un(2 —n)(p —iI'),
= (p —iI ) —aUn(2 —n) (p —iI'),

and for a magnetic Ce compound:

then KP n~ (the occupation of the m orbital) and
KP 1 —n~. Then IIP(w) becomes

p( ) y ~f
n~(l —n~) n~(1 —n )

(~ —Vm + ~Fm —~ —Vm + «m)

0 = (p —iF) + 2(1 —a) Un(1 —n) (p —iI'), (l7)

Y = (p —iI') —2aUn(1 —n)(p —iI').

The dielectric function (14) is valid for the difFerent
approximations RPA, ERPA, and GVH, just taking the
corresponding value of the a parameter. Similar behavior
for e(w) has also been deduced in previous research. ~r ~s

The plasmon frequencies co~, which correspond to the
real part of +0, play an important role within the heavy-
fermion state since they correspond to collective oscilla-
tions of the electron gas of the interacting system.

B. Dielectric functions in high-T, superconriuctors

Our experience on calculating the electronic structure
in high-T, superconductors by adding the Hartree-Fock
self-energy to the LDF Hamiltonian allows us to con-
clude that the resulting DOS is less abrupt and less
peaked than in the heavy-fermion state. This DOS ap-
pears to be almost constant in a narrow interval around
the Fermi level. This leads us to consider expressions
of IIP deduced either with a rectangular JVP(a) or with
a Lorentzian DOS [Eq. (12)] whose bandwidth is suf-
ficiently large for simulating the electronic structure of
the Y-Ba-Cu-0 compounds close to the Fermi level. In
the latter case one can use Eq. (14) with the appropri-
ate band parameters. If one considers a square shape for
JV~ in the energy interval close to E~ for each m orbital,
IIP(~) is

II (~) = —) JV() [((v+6 ) in~~+6
~

—((u —b'
) ln~~ —b

—((u+ b ) 1n(cu+ b (+ (~ —b ) in]su —b
(

—(~+ a ) ln(~+ a [+ (~ —a ) in[~ —a (]

+i~ sgn(u)) ) A'p (b [O(b —w) —O(b —~) + O(b + (u) —O(6 + cu)]

+a [O(a —~) —O(b —~) + O(a + ~) —O(b + cu)]

+~[0(—cu) —O(b —~) —8(a —~) + O(6 —~)
—O(~) + O(b + ~) + O(a + ~) —O(b + ~)]},

where JVp is the constant density of states correspond-
ing to the m orbital, 6 = Az is the bandwidth,
a = n~b~ [b~ = (1 —n )b~] is the occupied (un-
occupied) energy interval of the m orbital, and O(x) is
the step function. The dielectric function is then

e(~) = 1 —UII (cu) [1+aUII(~)] (20)

This function presents similar features to those given by
Eq. (14), and the evolution versus the main electronic
parameters of the strongly correlated systems (b, n, and
U) is also similar to that of (14).

IV. SELF-ENERGIES

Once we have determined the screened interaction
V (cu) and V(w), we can deduce the self-energy for the
strongly correlated systems as

U
e'( —0)

where the p~ functions are m orbitals whose radial
parts can be determined by the renormalized atom ap-
proach. The meaning and the procedure for the calcu-
lation of the X parameter are given in the Appendix.
For each m orbital M (~) is determined within the GW
approximation and is given by

JV (x)dx
e(x —~)

~( ) d (22)~ M —0 —x
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JV (x)- 1
~ dx.

u) —0 —x+ iO+

Here —n corresponds to the zero of (14) located at the
upper complex half-plane. This self-energy for the dielec-
tric function (14) takes the form

(~) = U(X —n )
02 —Y2 1

n ™~) n~+ 0 —x —iO+

A~ —Y~

2A

5—

0

I
i

I
I

Ir

i i t i I s

\

A=0.05eV

II

(a)

(23)
Here, in paper I of this series, we give an approximated
version of the spectrum of the interacting system in a
general case by finding the poles of the interacting-system
Green's function, defined by

G~(k, ~) = ~ —s„—E~(u)) (24)

where c& is the noninteracting system spectrum.
The DOS of the interacting system deduced from the

spectral functions corresponding to the Green's-functions
(24) and JVo(u) given by Eq. (12) is

