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Electronic structure of semiconductor quantum films
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The electronic structure of thin ((30 A) free-standing ideal films of Si(001), Si(110), and
GaAs(110) is calculated using a plane-wave pseudopotential description. Unlike the expectation
based on the simple efFective-mass model, we find the following. (i) The band gaps of (001) quantum
films exhibit even-odd oscillation as a function of the number N of monolayers. (ii) In addition to
sine-type envelope functions which vanish at the 61m boundaries, some states have cosine envelope
functions with extrema at boundaries. (iii) Even-layer Si(001) films exhibit at the valence-band max-
imum a state whose energy does not vary with the film thickness. Such zero confinement states have
constant envelope throughout the film. (iv) Optical transitions in films exhibit boundary-imposed
selection rules. Furthermore, oscillator strengths for pseudodirect transitions in the vicinity of for
bidden direct transitions can be enhanced by several orders of magnitude. These 6ndings, obtained in
direct supercell calculations, can be explained in terms of a truncated crystal (TC) analysis. In this
approach the film s wave functions are expanded in terms of pairs of bulk wave functions exhibiting a
destructive interference at the boundaries. This maps the eigenvalue spectra of a film onto the bulk
band structure evaluated at special k points which satisfy the boundary conditions. We find that
the TC representation reproduces accurately the above-mentioned results of direct diagonalization
of the film s Hamiltonian. This provides a simple alternative to the efFective-mass model and relates
the properties of quantum structures to those of the bulk material.

I. INTRODUCTION

Quantum semiconductor structures ' are generally
discussed in terms of three classes structures periodic
in zero dimension (OD quantum boxes), those periodic in
one dimension (1D quantum wires), and structures that
are periodic in two dimensions (2D quantum wells). Rel-
ative to the 3D periodic bulk solids, these structures ex-
hibit localization e8'ects in three, two, and one dimension,
respectively. There is, however, another type of 2D peri-
odic structure which is discussed less frequently, namely
a free-standing quantum film. It can be characterized by
its thickness L and layer orientation e. Unlike the con-
ventional 2D periodic quantum structure, the quantum
well, a film can exhibit a far stronger confining potential
since all conduction and valence states that lie below the
vacuum level experience a common potential well whose
depth (&1 rydberg) equals the valence-band width plus
the work function [Fig. 1(a)]. In contrast, states in a
quantum well are confined just by the potential disconti-
nuity for a particular band state which is generally of
the order of 0.1—1 eV [Fig. 1(b)]. Quantum film can
hence be thought of as the limiting case of a semicon-
ductor/insulator quantum well with a giant band ofFset.
This paper deals with the electronic structure of semi-
conductor quantum films. To articulate the unexpected
features of such systems relative to the standard model
of quantum confinement, i.e. , e8'ective-mass particle-in-
a-box, ' we first summarize the basic assumptions and
predictions of the standard model, as applied to films.

Consider a (001) = z oriented quantum film experi-
encing an infinite potential well outside z = 0 and z
= I and the quasiperiodic potential U~„; a,,(r) (char-
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FIG. 1. Schematic depiction of quantum con6nement in

(a) films and (b) quantum wells. The subscripts A and B
denote the well and barrier materials, respectively. C is the
work function.

acterizing the film material) inside the interval (0, L)
[Fig. 2(a)]. Neglecting surface efFects, the effective-mass
particle-in-a-box description of such a system (= particle-
in-an-empty-film) proceeds with the following steps.

(i) Renormalize away the quasiperiodic microscopic
potential V~„; a;, (r), replacing it by a constant poten-
tial in the (0, I.) interval [Fig. 2(b)]. In replacing the
"particle-in-a-film" problem [Fig. 2(a)] by the "particle-
in-an-empty-film" problem [Fig. 2(b)], the true bulk band
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(a) Potential of Particle

in a Film

(b) Potential of Particle

in an Empty Film

This approximation removes (a) the coupling between
the band structure effects of the quasiperiodic potential
and the confinement effects of the external potential (b)
the microscopic (layer dependent) symmetry of the films.

