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EfFect of random impurity distribution on the luminescence
of n-i-p-i doping superlattices
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The experimentally observed luminescence spectra of n-i-p-i doping superlattices composed of uni-

formly doped n- and p-type layers are much broader than the theoretically calculated ones obtained
if a strictly two-dimensional (2D) steplike density of states is assumed. In this paper we demon-
strate that surprisingly good agreement between theoretical and experimental spectra is obtained if
a broadening of the 2D density of states caused by the spatial potential Quctuations is taken into
account in an appropriate way. Our approach for including the random distribution of the impurities
resembles the Kane model and is free of fitting parameters.

I. INTRODUCTION

Most of the properties of doping superlattices (DSL's)
(Refs. I and 2) can be explained in terms of a quasi-
two-dimensional (@2D) electronic band structure result-
ing Rom the periodic modulation of the conduction and
valence band due to a periodic space charge potential
which changes its strength as a function of the degree
of excitation, i.e. , the spatially separated free electrons
and holes in the layers (Fig. I). For the sake of sim-
plicity the fact that the carriers reside in regions that
are strongly perturbed by the presence of the impurities
has usually been neglected. The potential fluctuations
due to randomly distributed charged impurities lead to a
broadening of the electronic subbands. These effects can
be quite large in doping superlattices, since the doping
levels are typically high and the potential fluctuations
caused by the impurity atoms are only partially com-
pensated. by mobile carriers of opposite sign, in contrast
to (uniformly) doped bulk semiconductors. The situa-
tion can become extreme in the ground state of a dop-
ing superstructure or in the case of low excitation where
the potential fluctuations are nearly unscreened like in a
compensated doped bulk semiconductor. Therefore, one
expects that the electronic states are not only localized
with respect to the direction of the superstructure, but
they may also be localized within the plane and the mo-
mentum parallel to the layers k~i may no longer be a
good quantum number. Although the formation of 2D
subbands is expected at suS.ciently high excitation lev-
els and has been demonstrated in Raman spectroscopy,
tunneling, and magnetotransport investigations they
could not be observed in luminescence experiments on
doping superlattices consisting of uniformly doped lay-
ers. There have, however, been several reports by Schu-
bert and co-workers ' on luminescence and absorption
experiments in very strongly doped short period b-n-i-p-
i structures where the structure of the spectra could be
correlated to electronic subbands.

Prom the results of previous investigations on three-
and two-dimensional impurity systems, it is clear that

for high doping levels the impurity band merges with the
neighboring conduction or valence band. In this case the
effect of the fluctuations can be well described by means
of band tails. The shape of the band tails depends on
the screening. Here n-i-p-i structures represent an ideal
system, because the free carrier concentration and so the
screening can be varied within a wide range.
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FIG. 1. Ground state (a) and one excited state (b) of the
investigated n-i-p-i structure, including the energy levels and
wave functions of two conduction and one valence band. The
two dashed horizontal lines in part (b) represent the quasi-
Fermi-levels C and C„.
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In the case of n-i-p-i-structures Bruno and Ruden
could show that the random distribution of charged im-
purities leads to a broadening of the acceptor impurity
band which exceeds the acceptor binding energy already
at low doping densities of about 10 cm . In this paper
we demonstrate once more the necessity to include the
fluctuations in the calculation of luminescence spectra
and present a simple model for their description. The re-
sults are discussed in comparison with experimental pho-
toluminescence spectra.
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II. EXPERIMENT

The GaAs DSL investigated in the experiments was
grown by molecular beam' epitaxy (MBE) and consists
of 10 n (Si dope-d) and 11 p- (Be doped) layers, with
the following parameters: n~ ——4 x 10 cm, n~ ——

cm d = 25nm, and d~ = 35nm
structure has cladding layers of undoped Ala 3Gao 7As.

The photoluminescence (PL) measurements were car-
ried out at T = 90K. For excitation a Ti-sapphire laser
pumped by an argon laser was driven at the wavelength
A = 750 nm. At this wavelength the excitation densities
at the erst and last superlattice layer di8'er by about a
factor of 2. The excitation density was changed by the
use of neutral density Alters in the range from 0.03 to
1000 W/cm . The PL spectra, shown in Fig. 2, are mea-
sured with a typical setup, using a liquid nitrogen cooled
germanium detector, because of the strongly redshifted
luminescence of n-i-p-i structures at low excitation lev-
els. The spectra were corrected to the spectral response
of the optical system.