1 ~ n [Zg(~)+A ]

7r ( [(d —Zi((d)+A ]2+ [Zz(cd)+A ]

-5—
I I I I I I I I

A= 0.3ev
I i e i i I

(c)

0

-5—

~(eV)

FIG. 2. Real part (solid line) and imaginary part (dashed
line) of the dielectric function e(w), obtained from Eq. (14), in
the ERPA, with U = 5 0 eV, A = ( = 1 5 eV, and n = I/2.
(a) A =:- = 0.05 eV, (b) A = 0.15 eV, and (c) A = 0.3 eV.
The factors A, :-, A, and ( are defined in Eq. (12) of the text.

where Zi(~) = ReZ (cu) and Z2(w) = ~lmZ~(~)].
The self-consistent process is suggested because the self-
energy (23) depends on the DOS, which itself depends
on the self-energy. The starting point (first iteration in
the self-consistent process) for obtaining Z(~) consists in
taking the DOS of a noninteracting system [JV (a)] ob-
tained with the LDF method. Considering the DOS (12)
we obtain the first iteration self-energy, which is given by

Z (~)= U(A —n )

n2 —Yz ( n
n ( n

1 —n+~ —n —g +i= )
(26)

The results obtained in the last iteration keep features
similar to those of the first iteration [expression (26)],
although for some initial band parameters the results of
the first and last iteration can differ from a quantitative
point of view.

bandwidth constant. The most important characteristic
of ei(u), both in Figs. 2 and 3, is the existence of two
zeros in the positive zone of the frequency and two oth-
ers symmetrically located in the negative one. For the
first zero, e2(w) = Ime(w) g 0, and for the second zero,
both ei(cu) and e2(cu) are vanishing. We just present the
curves for n & 0.5, since e(u) is invariant with respect to
the change n ~ 1 —n. These curves present the follow-
ing features: (i) a minimum at frequency a 6; (ii) the
same asymptotic value ei(w) ~ 1 when u —& oo; (iii) two
cuts with the w axis up to a critical occupation, beyond
which ei(u) is positive for all ~; and (iv) the value of

3
2

V. RESULTS OF THE DIELECTRIC FUNCTION
AND SELF-ENERGY

We display in Fig. 2 the dielectric functions (14) for
several bandwiths. These curves have similar character-
istics for difFerent values of the a parameter in (15)—
(18), although from a quantitative point of view there
can exist appreciable differences. In Fig. 3, we plot
ei(cu) —= Rem(~) deduced from Eq. (20) for difFerent oc-
cupations of the m orbital, keeping the U energy and the

0 0.025 0.05 0.075 0.1 0.125 0 0.025 0.05 0.075 0.1 0.125
u (Ry) u (Ry)

FIG. 3. Real part of the dielectric function obtained from
Eq. (20) for U = 0.5 Ry and for different values of the m-
electron count n. (a) b = 0.04 Ry and (b) 6 = 0.06 Ry.
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the minimum of ei(w) decreases with n, and for n=0.5 it
presents the absolute minimum of the family of curves.
T e evolution of ei(w) with n, keeping U and 6 constant,
presents critical points. They correspond to occupations
such that the two plasmon poles 0 and 0* d'disappear
[see, for instance, Fig. 3(a) for n =0.980]. These critical
points imply the loss of the heavy-fermion behavior and
they are found by calculating the values of n for which
ei(w) has its minima when ei(w) = 0.

26 . In this a
The self-energy of the first iteration i

'
b E .is given y q.

( ). n this paper, we consider that the A parameter of

thee analysis would be the same, except for considering a
(X —n ) translation of the x axis in the figures of

Z(cu) versus ~.
In Fig. 4 we give the results of the non-self-consistent

Z (cu) for a RPA dielectric function varying the ocu-
pation number n~. In Fig. 5, we plot the self-energy
with the same parameters as in Fig. 4, but considering
t e ERPA dielectric functions. The comparison between

a ive y similar to RPA, although there are some quanti-
tative difFerences. Figure 6 represents the self-energy in
the RPA by considering the polarization function (19).

ne can also see that the self-energies arising from the
different polarizations (19) and (13) have a similar shape
considering similar bandwidths in A' (w).