(ii) The true bulk crystal eigenstates g "&ik(r) which
satisfy

( 2 + + Vperiodic)g~, iI (r) = e~ g 4'~, iI (r) (2a)

are represented by a product of an envelope function
fir i„(r) and the periodic piece u~ i,, (r) of g "&"(r),

@„,i,"(r) = fi —i.(r)u, i,.(r) (2b)

Periodic (

oo 0) z) L

Constant
V=

0(z(L
0) z) L

A generalization of Eq. (2b) is to use a few bands at ko
(Luttinger's model )

FIG. 2. Schematic depiction of the xy-planar averaged po-
tentials for (a) a quantum film and (b) a particle in an empty
61m.

„(r)= ) f, ,i, i„(r) u, i„(r) (2c)

structure e "k of the film material

e "&" —
(nkvd

——V + Vp«,.ed;, (r) ink)

is replaced by the pure kinetic energy form

(Ia)

EMA nk0+
h (k —ko)

2m k
(Ib)

where e k, and m* k are the band edge energy and
the effective mass of the nth band at ko, respectively.

Consistent with the decoupling in (i), the external po-
tential is then permitted to modify the envelope func-
tion fi, i„(r) and its energy h (k —ko) /2m* &, but
not u„ i„(r) and e„i„.

(iii) The film boundary problem then becomes a
particle-in-an-empty-film problem. In the single band ap-
proximation the film's wave function is represented by a
standing wave created by a destructive interference be-
tween two running waves of opposite directions, (k —ko)
and [k —k o, k„—k„o, —(k, —k,e)],

(r) —u, k (r) [fk.—k (r) f[k —k,k„—k„,—(k, —k, i] (r)]/2i

= u„ i„(r)e' " "'] + "" ""' "] sin(k, —k, )z

k —k p
——k*= —j; j=1,2, 3, . . . (4)

Note that the lowest index j is one, not zero. The
more general quantization conditions for the particle-in-
an-empty-film problem at ko ——0 are

Intervalley (e.g. ,
I' and I) coupling is neglected. The

boundary conditions on the film eigenstate g (z
0) = @ (z = L) = 0 then lead to the quantization
condition

I

k„* = 0, i.e., states at I' of the 2D Brillouin zone). Note
that in Eq. (5c) the solution j = 0 is allowed for G g 0,
unlike Eq. (4). The more general quantization conditions
(5) are, however, deemed inappropriate in the EMA since
(k —ko) needs to be small for Eqs. (2b) and (2c) to be
valid, and G g 0 violates this restriction.

(iv) Substituting the quantization condition [Eq. (4)]
into the bulk eigenvalue spectrum [Eq. (1b)] yields

EMA oc I/Lz and

k = (k.*,k„*,k,*) + C

with

(5-) EM A 1 ( 1 1 5 h 7r=&g+ +L2 (m,* m&) 2
(6)

(5b)

where

1, 2, 3, . . . , jL, ifG =0
0, 1, 2, . . . , jl, if G $0

Here jl, is the maximum value of j (determined by the
thickness L), k* and k„* are restricted to the first Brillouin
zone of the bulk material, and G are the reciprocal lattice
vectors (in what follows, we will consider the case k' =

where Eg is the bulk band gap, and e and h. stand for
electron and hole.

The EMA particle-in-a-box description of a quantum
film makes a number of clear predictions.

(a) The film band gap decreases monotonically with
the film thickness, as 1/L [Eq. (6)]. Figure 3(a) gives
a schematic graphical interpretation of the way the film
band gap can be read oK the parabolic EMA dispersion
relation of Eq. (1b): as the film becomes thicker, the band
edge states approach the bulk I' point and 6g ~ Eg.
We see, therefore, that this monotonic behavior is not a
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(a) Band Gaps of Particle

in an Empty Film

(b) Band Gaps of Particle

in a Film

Film Size Film Size

FIG. 3. Schematic drawings showing the relation between
the bulk energy dispersion e "'"(k) and the direct band gap

of the corresponding films of different sizes L for (a) a
particle in an empty film with parabolic bands and (b) a real
semiconductor film where the energy dispersion for large k

deviates significantly from the parabolic band. The arrows
indicate film band gaps for di8'erent film sizes. They are not
evenly spaced because k oc 1/L. Note that in part (a) e"'
decreases monotonically with size while in part (b) the change
is nonmonotonic.

consequence of quantum confinement per se, but rather
a consequence of using the parabolic dispersion relation
[Eq. (1b)]. We will see below that other dispersion rela-
tions [e.g. , Fig. 3(b)] can lead to a nonmonotonic varia-
tion of the band gap with film sizes.