III. THEORY OF THE LUMINESCENCE
AT FINITE TEMPERATURE

A. Without broadening e6'ects

We start with the quantum states of the mobile carriers
calculated using a self-consistent solution of the Poisson
and Schrodinger equation. Details of this finite temper-
ature Hartree calculation in the efFective mass approxi-
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FIG. 2. Photoluminescence spectra for various excitation
densities in W/cm, as assigned to the curves. The effective
band gap in the ground state E' ' is about 800 meV.

mation can be found in Ref. 13 and will not be repeated.
The quantum states are characterized by the carrier type
(el, lh, hh), the subband index (p, v = 0, 1, 2, . . .), and the
wave vector (kII). The envelope wave functions Iel, p) and

Ih, v) and energy levels E' and E„"have to be calculated
separately for each excitation level, as the modulation
of the conduction and valence band changes with car-
rier concentration due to the changing compensation of
impurity space charge.

Now these quantum states are used to calculate the
rate of spontaneous radiative recombination of electrons
and holes, ~ neglecting the photon wave vector (conserva-
tion of kII) and averaging over the difFerent polarizations.
The number of photons of energy hu, emitted sponta-
neously per time interval, is given by the expression

with

and

(2)

Here P j h is the bulk interband matrix element of the
momentum operator, &,

"O( . ) is the steplike joint 2D

density of states (2D-DOS) with the reduced efFective
mass (M, ~ g) = m,

&
+ m&, f (e) = (e'~" + 1) is

the Fermi distribution function, and 4, 4„are the quasi-
Fermi-levels of electrons and holes, respectively.

The recombination rate B,p „q is dominated by the
overlap matrix element of the electron and hole enve-
lope functions („'(z) = (zIel, p) and („"(z)—:(zIh, v), be-
cause they are separated in real space with respect to the
z direction (see Fig. 1). The matrix elements increase
strongly for higher energy levels and higher excitation
levels, because the corresponding envelope functions are
more extended.
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8. With broadening effects included

Gen ev al con ai dera ti on8

It is clear that the periodic modulation of the
conduction- and valence-band edges shown in Fig. 1 de-
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Figure 3 shows a comparison between an experimen-
tally observed and a theoretical spectrum for T = 90 K
calculated by using Eq. (1). The design parameters used
in the calculation are those given in Sec. II. The exci-
tation level was chosen such that theoretical and exper-
imental spectra have the same peak position. The high
energy tail is well described by the theory, thus confirm-
ing the assumption that the thermalized mobile carriers
have approximately the same temperature as the host
lattice . It should be pointed out that this tail is flatter
than expected from a simple exp( —hw/kT) law, because
of the increasing overlap matrix elements. At the low en-
ergy side the theoretical spectrum is cut off at the lowest
possible transition. The discrepancies to the experimen-
tal spectra which exhibit a wide low energy tail and no
subb and structure are obvious. The nonuniform exci-
tation of the layers, mentioned in the previous section,
leads to a broadening of about 30 meV of the spectra,
because of the superposition of the luminescence of each
layer. This effect is to o small to explain the observed
broadening and does not lead to an exponential low en-
ergy tail. The resulting spectra are also cut off with the
lowest possible transition of the lowest excited (i.e. , the
deepest) layer.

In the next section we will show that this low energy
tail and the disappearance of the subband structure can
be explained by including the effect of the potential fluc-
tuations into the theory.

scribes only the mean contribution of the impurities to
the space charge potential . The random distribution of
the impurities within the doping layers leads to a spa-
tially fluctuating variation of this mean potential. If
there are carriers in the layers the potential fluctuations
are screened to some extent . Here the first problem arises
as the carrier distribution is nonuniform with respect to
the z direction. Therefore in a semiclassical picture, the
local screening length changes as a function of z . More-
over, the carrier density for a given value of z may fluc-
tuate significantly within the (x, y) direction, due to the
random distribution of the impurity atoms. This effect
is particularly pronounced at low carrier densities.

