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An analytic study of Bloch waves near photonic crystal surfaces has been carried out. This is a gen-
eralization of Heine's theory of metal/semiconductor interfaces. The main concern of this study is how
the surfaces of a finite system affect band determination —which usually involves transmission measure-
ments on small photonic crystals. An analytic expression for transmission is obtained. The results show
that the usual band measurements could lead to considerable errors, especially when they involve narrow
band gaps. A possible method to improve band measurements has been suggested. The analytic surface
analysis has been demonstrated to be fairly accurate, even for a small system. The theory is expected to
be applicable to other surface-related problems of photonic systems.

Recently, Yablonovitch and Gmitter (YG) (Ref. 1)
demonstrated the existence of photonic band structure in
periodic dielectric materials. This system has generated
many research efforts. ' Fascinating phenomena such
as anomalous Lamb shifts and possible applications in
semiconductor lasers ' have been suggested and studied.
Electromagnetic (EM) waves in a periodic dielectric, like
electrons in a solid, are described by the Bloch theory. In
solids, however, the many-body effect due to the
Coulomb interaction causes significant modifications to
+he one-body Bloch states, as is exemplified by the Na
conduction band. " The interaction among photons is
negligible, suggesting that photonic crystals can be an
ideal test ground for the decades-old Bloch theory. Ac-
curate band determination is important in regard to pho-
tonic crystal applications.

Photonic bands are normally determined' with
transmission measurements on a finite, usually small,
photonic structure. For example, the photonic crystal
employed in the YG measurement is made of an A1203
bulk with 8000 air cavities, which serve as "atoms" and
are arranged into the fcc structure. About one-quarter of
these atoms are on the surfaces. An interesting question
here is how the band structure, which is a property of an
infinite system, should be determined from such a small
sample. Some insights are necessary before a detailed
comparison of measured photonic bands with various
theoretic band calculations ' ' *' is possible.

Briefly stated, the purpose of this work is to investigate
the surfaces of photonic crystals in general, and their
effect on band measurements in particular. A photonic
crystal surface is very similar to a metal/semiconductor
interface. Near the Fermi level of the latter, there is a
band gap on the semiconductor side and there are propa-
gating states on the metallic side —just like a photonic
crystal surface in the gap region. Heine' investigated
the metal/semiconductor interfaces with a one-
dimensional (1D) model. Mainly, he established that
states inside a band gap have complex crystal momen-
tum, i.e., k =G/2+iq, where G is a reciprocal wave vec-
tor. The imaginary part implies that electrons with ener-
gy in the gap can actually tunnel into the semiconductor

by a distance —1/q from the interface. Heine's 1D
theory has been the basis for understanding
metal/semiconductor interfaces. It is generalized here
for finite photonic crystals. Analytic results for Bloch
states at surfaces and for transmission have been derived.

The transmission spectra of YG's crystal have been
evaluated in the I ~X and the I ~L directions. The re-
sults are then compared with YG's measurements. Ex-
perimentally, band gaps are put at where the transmis-
sion rate drops substantially. This study shows that band
gaps can, at best, be qualitatively determined this way.
The error may be considerable (e.g., -60%%uo) and it could
get even worse if the gap size (Es ) becomes smaller. This
is mainly because the imaginary part of the crystal
momentum (q) is proportional to E; therefore, a large
system of sizes ~1/q cc 1/E would be necessary for
transmission to diminish inside a small gap. Based on the
analytic results, we suggest an alternative but accurate
way to employ finite-crystal transmission to determine
the band dispersions —not just the gap sizes. This will be
discussed in connection with Fig. 1.

The surface effect revealed from this 1D theory is ex-
pected to hold, probably qualitatively, in 3D photonic
crystals. The results could even by quantitatively correct,
for example, near the X point where a single lattice
scattering component dominates. Experiences with sim-
ple metals have illustrated that" 1D models are valuable
in analyzing important effects in 3D systems. A
thorough 3D study of the photonic surface effect should
be very interesting, but that would require extensive nu-
merical calculations. An analytic 1D study could be very
helpful in our understanding of such numerical results.

The electric field, E(r), of an EM wave in a periodic
medium obeys the Maxwell equation

where the dielectric function has been separated into two
parts: e(r)=@0+@'(r). eo is the averaged dielectric con-
stant and E'(r) the periodic part. This equation is very
similar to the Schrodinger equation for electrons in a
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where G =Gz for bands near X. This two-band mixing
formalism should work equally well for bands near L,
with 6=61. Effectively, the problem has been reduced
in Eq. (5) to a 1D one. This approximation enables us to
study the problem analytically.