As it was explained above, the effects of the Z (cu) po-
tential can be analyzed by studying the poles of G (k, ur)

[Eq. (24)]. An orientative guide for the pattern of the
quasiparticle spectrum can be graphically obtained from

10 (a) n =0.2

—5—
—10—
10 —(b) n =0.5

g
I

I ll~ I i c s r I

—10—
iO = (c) n=0.8

—10—
-2.5

I

0
u)(ev)

2.5

FIG. 5. Same as Fig. 4, but in the ERPA case.

the intersection of the line y& ——~ —z 'th th fwi e unction
y2 = ReZ (u), for each value of s Th

P 0 ~

e energy range
~). Eachof s is obviously defined by the DOS JV

state in the noninteracting s st
ia y occupied m orbital yields five difFerent resonances

10:(a) (a) eV

0

—10—
10

I I I I I I r I

5

eV

0

—10—
I

I I I I

(c) eV

~ I I
g

I

0

—5—
—10—

I I I I I

—2.5 0
a)(ev)

I. . . , I

2.5 5
I I I I I I . . . , I, !. . . I. . . , I. . . ,

-2 0 2 4
~(eV)

FIG. 4. Real part (solid line) and imaginary part (dashed
line) of the self-energy Z(a) in the RPA case, calculated for

and ( are defined in Eq. (12) of the text. (a) n = 0.2 (b)
n = 0.5, and ~c~ n = 0.8. Dotted lines represent the function
y=u —e, where e = +A.

FIG. 6. Real part (solid line) and imaginary part (dashed
line) of the self-energy obtained with the polarization (19
for U = 6.8 eV and n = 0.4, varying the bandwidth 6: (a)
6 = 1.0 eV, (b) 6 = 0.5 eV, and (c) 6 = 0.2 eV. Dotted lines
represent the function y = u —e, e being n6 and (1 —n)h, —
i.e. , the ends of the band JVg .
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FIG. 7. Dashed line represents the real part of the self-
energy in the RPA, calculated for A =:- = 0.03 eV, A = ( =
0.4 eV, n = 1/2, and U = 5 eV. Solid line is the resulting
DOS, and the dot-dashed line corresponds to y = u. (a)
Non-self-consistent calculation of the self-energy [Eq. (26)].
(b) Self-consistent calculation of the self-energy [Eq. (23)].

4 6

(or structures) associated with the five different cuts of
yq and y2 (see Figs. 4 and 5). This result is also obtained
in Ref. 3, whose concurrence is there named "pseudogap
regime. "

For a value of n~ = 1/2, the location of the peaks
in the DOS is symmetric with respect to the third cut,
which is located close to E~. This cut becomes to be
called Kondo f peak, because its location with respect
to E~ determines the Kondo temperature. Our results
are in agreement with 3oyce et at. in the sense that
the f structure close to E~ is due to the screening aris-
ing from many-body effects taken into account by the
dielectric response. In our case the location of this cen-
tral structure is nearly the same in all approximations
for V(u). The second and fourth cuts of the pseudogap
regime correspond to resonances whose half-life, defined
by the inverse of ImZ (a), almost vanishes, since the
imaginary part of the self-energy is very large at these
two energies (this result is in agreement with that of Ref.
3). Therefore, the Green's-function poles associated with
the first, third, and fifth cuts are those that correspond to
the three peaks of the DOS of the interacting system in
the pseudogap regime. This is for each stationary state
arising from the partially occupied m symmetry in the
LDF electronic structure. The splitting between these
resonances is larger for increasing values of the U energy
and for values of n~ approaching half-occupation.

The self-consistent self-energy results are presented
along with the non-self-consistent ones in Figs. 7—10 and
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FIG. 9. Same as Fig. 7 but in the ERPA case.