(b) The envelope function sin(k, —k,o)z in Eq. (3) has
a minimum amplitude (= 0) at the boundaries (0, L).
There are no solutions in which the envelope function
has maxima at the boundaries.

(c) All energy eigenvalues of Eq. (1) depend on the film
size. This is a consequence of the fact that only j g 0
solutions are allowed in Eq. (4). Thus, k, —k, o oc 1/L
and e oc 1/L for all states.

The coupling between different bands [Luttinger's
model: see Eq. (2c)] does not alter the results (a)—(c)
in any qualitative way.

There are two purposes to this paper. First, we wish to
find to what extent the EMA predictions (a)—(c) are real
properties of semiconductor films, as opposed to being
consequences of the EMA particle-in-a-box approxima-
tions (i)—(iv). To address this question we will establish
the "exact solution" by directly diagonalizing the film
Hamiltonian with the complete potential shown schemat-
ically in Fig. 2(a) using pseudopotential band structure
techniques. In doing so we avoid the decoupling of the
external confining potential &om the microscopic peri-
odic potential V~„; g;, (r), circumvent the efFective-mass
approximation to the energy [Eq. (1b)] and wave func-
tion [Eq. (2b)], and use a multiband description of the
film states [rather than Eq. (3)]. Application to Si and
GaAs quantum films of different thicknesses and layer
orientations reveals that the basic EMA predictions (a)—
(c) are often not borne out. In particular, (a) deviations
&om e oc 1/L and even nonmonotonic oscillations of e

with L are possible, (b) cosine-type envelope functions
with maxima at the boundaries can occur, and (c) the
energies of some levels do not change at all with the film
size ("zero-confinement states"). Given these qualitative
failures of the EMA, our second objective in this paper
is to develop an approach which captures the main fea-
tures of the direct calculation yet is essentially as simple
as the efFective-mass approach. This "truncated crys-
tal approach" builds on an earlier idea whereby peri-
odic band structure solutions are mapped onto those of
finite-size quantum structures. The nonsurface eigen
value spectrum of the finite quantum structure is then
found to correspond to a subset of the eigenvalue spectrum
of the infinite periodic solid, evaluated at special k points
Our method extends such ideas &om simple one orbital
per atom representations and single band models to
a general-purpose description which reliably reproduces
the main features of the direct calculations on quantum
films.

II. THE TRUNCATED CRYSTAL
REPRESENTATION

We describe the truncated crystal (TC) approach in a
parallel manner used in the preceding section to describe
the EMA. The basic point is that the periodic part u
of the Bloch wave function in Eq. (2b) or (2c) need not
be limited to k = ko. With this generalization, the film
wave functions can be expanded in terms of the exact
bulk states, (g "k"(r)). The method is constructed as
follows.

(i) We use the actual bulk dispersion relation eb"kik of

Eq. (la) and wave functions g "k"(r) of Eq. (2a), rather
than their EMA counterparts in Eqs. (1b) and (2b).
Hence, no assumption that k —ko needs to be small is
made here.

(ii) As a consequence, we can use the complete quan-
tization conditions of Eq. (5), rather than the form of
Eq. (4) restricted to G = 0. For C g 0, we can have a
j = 0 solution, which is forbidden in the EMA.

(iii) We select a set of basis functions in which the
quantized A:,

* is retained, but the G values of the pure sine
basis [Eq. (5)] is replaced by the band index n In analog. y
with Eq. (3), we now construct a truncated crystal basis
set representing a destructive interference, namely,

qblk()yblk()

Since

ybulk
( ) [ybulk (r)]

e

Eq. (7) can be rewritten for 0 & z & L as

(r) v 2[u & (r) sin(k*z) + u & (r) cos(k*z)]

where u+&. (r) and uI &. (r) are the real and imaginary
z

parts of the bulk Bloch wave u k. (r) in vp "k"(r)
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u i, (r)e' ', respectively. Equation (9) is clearly diB'er-
ent Rom the pure sine form of Eq. (3). Note that the
boundary conditions at z = 0 and z = L can be satis-
fied either by the trigonometric functions appearing in
Eq. (9) or by the Bloch-periodic parts, if the latter have
nodal planes at the boundaries. The periodic function
u g. (r) can have such nodes if its orbital character is
p) d, etc. , but not s. A constant phase factor is implicit
in gb"&i". (r) in Eq. (7), as well as in u A..(r) in Eq. (9).
It has to be determined by the boundary conditions.