The electronic states in this partially screened random
potential, of course, will differ &om the unperturbed sub-
band states, characterized by the quantized motion in the
z direction and the wave vector k

I ~

of free motion parallel
to the layers, with regard to both energy eigenvalues 8
or E" and wave functions.

In particular, we expect that the eigenst ates in the low
energy tail of the density of states are strongly localized.
It should be pointed out that while being localized within
the plane, the corresponding wave functions are also more
strongly localized in the z direction as compared to those
obtained for the idealized mean impurity potential . This
will turn out to be important for the calculation of lumi-
nescence spectra in real systems with fluctuations. With
increasing energy and with increasing carrier density at
higher excitation the states become increasingly less lo-
calized. Finally, the higher energy states will become
delocalized or only weakly localized. But also for these
states k

~ ~

may not yet be a good quantum number.
Thus, the calculation of the real density of states and

the corresponding wave functions as a function of increas-
ing carrier density is a serious problem which has not yet
been solved in a satisfactory way.

The next step, the calculation of the luminescence
spectra, becomes even more difBcult, as the k

~ ~

selection
rules no longer apply. The overlap integrals (6, vowel, p)
in Eq. (1) have to be replaced by those corresponding to
the real states. This leads to the consideration of com-
plicated averaging processes in real and energy space.

Up to now we do not have an exact theory, which takes
all these points into account. In a luminescence exper-
iment one always gets the mean effect of the fluctua-
tions on the spectrum according to the large observation
area. So, a first step towards a more realistic descrip-
tion of the luminescence may be a model, which takes
the randomness into account only by considering statis-
tically fluctuating electric energy levels, but leaving the
wave functions unchanged.
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FIG. 3. Calculated spectrum resulting from the theory
with no broadening eKects for an electron sheet density of
n = 1.2 x 10 cm in comparison with a corresponding
experimental spectrum.

The well known Kane model 4 describes how the 3D-
DOS has to be modified to include the effect of doping-
induced disorder in a semiclassical way:
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Here P(V, AV) is a probability distribution for the lo-
l h ft f th 3D-DOS characterized by the fluctuation

(3) Ewidth AV (see Fig. 4), and the density of states D ( )
1s

3/2
D&'1 E = ~, ~

(E —E.)'/'8(E —E.) .
2m2

(4)

tion or enhancement according to the fluctuations is as-
sumed. This means that we only consider fluctuations
parallel to the layers and neglect those in the z direction.

Kane used for the probability distribution P(V, b, V)
in Eq. (3) a Gaussian distribution:

P~(V, b, V~) = (/2~6, VG) e

with

To apply a modified Kane model to the 2D systems in a
n-i-p-i structure, we made the following simplifying as-
sumptions.

(i) The potential fiuctuations in the n and p layers are
uncorrelated.

(ii) The screening length is assumed as independent
of the position coordinate z. Its value corresponds to
that for bulk material, as the classical thickness of the
neutralized layers is usually significantly larger than t e
screening lengths, which indicates that the screening is
quasi-three-dimensional. This 3D screening length L; is
given by

1/3
staph vr / vr )

(5)e2m,. (3n, )
within the linearized Thomas-Fermi approximation for
degenerate semiconductors. The average effective masses

+ ) / in the case of holes.lh hh ( hh lh
For the 3D kee carrier density n; we take the mean value
for a uniform distribution of the excited 2D-carrier con-
centration n~ ~ over the width d of the respective layers:

i = el, lh, hh,

ni'1/d„, i = el
i 1/d„, i = lh, hh.

(iii) The overlap matrix elements are chosen to be con-
stant for each subband pair combination and no reduc-

AV~ = (2vrn~L, i)
e i/2

4' E'8'p

where nD is the 3D bulk doping density and L l the
electronic screening length of the n semiconductor. T is
is the result that one gets by evaluating the Holtsmark
formula to the second order. For details we refer to the

Unger pointed out that the Gaussian distribution is
only applicable for high doping concentrations nD, ac-
cording to