Nontrivial solutions of Eq. (5) have the general form

k = +V F—(co),6
2

where

I
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FIG. 1. The calculated band structure near the X point of a
fcc photonic crystal. The crystal parameters are taken from
YG's measurement, with the atomic size R, =0.372bo. Inside
the band gap, the wave vector is complex: k =G/2+iq. The
nonvanishing q implies a nonvanishing transmission rate in the

gap region. The crosses represent bands determined from the
calculated transmission spectra of Fig. 2 (see text below).

solid. Following the standard theory of band electrons,
we treat E(r) as scalar waves and expand it into Bloch
states

E(r)= g g Cq Ge'
6 k

(2)

where gz is summed over the first Brillouin zone. The
periodic e'(r) can be expanded as

e'(r)= g UGe'
G

For a fcc crystal, like the one in YG's measurement,

UG = — (e, —
e& ) sin( GR, ) — cos( GR, )

b06 6
(4)

b0 is the lattice constant and R, the radius of the atom.
e, and eb, respectively, are the dielectric constants of the
atom and of the background. b0=1.27 cm, e, =1, and

eb =12.25 in YG's measurement. They have employed
different R, 's (i.e., for diff'erent UG's) and studied the
band structures.

Of particular interest here are bands near the X
(k =Gz/2) and L (k =Gr /2) points, where detailed
band measurements exist. ' Near X, the Bloch scattering
due to UG dominates, since k =+G~/2 are degenerate

X
states. With only 'this dominating potential component
retained, the scalar-wave approximation employed in Eq.
(2) is reasonable. Equation (1) can thus be rewritten as

e q cos —x+6
2

for gap modes .

The factors g and 5 are determined from Eq. (5):
g=[k eo(co /—c )] [/U (Gco /c )] and sin25=qG/
[ UG(co /c )]. In deriving these results we have assumed
a small gap size (i.e., UG « eo), which is normally
satisfied [see Eq. (4)]. We have also assumed that the first
layer atoms are located at x =0; that is one-half the layer
separation from the crystal surface. Take the [100] sur-
face in the fcc structure, for example, which corresponds
to transmission in the I —+X direction; the crystal surface
is put at x = —a/2= —b0/4. Such a surface condition,
on which the following calculations are based, is how a
surface is normally defined in a solid. ' We do not have
to put the surface this way, but different surface condi-
tions would give different factors g and 5, which, in turn,
would result in different transmission spectra (see below).

We remark that the gap states at surfaces we study
here correspond to the ED surface states of Meade
et al. , and the band states to their EE states. The first

—QG eo(co /c )+ UG(co /c ) .

F (co) )0 corresponds to band modes, for which k is real.
F(co) &0 corresponds to gap modes, which have complex
k =G/2+iq, where q =V~F(co)I. Figure 1 is the calcu-
lated band structure near the X point of YG's photonic
crystal. Both the real and the imaginary parts of k have
been shown in units of G (Gx here). The result illustrates
the general band feature in a gap region: q increases from
zero at gap edge to a finite value near midgap. These gap
modes exist only at surfaces or interfaces since, other-
wise, the amplitude of the field would grow exponentiaHy
and that is unphysical. The presence of these gap modes
is important for transmission in the gap region—
especially for a small crystal.

Consider a semi-infinite photonic crystal first which, by
assumption, occupies the x ) —a/2 half-space, where a
is the layer separation. The allowed modes inside the
crystal thus have the form

e' "+ye'k '~ for band modes,
r
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ko=Qeok is the wave vector in vacuum. The com-
ponent pk ( —x ) comes from the surface reffection at
x =(2N —

—,')a. It is clear from Eqs. (7) and (8) that the
transmission in the band (gap) region is like quantum tun-
neling across a potential well (barrier). The coefficients r,
t, Ck, and C k are determined by the continuity of E(x)
and dE(x)ldx at the surfaces. The transition rate so ob-
tained can be expressed analytically:

g2
1+ —1 sin [2kNa]

A

in band regions,

letter E stands for extended waves in vacuum and the
second letter D (E) for decaying (extended) waves in the
crystal. These are the only surface modes that are
relevant to transmission measurements. Other surface
modes, denoted as DD and DE states, also exist on sur-
faces. They are not discussed here; their analytic proper-
ties can be studied in a similar fashion.