(iv) Using this complete TC basis set, a film eigenstate
(f) at I' can be expanded as

@g,r(r) = ) ) .a-, f(k.*)&.,'k;(r)

Since .'",* oc j and j = 0, 1, 2, . . . , jl, we have a total of
jI.+ 1 states, hence one of these states is unphysical. VA
return to this point in Sec. III E.

One can now proceed and directly diagonalize the film
Hamiltonian [with the potential in Fig. 2(a)] using the
representation of Eq. (10). This will produce the exact
film eigenvalues

f &(r) —y I, (r) v 2[u & (r) sin(k*z)

+u„„.(r) cos(k,*z)] (12)

TC b111k

where

(13)

Note that Eq. (14a) is derived for a special case where the
film orientation e is in the z direction. More generally,
k,* in Eqs. (12) and (13) should be replaced by

Our central observation here is that such a matrix rep-
resentation of Eqs. (10) and (11) is essentially diagonal
in the band index n and nave vector k, . This is evidenced
by the fact (see below) that a single TC basis function
can reproduce well the results of the direct diagonaliza-
tion. The truncated crystal approximation to Eqs. (10)
and (ll) thus consists of retaining in these expansions
just the dominant terms. In its simplest form, we retain
in these equations just a single basis function with f =
(n, j), so

in Eq. (14) should start at k* = ko, not at I'. To avoid
confusion, we reserve the symbol j for ka ——0 (I ) and use
j' for ko P 0. Equations (12)—(14) define the simplest TC
approximation. These expressions should be contrasted
with the EMA Eqs. (3), (6), and (4), respectively.

To the extent that the TC approximation is sufBciently
accurate (see below), it provides an exceedingly simple
and useful result: it predicts a one-to-one mapping be-
tiveen the flm energy eigenvalues and those of the pe
riodic bulk e "&". at some special k points k*. This is

z

precisely the procedure followed empirically in the early
TC approaches, where it was demonstrated {via di-
rect tight binding Hamiltonian diagonalizations) that the
eigenvalues of finite clusters form a subset at special k
points of the eigenvalues of the periodic crystal. This was
used. in the past to predict the bulk band structure from
finite cluster calculations. Here, we will do the reverse:
since we are able to reliably calculate (or fit) bulk band
structures, we will use the latter, via Eqs. (12)—(14), to
predict the properties of finite quantum structures. A
somewhat similar approach has been adopted earlier
in an ad hoc fashion. It was proposed that the EMA
approach can be extended to a nonparabolic energy dis-
persion by replacing the EMA bands with the actual bulk
energy dispersion of Eq. (la). The rationale behind our
approach is quite difFerent: (i) in Ref. 11 the wave func-
tion was not constructed from Eq. (12) and (ii) the EMA
quantization condition (4) was used instead of the TC
condition Eq. (14). This approach thus missed most of
the interesting features of the quantum films, i.e. , items

(a)—(c) listed in the end of Sec. I.
The accuracy of the simple TC approximation of

Eqs. (12)—{14) can be examined directly by comparing
these solutions to an "exact" numerical diagonalization
of the film Hamiltonian [using a potential such as that
shown schematically in Fig. 2(a)]. The results of such di-
rect diagonalizations will be described in the next section,
where we find that the valence states of (001)-oriented Si
films are accurately described by a single TC basis func-
tjon ETC&. (r) while the conduction bands, which have

a minimum at Lgc ——0.85Xg~) require 2 basis func-
tions. Similar results hold for Si(110) and GaAs(110)
films. However, a larger number of TC basis functions
might be needed when (i) the film involves lower symme-
try orientations, (ii) when a film state with a large ofF-
I' k-vector is considered, or (iii) when one is interested
in lower-dimension quantum systems (such as wires or
dots).