This is far beyond normal doping levels [we note that
Ls = 1 for (uncompensated) n semiconductors is o

tained for a doping level of n~ = 1.5 x 10 cm an
analogous y n~ ——l 1 = 2 8 x 10 cm for p semiconductors
using Eq. (5)]. Another reason for not applying the
Gaussian distribution is that it does not produce an ex-
ponential tail on the low energy side of the luminescence
spectra, as always observed in the case of bulk material.
This is also con6rmed by a calculation of Halperin an
Lax, who found a shape proportional to exp( —a~E~ )
wit increasing m =h = 1/ 2 . . 2 for increasing concentra-
tions. Usin this result, we again estimate m == 1 for
concentrations of interest to us. To take these points into
account, Unger chose an empirical distribution, which is
proportional to the derivative of a Fermi function and
decays more slowly. This has the additional advantage
that all appearing integrals are easy to handle in terms
of Fermi integrals,

PU(V, AV;)
1

AV, [1+exp (+V/AV;)] [1+exp (—V/AV;)]
(»)

D(E)

FIG. 4. Full line: Behavior of the conduction-band edge
under the infiuence of a Quctuating potential in a heavily
doped semiconductor, distribution function~ ~ ~

P~~E~ of the dif-
ferent values of E, and the corresponding broadened 3D den-
sity of states D(E) according to the Kane model. Dashed line:
density of states of an unperturbed semiconductor.

The width LV; of this distribution is given by

2

AV; = (2~n, L;) /, i=el, lh, hh,
2.565 4~esp

dop = ng, and L, is thewhere n, l
= nD nlh = nhh

screening length defined in Eq. (5). This expression leads
to the same half-width at full maximum as for the Gaus-
sian distribution.

The broadening of the 2D-DOS is carried out similarly
to the case of the Kane model by replacing the 3D- by
the 2D-DOS in Eq. (3):

D (E) = P~(V, AE;) Di 1(E —V), i = el, lh, hh,
—OO

(»)
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agreement for the low energy tail degrades at decreasing
degrees of excitation.

The agreement for the high energy tail confirms that
the self-consistent calculation of the potential, the energy
levels, and the wave functions leads to a correct basis for
the description of the properties of n-i-p-i structures. In
this case, the increasing overlap for higher energy levels is
demonstrated. It also demonstrates that for transitions
&om states with a kinetic energy well above the subband
level, the overlap matrix elements are basically constant,
as assumed in the theory.

For the spectra at high excitation the agreement be-
tween theory and experiment is very good on the low
energy side as well. We attribute this to the decreas-
ing modulation of the conduction and valence band and
the resulting widening of nearly neutral bulklike n- and
p-doped regions. Thus our assumption of 3D screening
seems justified. We note that the low energy tail of the
spectra is nearly exponential, as expected from theory.
For lower degrees of excitation we expect a less efficient
screening of the potential Buctuations compared with the
neutral doped bulk material. This should result in a
broadening on the low energy side of the luminescence
spectra. The experiments, however, exhibit the opposite
behavior. This ending can be explained qualitatively in
the following way. The deep tail states are expected to
be more strongly localized in the z direction than the
corresponding subband states. This reduces their dipole
matrix elements for interband recombination and, there-
fore, the low energy contributions to the spectra. This ef-
fect becomes more and more important at low excitation
levels where the electron-hole tunneling recombination
occurs over increasingly long distances. This narrowing
e8'ect, apparently, overcompensates the widening e8'ect
discussed above. However, we have not yet been able to
include these e8'ects quantitatively.

Our model allows us to understand why no signature of
the 2D subbands has been observed in the luminescence
spectra of n-i-p-i structures, although it could clearly be
demonstrated in other investigations as mentioned in the
Introduction. We want to note that the subband spac-
ing LEO& ——E~' —Eo and the broadening factor LV, ~

scale with nearly the same power of the doping density.
While the former increases oc n& (for empty subbands),1/2

the latter increases oc n~, if one assumes a boxlike7/12

carrier distribution which compensates for the impurity
charge in the center of the layers (in contrast to the for-
mer assumption of a uniform distribution over the re-
spective layer which would produce a power dependence
nearer to i/2). For nrem = 10 cm, e.g. , we obtain
LE&& ——40 meV and LV, ~

——20 meV, respectively. Thus
the ratio b, V,i/AEoi ——0.5(n~/lois cm s)i~i2, which is
important for the question of whether the 2D subband
structure is visible in the luminescence spectra, does not
change significantly within the whole range of reasonable
doping densities. Although b, V,i/AEsi ( 1, the observa-
tion of the signature of the subbands is further obscured
by the fact that the contributions from higher subbands
to the luminescence are much stronger because of the ex-
ponentially increasing overlap of the envelope wave func-
tions. Thus, the exponential tail of a transition associ-

ated with the subband gap E +z —E" may still dominate
over the contributions corresponding to the subband gap
E —E" at a given photon energy.