The EM wave transmission through a finite crystal is
analogous to quantum tunneling across a potential
barrier. Consider a 2N-layer crystal located at—a/2 &x & (2N —

—,
' )a and an incident wave traveling in

the +x direction, which, for example, could represent a
finite crystal with-N layers of fcc cells. The wave is de-
scribed by

determining the gap size from transmission measure-
ments.

Figure 2 illustrates the calculated T(co) (solid curves)
for four different finite crystals. N =4, 8, 16, and 32 indi-
cate the numbers of lattice layers of the crystals. The pa-
rameters chosen here simulate YG's measurements near
the X point. The atomic size R, =0.372bo gives a gap
size of E =1.312 GHz, the location of which is shown
by the two vertical curves in the figure. There is a steady
decrease in T as m enters the gap from the band region.
This result suggests no obvious criterion as to how the
band edge should be determined from the spectra. The
rate does not drop abruptly at the edge as might have
been expected, ' at least not for X (30. If we had em-
ployed a smaller E, the outcome would have been even
worse. To see this, we note that at the gap center [i.e.,
where eo(co /c )=6 /4] Eq. (6) can be expanded for a
small E and gives q =GUG/4en o- E in the lowest-order
approximation. Small q, then, would need a large N for T
to drop down appreciably. There is thus a systematic er-
ror involving the gap measurement and it gets worse rap-
idly as E reduces in size.

In deriving Eq. (9) we have made several assumptions.
A very important one is that the waves in a finite crystal
are describable by Bloch waves [Eq. (8)]. Its validity
needs to be checked, especially for small 1V's. Recall from
Eq. (5) that the problem is essentially one dimensional.
The band near k =G&/2 can thus be studied in an alter-
native way by, for example, employing a periodic mul-
tislab structure in which the band parameters a, UG, and
eo are kept unchanged. This can easily be achieved with
a construct which contains two uniform slabs in the unit
cell, each with a different dielectric constant. The
transmission rate of such a multislab system can easily be
calculated by means of the so-called transfer-matrix

g&2
1+ + 1 sinh [2qNa]A'

(9)
in gap regions, „Gap

TTVVT

L

A =2ko[g 6 —k(1+q )],
B =(kc+k )(I+q )+g G 2' Gk, —

A ' =2ko [q cos25 —( 6/2 )sin25 ],
and

C)—0
K

N=32

B'=[ko+(6 l4) —
q ]cos25+qG sin25 .

Within a band, T exhibits an oscillatory pattern as a func-
tion of co, and is enveloped between 1 and A /B &1.2 2

There is a finite transmission rate inside a gap. The rate
could be considerably large near band edges where q goes
to 0 (see Fig. 1). For a sufficiently large crystal, however,
T-e '~, which vanishes as 1V~~. Figure 1 shows
that q =0.02G at the gap center where q reaches its max-
imum. Thus, it takes N &&10 for T to diminish even at
the midgap; X is only about 10 in YG's measurement. It
is interesting to examine how, in a finite crystal, the
transmission rate drops as co crosses from a band region
into a gap. Such studies are obviously important in

N=4
0 I I I I I I I I

2
Frequency

—Bloch--- Matrix

(4.775 GHz)

FIG. 2. The calculated transmission spectra in the [100]
direction for finite photonic crystals with 2N layers; N=4, 8,
16, and 32. The same crystal parameters as those in Fig. 1 have
been employed. The two vertical curves indicate where the
ideal band gap is located (i.e., when N —+ ~ ). The finite
transmission rate inside the gap is important for small systems
and can cause errors in the band-gap measurements.
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energy at the center of the gap at X. The long- (short-) dashed
curves are from this calculation with the cutoff T, =0. 1 (0.01).
The solid curves represent the ideal gap sizes for infinite systems
and the circles {0and o ) are taken from YG's measurements.

method, ' in which EM waves in neighboring slabs are
related by a 2X2 matrix. The method is equivalent to
solving the Maxwell equation numerically for the finite
multislab system. Dashed curves in Fig. 2 are such exact
results, in which the same band parameters as those used
for the solid curves have been used. Very close agree-
ment between the two calculations is obtained. It sug-
gests the validity of the analytic expressions, Eqs. (7) and
(9), for photonic crystals with N &4. The close agree-
ment at such small K's is surprising —the band nature is
already eminent in an N =4 crystal. The close agreement
found in Fig. 2 also indicates that similar Bloch state
analysis may be applied to other surface-related prob-
lems; for example, the localized, interfacial states between
two photonic crystals. Localized impurity states have
been suggested ' to have important applications in semi-
conductor lasers.