k- = —jeL (14b)
III. ACCURACY OF THE TRUNCATED

CRYSTAL APPROXIMATION

In either case, j is given by

ifn=1
if nfl (14c)

A. Direct calculations for quantum Alms

An exact diagonalization of the film problem involves
solving

For n g 1, it turns out that the lowest energy state (at
k = ko) should be deleted from this set (see Sec. III E
below). In general, however, this state may not be at
the I' point. In such a case (ko g 0), the counting of j

[
g2 g ( )]@ m( ) mqs

where V" (r) is the potential of the film [shown
schematically in Fig. 2(a)]. It includes a quasiperiodic
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piece Vi, »~s;, (r) inside the film and potential walls out, —

side it. In practice, we construct V"i (r) from a su-
perposition of atomic pseudopotentials. Equation (15)
is solved by imposing periodic boundary conditions on
the N-layer film straddled by N, „„ layers of vacuum.
This transforms the film problem into a Bloch-periodic
band structure problem, solved here by expanding gf"'
in plane waves. We checked that the results are indepen-
dent of the number of vacuum layers to within 0.02 eV
for N,„„sd,where d is the interlayer spacing. The
solution of Eq. (15) is repeated for films with different
thickness L and different layer orientations, e(ppy) and
~(xxo) ~

Figure 4(a) depicts the xy-planar averaged potential
V ' (z) for a 12 atomic layer Si(001) film embedded in 8
layers of vacuum. This potential was constructed from a
superposition of empirical local Si atomic pseudopoten-
tials fitted to the bulk band structure and the film's work
function [see the Appendix (Refs. 12—19)]. In the interior
of the film the potential is quasiperiodic, having an aver-
age value V [thick horizontal line in Fig. 4(a)]. Outside
the film the potential approaches the vacuum level. The
position of the valence-band maximum in bulk Si is in-
dicated in this figure by the horizontal dashed line. It
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FIG. 4. (a) The 2:y-planar averaged potential for a 12-
layer Si(001) film. The solid line gives the EPM result whereas
the dotted line is the local part of the self-consistent LDA po-
tential. The origin of the potential is at the vacuum level and
the origin of the z axis is at a position half interlayer spacing
outside the surface atom (the "truncated crystal boundary").
V is the z averaged potential at the interior of the film. This
is used to determine the position of the valence-band maxi-
mum (VBM) and the work function 4 (Ref. 15). (b) The
zy-planar averaged EPM potential for a 14-layer GaAs(110)
film. Solid dots indicate the positions of atomic planes.

qbulk(r) eik r ) jg (C )
eiK r

C
(16)

where C are reciprocal lattice vectors and R (G) are the
variational expansion coefBcients.

The direct solution of the film problem [Eq. (15)]
avoids the approximations underlying the efFective-mass
particle-in-a-box model in that (i) the solutions are valid
at any k value (not just near a band edge), (ii) the bound-
ary conditions imposed by the external potential can cou-
ple to the quasiperiodic potential, and (iii) intervalley
coupling is allowed. The direct solution also avoids the
truncated crystal approximation, i.e., use of a single TC
basis function. In what follows, we will compare the pre-
dictions of the simple EMA and TC approaches with the
"exact" film solutions, thus assessing the utility of the
former methods.

B. Structure and symmetry of (001)
and (110) films

Equation (14) shows that the wave vectors k* enter-
ing the TC representation depend on the film's geometry
through its layer orientation e and thickness L.

Figure 5 illustrates the relation between the film's ge-
ometries and the bulk crystal structure shown in a cubic

is determined by aligning V in the interior of the film
with the same quantity calculated in bulk periodic Si (a
procedure analogous to that used in determining hetero-
junction band offsets ' ). The work function 4 ( 4.9
eV) is then given by the distance of the VBM from the
vacuum level. Since the I i„-I'25 valence-band width of
Si is 12.6 eV, the total confining potential [Fig. 1(a)] is
12.6 + 4.9 = 17.5 eV. A similar plot of the averaged po-
tential for a 14 layer GaAs(110) film is shown in Fig. 4(b).