This argument holds only for the case of uniformly
doped n-i-p-i structures. The situation is more favorable
for b-doped n-i-p-i systems, for which the observation
of 2D subbands in luminescence and absorption experi-
ments has been claimed.

Finally, we point out, that the chances for the obser-
vation of transitions corresponding to difFerent subbands
are expected to be best for the high energy tail at elevated
temperatures. In this regime the competition between
the exponential decrease of the carrier density in higher
subbands and the exponential increase of overlap will re-
sult in more or less equal recombination rates. Therefore,
their contributions to the luminescence have about the
same weight. This situation is analogous to hetero- n-i-
@-i -structures where such transitions have clearly been
resolved

V. CONCLUSIONS

We have demonstrated that the luminescence from
n-i-p-i doping superlattices can be modeled quite well
by introducing a broadened 2D DOS, which is calculated
by applying the Kane model to a 2D subband system.
With this simple model we have been able to describe
the general features of the luminescence spectra with-
out using any fit parameter. Further experimental and
theoretical investigations, including b-doped structures,
are in progress with the goal to refine the model of the
screening and to take into account the inHuence of the
potential fluctuations on the wave functions.
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APPENDIX

V(r) = ) v(B~) = (Ai)

The probability P(e) of having a potential energy e is

P(e) = (S(e —V)) (A2)

The potentials of the randomly distributed doping
atoms cause local variations of the space charge poten-
tial in the host material. By means of the statistical
method of Holtsmark it is possible to calculate a prob-
ability distribution of the space charge potential around
its original value by looking at a large number of doping
atoms.

The total potential V(r) results from a superposition
of all the single potentials v(R~) of the atoms at the
positions R~
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with

(. . .) = fde.
2=1

(A3)

1
2~

1 iaR
(

—is g V(BR))
27r

(A4)

Here 0 is the volume and N the number of the impurities.
Using the integral representation of the b function, one
gets

The exponential function with the sum in the exponent
can be written as a product of N exponential functions.
As a consequence the N-dimensional integration breaks
into N one-dimensional integrations

(
N dR1 ' dRN

—isv(R& )

1 ~8&(+1)dR . . . ~8+(+N )dR
1

0 e
~ ~

~
I ~ I ~ e

~ ~

N0
1

N
—isv(R) dR

qB

(e--"(~) —1)dR
~0 (A5)

For large numbers of N this can be written as an expo-
nential function V(R) = e

47rGG'p R (A9)

lim
~

1+ —c
~

=e"
N +co ( 0 )

with

(A6)

This gives for the first moment of the distribution

(A1O)

const

e
—-~(R)

Pg(e) =

with

f1 e"'e '"' ds = S(e —eg)
27r

(A11)

This can be summarized as follows:
e2

nL, ,8'1 =
6'E'p

(A12)

lim (e "&R "i ')) = exp
~

n (e ""( ) —1)dR
~

N woo

(A7)

and for the second moment

1 ~ 2 2 1 2

P2(e) = e"'e-' "~' d8- —r /2r~

g2~ /2vre2

Using the series representation for e ""one finally gets
a general formula of the probability distribution

P(e) = — ds e*"
27r

with
2

(2~nL, )'~' .
47r 8'8p

(A13)

(A14)

m$s
xexp n)

m=1
(e(R)) d R

(As)

Here v is the dimensionality of the considered system.
As mentioned before we assumed that the carrier sys-
tems are nearly three-dimensional, i.e., v = 3. Using the
Yukawa potential for the screened impurities and assum-
ing isotropy, the integrations can be carried out

The first moment represents the result 6..om the homo-
geneous background which we must ignore, because we
have considered it already as the n-i-p-i potential. We
are only interested in the fluctuating part of the potential
which is represented by the second moment [Eq. (A13)].
As mentioned in the text, this distribution is only appli-
cable at very high doping concentrations which are not
reached in our case. We used another distribution with
an appropriate width, introduced by Unger, which is de-
scribed in the text.
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