FIG. 8. Same as Fig. 7, but calculated with the following
parameters: A =:- = 0.15 eV, A = ( = 0.4 eV, n = 1/2,
and U = 5 eV. (a) Non-self-consistent calculation and (b)
self-consistent one.
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seem to be in qualitative agreement with those obtained
in Ref. 3. Our results present less similitude with those
of Ref. 4, probably due to the fact that these authors
use a nonperturbative ~ technique, obviously different
from that considered in this work. The self-consistency
maintains the pattern of both the self-energy and the
quasiparticle DOS, since there are also the central double
structure and the lower and upper Hubbard structures.
One difference is that the height of the main resonances
decreases with the iterative process. This decrease of the
peak height in the self-consistent DOS is more important
in the ERPA than in the RPA. Another eKect given by
the self-consistency is the possible appearence of multi-
peaks in the DOS. This effect is more clear in the results
performed with the ERPA; see Fig. 9(b). However, these
oscillations disappear in the realistic cases via hybridiza-
tion with more extended states. The splitting of the two
peaks that we identify with the upper Hubbard band and
lower Hubbard band in the DOS is approximately U in
the RPA calculation and smaller in the ERPA. The cen-
tral m structure can be split off in two m substructures by
a pseudogap. This pattern was schematically suggested
by Martin's model (see Ref. 8) for compounds with a par-
tially occupied m orbital and corresponds to the so-called
multipeaked m structure, which is obtained in other pre-
vious papers, and has been experimentally detected
in a great number of experimental results.

VI. GENERAL QUASIPARTICLE STRUCTURE
OF THE HUBBARD SYSTEMS

The spectrum given by the RPA approximation to
the dielectric function is similar to that deduced by the

ERPA, mainly the self-consistent results [see Figs. 7(b),
8(b), 9(b), and 10(b)j. We wish to emphasize that the
result of three resonances, for each state of the noninter-
acting system, is for each of the (2t + 1) m symmetries
belonging to a given / Hilbert subspace. The hybridiza-
tion and the existence of several partially occupied m
orbitals can imply the appearance of a larger number
of resonances in the total DOS. On the other hand, the
presence of other extended states belonging to the non-
correlated electron sea can partially hide the peaks in the
DOS arising from these resonances.

It is impossible to obtain these three DOS peaks
from mean-field approximations, and they can be physi-
cally interpreted as follows. The upper-energy resonance
(VER) constitutes the upper Hubbard band. s 2~ This
UER could be interpreted as a band of states arising
from the transition 4f + e —+ 4f that is propagated
by the crystal with a definite k. The lower-energy res-
onance (LER) constitutes the standard lower Hubbard
band. The most interesting feature is the occurrence
of middle-energy resonances (MER), since they are lo-
cated near E~ and therefore all physical properties are
dependent on them. 3' Making a logical conceptual
interpolation between the UER and the LER, the MER
corresponds to intermediate dynamical occupations be-
tween the resonances of extreme energies.

The heavy-fermion state arises when the middle-energy
resonance presents large effective masses. In the Ce sys-
tems this feature coincides with the existence of a multi-
peaked structure for each partially occupied m orbital.
These two characteristics are gradually lost when the
band parameters of the interacting strongly correlated
electron gas are modified. By regarding the solutions of
equation u1 —sok —Z(w) = 0, there is a transition from five
cuts to only one for a certain interval of the band param-
eters (compare Figs. 7 with 8 and 9 with 10). However,
this transition is reHected in the DOS as a smooth and
gradual change of its structure because of the gradual
variation of the spectral functions on the band parame-
ters. This transition is named in previous literature as a
transition from pseudogap regime to Fermi-liquid regime,
and it is obvious that the pseudogap regime favors the
appearance of the heavy-fermion state. 4 The main band
parameters which govern the necessary changes in the
self-energy for which the heavy-fermion characteristics do
not appear are the m occupation and mainly the width of
the effective band arising from this m orbital. An analy-
sis of this evolution has been performed, and the results
are displayed in Figs. 7—10. Figures 7 and 8 show this
evolution within the RPA and Figs. 9 and 10 correspond
to the same calculations performed within the ERPA.

Figures 7 and 9 present the characteristic pattern of
the Ce systems. This case constitutes a candidate for
being a heavy-fermion system. From comparison of Figs.
7 with 8 and 9 with 10, one can deduce that for increasing
values of the effective bandwidth the upper and lower en-
ergy resonances almost disappear and the resulting elec-
tronic structure is a Hubbard state in which each strongly
correlated m symmetry yields a middle-energy resonance
band whose location is dependent on its own occupation.
This state presents characteristics similar to that of the
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Fermi-liquid regime in previous literature. This multi-
band Hubbard state, although it has only one resonance
for each m symmetry, can also present multiple splitting
if there are different n occupations, since the expres-
sions of the self-energy (23) and (26) are practically re-
duced to U(X —n ) for a sufficient large bandwidth.