These "exact" film problems differ from ideal text-
book depictions [e.g. , Fig. 2(a)] of a film in two ways.
First, the potential barriers are finite. We will therefore
consider only film states that are well confined within the
potential barrier, i.e. , all valence bands and conduction
bands with energies at least about 2 eV below the vacuum
level. Second, the potential barriers are nonabrupt. Both
effects contribute to the coupling to surface states. This
is undesirable in the present study which aims at test-
ing simple, surfaceless models such as the EMA and TC.
We have minimized the coupling effects by deliberately
using a non-self-consistent pseudopotential description,
rather than a self-consistent one; the latter would prop-
agate the unwanted surface effects [notably, the surface
dipole potential in Fig. 4(a)] deeper into the film. In any
event, surface states are identified in the present study
by examining their wave functions gfi; they are then
omitted from the comparison with EMA or TC states.

The same atomic pseudopotential is used to solve the
bulk band structure, thus providing @ "k (r) and e "kik

[Eqs. (2a) and (la), respectively] needed to construct the
truncated crystal solutions. Like the film eigenstates,
those of the bulk are expanded in plane waves, i.e. ,
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holds, thus finding the limits of the applicability of the
EMA.

Equations (17a) and (17b) illustrate an important
point on the nature of "quantum confinement ": In the
EMA one finds that the band gaps of 2D periodic sys-
tems scale as eg oc 1/I [Eq. (6)]. This, however, refiects
the choice of a simplified, parabolic dispersion relation
in Eq. (1b). If such a parabolic dispersion is inserted in
Eqs. (17a) and (17b) instead of eb"&", we will find too
that e oc 1/I, [Fig. 3(a)]. However, the more general
Eqs. (17a) and (17b) show that such a scaling is not a
general property of 2D periodic systems. If the disper-
sion relation of the HVB and the I CB is like that shown
schematically in Fig. 3(b), the band gap will first increase
with L, then, at smaller L values, it will turn around and
decrease with L . We term such a behavior "deconfine-
ment. " Equations (17a) and (17b) thus provide guide-
lines on how to select a bulk material such that a film
made &om it will exhibit deconfinement.

D. Comparison o1' truncated crystal
and direct calculat ions

We next examine the accuracy of the truncated crystal
approach by comparing with the results of direct calcu-
lations.

Ence'gy lee el8

The left hand side of Fig. 6(a) shows as horizontal lines
the directly calculated energy eigenvalues e" — for an N
= 12 layer Si(001) film. Surface states, appearing at 1.2—
1.6 eV above the VBM, are discarded &om the following
discussion. The bulk bands are indexed in Fig. 6 by the
band index n in increasing energy order: n = 1, 2, 3, and
4 for the four valence bands and n = 5 and 6 for the two
lowest conduction bands. The TC approximation to the
directly calculated levels is given [Table I and Eq. (13)]
by e ""[ (0, 0, ~~)]. T—hese TC results are indicated in
Fig. 6(a) by the intersections of the dotted vertical lines
taken at A;,

* = —(0, 0,
z~z ) with the bulk bands along I'-X.

The error in the TC approximation is hence given by the
amount by which the crossings of the vertical dashed lines
and the bulk bands miss the directly calculated values
P&iF (solid dots in Fig. 6). We see that the TC method
provides an accurate and natural classification of film
states in terms of the bulk band structure.

The quantitative mapping between the TC wave func-
tion g &(r) [Eq. (12)] and the exact film state @"i& (r)
[Eq. (15)] can be obtained by calculating the projection
a f(k,*) of Eq. (10), i.e. ,

a-, t (k.*) = (&f"' (r) l~. , ~; (r))

depicted in Tables II and III for valence and conduction
bands of (001)-oriented Si film, respectively. The % = 12
monolayer film contains 12 atoms, hence 24 doubly occu-
pied valence bands. Of these, two are surfacelike bands,
leaving 22 intrinsic film valence bands whose energies at
the film's I point are shown in the tables. We see that
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For the film conduction-band states, the projection of
Eq. (18) selects turo TC basis functions (see Table III).
The two, as can be seen in Fig. 6(a), are nearly degener-
ate. For example, in bulk Si

(b) Si(001), N=11

5 4 3 2 1 0
I

(a) Si(001), N=12

&film j' —6 5 4 3 2 1 0

)X]
r.5,(

bulk bulk
n=5, j=2 n=6i j=4 (20a)-3

cn
-6

LJJ

;X4

and
x,„

bulk bulk
~n=5, g=3 n=6, j=5 (20b)

r, (
r
0 1

In addition, the dispersion of the lowest (n = 5) conduc-
tion band in bulk Si is such that