Attempts have been made to follow YG's procedure in
determining the band gaps at X and L —with our calcu-
lated transmission spectra. The results are then com-
pared with YG's measurements (Fig. 3). As we have ex-
plained, there is no obvious criterion in locating the gaps,
and it is not clearly described how gaps are determined
experimentally. ' We therefore choose an arbitrary cutoff
T„and put gaps at where T (T, . Results shown are for
T, =0. 1 (long-dashed curves) and for T, =0.01 (short-
dashed curves). The region between these two sets of
data has been shaded. The horizontal axis here
represents the packing fraction f, which is a measure of
R, and is defined as the volume fraction that is occupied
by the air cavities. The actual gap sizes (the solid curves),
in general, lie inside the shaded area. However, a serious
problem here is that a reasonable T, cannot be deter-
mined prior to the band analysis. Take the gap at the X

point, for example. If T, =0.01 is employed, the mea-
sured gap would be within 5% of error at f =0.20, but
the error would be as high as 60% at f =0.55—even
though the actual gap sizes at these two f's are about the
same. It is clear that such band measurements are, at
best, qualitatively accurate. The measured results (the
circles) at f )0.2 generally lie within the shaded region.
That they are narrower than the actual gap sizes is prob-
ably due to the finite tunneling inside the gaps. The mea-
sured E at f (0.2 is larger than all theoretical values.
This result cannot be understood based on our present
analysis. We note that the gap must vanish as f +0 (i.—e.,
when the air cavities shrink to zero sizes); measured re-
sults do not reflect this trend. A smaller Eg, as we argued
earlier, implies a smaller q, which in turn means higher
transmission rates inside a gap. Therefore, a larger sam-
ple may be necessary to determine the band in the small-f
regime.

This study suggests no particular T, to use for an accu-
rate band measurement. However, an analytic relation
ri.e., Eq. (9)] between the transmission spectra and the
band parameters (e.g., UG, eo, . . . ) has been established.
This relation has been checked to be valid even for a
small system. With the interaction among photons negli-
gible, this result is essentially exact for a photonic system.
It is thus possible to gain useful band information by
analyzing T(co) in accordance with Eq. (9). One possible
method is described in the following. It is reasonable to
expect that large transmission is associated with Bloch
states of the crystal. Equation (9) shows that the maxima
of T(co) are at the crystal momentum k =me/2Na, with
m an integer. It is convenient to express k within the
reduced-zone scheme. Then the frequencies at which the
transmission maxima are located can be associated with
k =(—,

' —m'l2N)G, where 1~m'&N. In regard to the
spectra of Fig. 2, m'=1 should be associated with the
first peaks on either side of the gap, m'=2 with the
second peaks, etc. The band dispersion determined from
the calculated N =32 spectrum is shown in Fig. 1 by the
crosses —which actually trace out the bands faithfully.
The same band structure would have been obtained if the
N=8 or 16, or even the 4 spectra were employed for
analysis. That this is true can easily be seen by matching
the peak positions of the various spectra of Fig. 2. This
method appears to be useful for determining the whole
band structure, not just the gap sizes. It should be very
interesting to compare bands measured in this fashion
with those of the various band calculations. ' ' '

In summary, we have included surfaces in a modified
Bloch theory for photonic crystals, and the results are ex-
pressed analytically. Comparison with exact, numerical
calculations indicates that the analytic expressions
remain valid for systems as small as only four layers.
Transmission rates of finite photonic crystals have been
calculated and employed in band studies. It was pointed
out that the existing band analysis could lead to large er-
rors, especially when E is small. The analytic results of
this study have been shown to be helpful for an improved
band measurement. Our main results, Eqs. (7) and (9),
may also be useful in studies of other surface-related
problems too. They have been employed to examine the



48 SURFACE EFFECTS AND BAND MEASUREMENTS IN. . . 11 269

localized EM mode at interfaces between photonic crys-
tals. ' The "one-body" Bloch theory for photonic sys-
tems is essentially exact within the 1D model. The result
is expected to hold in 3D—possibly quantitatively, in gap
regions around certain high-symmetric points in k space.
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