VII. STRONG-COUPLING EQUATIONS
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~[1 —Z(~)1 =

n~(~')

W (cu') sgn(~')
g~'2Z(w') 2 —W(~') 2

dc'
~

1 ng (0)
2~ e'(A) su+ 0 —~'

(27)

In this section, we include an effective interaction of
the type (9) between fermions in the strong-coupling su-
perconductivity equations for testing the possibility that
this kind of interaction can produce coupling and super-
conductivity as it has been suggested previously. This
objective is similar to that of Norman's works, where he
analyzes the possibility of explaining the heavy-fermion
superconductivity from Eliashberg equations. The e8'ec-
tive pair potential deduced from the dielectric functions
(14) and (20) produces an attractive interaction, and
therefore coupling, between holes of the corresponding
m orbital in a frequency interval defined by Y & a & 0
(see Figs. 2 and 3). The reasons for assuming the in-
dependence of the q momentum are the same as those
given in Sec. III, this condition having been considered
in several previous papers. 2 '2 The limits, Y and 0,
of this interval are decisive for the coupling potential to
be able to produce superconductivity. The self-energies
for pairs W(w) and fermions S(w) in the superconducting
state, considering the pair potential (14), can be obtained
after some mathematical manipulations and their ex-
pressions are

) 1 n~(Q)
27l E(0) M'+ 0 —M

—0.01
I I I I I I I I I I I I I I I I I I I I

0.5 1 1.5 2

u (eV)
FIG. 11. Evolution of A(u) with the temperature, using

the following values of the parameters: 0 = 0.2 —0.03i eV,
Y = 0.1 —0.005i eV, and U = 6 eV.

tion, are solved self-consistently by an iterative pro-
cess. The final result of A(w) converges either to zero,
A(u) —+ 0, or, depending on the 0, Y and U values, to a
function whose typical shape can be seen in Fig. 11. In
the first case, one should interpret that superconductivity
is not possible for these values of the electronic structure
parameters, and this is the result for most of the cases. In
the cases in which superconductivity is present the curves
of A(~) have three characteristic features (see Fig. 11):
(i) In a frequency interval —wp ( M ( Mo, ReE(a) is
positive, while for ~cu~ ) uo, ReA(u) is negative, and for
~~~ )~, it tends asymptotically to a small negative and
constant value; (ii) for increasing temperatures, ReA(w)
conserves its shape but it decreases for all w values, also
for w = 0; and (iii) T, is defined as the temperature at
which A(cu) tends to zero for all a. These three features
appear in all strong-coupling superconductors and also
in our calculation. T, varies linearly versus UA'o for the
range of values of the plasmon pole 0 and Y for which
superconductivity is possible. In Fig. 12 we give the
evolution of the T, versus the value of the U param-
eter considering JVo constant. We have performed the
calculation for diferent values of the frequency interval
where the pair potential produces coupling. The transi-
tion temperature largely increases for increasing values of

n~(~')
(d

~'Z(~') sgn(~')
Q~/2Z(~l)2 W(~i)2

100—

75 — a b c d

(2S)
where nI; and n~ are the occupation numbers for
fermions and bosons and A are the zeros of the dielectric
function. Aq is the DOS, here considered as constant
in a certain interval around E~. W(w) is related to the
superconducting gap [A(w)) by means of the expression
W(w) = A(w) Z(a). Z(cu) represents the renormalization
factor and is an even function of the frequency w, defined
by the self-energy by S(u) = S,(u) + cu [1 —Z(w)], with
S, (w) the even part of S(w) with respect to w.

Equations (27) and (28), valid for any screening func-

a: 0 = 0.4
b: 0 = 0.3
c: 0 = 0.2
d: 0 = 0.2
e: 0 = 0.2

Y = 0.01

Y = O. O1

Y = 0.01
Y = 0.05
Y = 0.10

o
3 4 5 6 7

U (eV)
FIG. 12. Variation of T, as a function of ReA, ReY, and

U. Solid lines are only a guide for the eyes.
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ReA and decreasing values of ReY. In addition, Fig. 12
shows that T, is extremely sensitive to changes of 0 and
Y, which are dependent on the band parameters. How-
ever, these results can be taken into account only from a
qualitative point of view, since, as it is known, the
RPA screening tends to overestimate T, . Other types of
screening functions should be included in Eqs. (27) and
(28) in order to consider the results quantitatively.

VIII. SUMMARY AND CONCLUDING
REMARKS

Different approximations to the dielectric function and
to the self-energy of the strongly correlated systems have
been constructed, starting from a LDF noninteracting
system. The in'. nite series of the RPA, ERPA, and GVH
approximations have been considered for determining the
corresponding dielectric functions. The CW theory con-
cerning the self-energy has been used to determine the
Green's function of the interacting quasiparticle system.
An analysis of the evolution of the dielectric functions
and the self-energy versus the band parameters has been
performed, and the main conclusions are the following.

(i) For a narrow-band condition and/or for n~ close
to the half-occupation, the interacting quasiparticle gas
presents a DOS with three finite lifetime resonances for
each state of the noninteracting system. They can hy-
bridize with other extended states.

(ii) For gradual increases of the bandwidth and/or for
n~ occupation close to 0 or 1, the heights of the corre-
sponding resonances of the interacting system decrease
and the two resonances at the extremes can even disap-
pear. This means that the interacting system can transit
to a Fermi-liquid regime.

(iii) The pattern of three resonances in the interact-
ing system can coexist with a heavy-ferrnion state if the
renormalization factors for energies close to E~ are suf-
ficiently large. In the cases with only one resonance in
the interacting system, the multiple splitting of the dif-
ferent symmetries of the same strongly correlated orbital
is caused because each symmetry is located according to
its own occupation.

On the other hand, we have analyzed the strong-
coupling equations using the efFective interactions (9) as
pair potentials, and we have found coupling and super-
conductivity for a large range of strongly correlated sys-
tems.
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APPENDIX

The electronic structure of the noninteracting system,
which is used for obtaining the self-energy, is that arising
from the LDF calculation. The Schrodinger-like equation
to solve for determining the spectrum of the interacting
system in the realistic cases is (in the cases analyzed in
paper II of this series we solve this equation)

[
—Q + VMT(r) pi, ~(r) + E(r, r', si ~)pi,~(r')d r'

= si,~pk~(r), (Al)
where

Z(r, r', w) = ) [UA + M (w)j P (r) P*,(r') (A2)

and M~(w) is given by Eq. (22). Then the A parameter
of the above equation and of (23) and (26) has to be
evaluated in each case, and it is deduced by means of the
condition

UK = Un —(VMT (r) —VMT(r)), (A3)

where VMT (r) is a local muffin-tin potential of the crys-
tal constructed considering the direct interactions (but
not the exchange interaction) between n electrons in the
strongly correlated orbital. VMoT(r) is the same potential
considering n = 0 electrons in the m orbitals. The aver-
age values of these potentials are calculated in the m or-
bitals. The muffin-tin potential VMT(r) of (A1) contains
both the interactions of VM(T (r) and also the exchange in-
teraction corresponding to the n strongly correlated elec-
trons. Theoretically, the value of UX should be close to
zero, since Un is the direct first-order diagram with the
U interaction and the difference between the potentials
VMT (r) and VMoT(r) represents this term within the LDF
approximation. However, the U energy is a many-body
parameter, so one usually takes an experimental result,
while the potentials VMT(r), VMT (r), and VMT(r) are
obtained by means of a self-consistent calculation within
the local-density formalism. The direct interactions in-
cluded in the mufIin-tin potentials are just the interelec-
tronic Coulombian repulsion potential deduced by means
of the Hartree equation by considering a self-consistently
obtained density of charge. The exchange interactions
between the n electrons of the m orbitals are taken into
account by means of an exchange parametrized potential
included in VMT(r), which already considers many-body
effects. Therefore, to avoid repetitions in the electron-
electron interactions considered in the self-energy, we
only consider the RPA diagrams without the so-called
exchangelike RPA diagrams. However, we recognize that
the evaluation of the incidence of the different LDF po-
tential contributions in the process for obtaining the self-
energy is an open question.
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