X
2 3 4 5

r X

j =0 1 2 3 4 5 6

FIG. 6. Mapping of the directly calculated 61m energy
levels (solid dots) at the 2D Brillouin zone center I' onto the
truncated crystal energy levels for (a) a 12-layer Si(001) film
and (b) an ll-layer Si(001) film. The vertical dotted lines
indicate the quantized A:* values. Thus, the intersections be-
tween the bulk dispersion (solid line for nondegenerate states
and dashed line for double degenerate states) and the verti-
cal dotted lines give the truncated crystal energy levels. The
di8'erence between these and the solid dots represent the er-
rors in the TC approach. A solid (dashed) large open circle
indicates one (two) spurious TC state(s) to be removed from
the TC spectrum. The quantized k,*'s are indexed both by j
(starting from I') and by j' (starting from 2C). Note that for
the 11-layer film, the verticle dotted lines representing j and
j' do not coincide with each other. In this case A:*'s are band
index dependent.

bu1k bulk
n=5,j=4 n=5i j=6

In these cases, the degenerate pairs (n, k;i) and (m, , k*2)
couple, leading to

@& z, (r) = a~ y(k;i)y~ I,. (r) + a y(k,*2)y &. (r) (22)

and the energy levels are given by

y, r-(L) =
I -,x(k.* )I'""'"( k.* )

+la-, x(k:.) I'e'"'"(~ k:.)
Table III shows that the sum of the projections of the
low lying conduction states Ia~, y(k,* ) I2+ Ia„, y(k,* ) I2 =
99'%%up. For higher energy states, a smaller projection can
be expected since TC basis functions near vacuum level
were not included in the projection.

A similar mapping between directly calculated and TC
eigenvalues is shown in Fig. 7 for (110) oriented Si and
GaAs films. As indicated in Table I and Eq. (13), here
the TC predictions are eb"i

[
—(~~, ~~, 0)] with j = 0, 1,

2, . . . , N and N = 6. These TC states are shown in Fig. 7
as the intersections between dotted vertical lines at k* =—(~z, ~z, 0) with the bulk bands. The states obtained by
direct calculations are shown as solid dots. Again, good
agreement is obtained between the direct calculation and
the TC approach.

for film valence-band states the projection of Eq. (18) se-
lects but a single, dominant TC basis function y &. with

z

a typical coefficient Ia f(k,*)I = 98—99/z, with the ex-
ception of film states derived Rom the bulk n = 2 band,
for which wave function analysis (not shown) showed that
the coupling to surface states is non-negligible. The TC
error in the energy eigenvalue

7t

(f. .
)

fil b ik (19)

is given in the last column of Table II. For n g 2, it is
generally as small as 0.05 eV.

E., Ia-,f(j) I' b~

(eV)j=2 j=4
cosine-type

5 6

57.324
27
29

42 ~ 5 99.8
98.2
94.4

0.0
-0.04
-0.23

54.1 44.1
35.2 59.2

sine-type
23(26)'
28(25)'

30

31.0(25.1)
37.9(15.0)

30.3(13.6)
24.9(20.4)

61.3 + (38.7) = 100.0
62.8 + (35.4) = 98.2

80.532.1 48.4 0.3

TABLE III. Projections (in 'Fo) of the conduction-band film (f) states Q&'r- (r) to the TC basis functions y„(r) [Eq. (18)j,
for a 12-layer Si(001) film. The last column gives the energy difFerence (in eV) of Eq. (19) with the TC energies weighted by
the projection la, y(j)l . The sign (-) indicates that la, y(j)l ( O. l%%uo for that particular (f;n, j). An asterisk denotes mixed
states between a surface and a bulk state. Each of them contains a fraction py = g . Ia y(j)l of the bulk state and, ideally,

pfi + pf2 ——1.
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(a) Si(110), N=6 (b) GaAs(110), N=6
2. Wave functions

(D

CB
tn

UJ

k7
r.s.

, Xt,

)x„,

i)Xtv

rts

3x,.

&) Xsv

)X„

' ~ X tv

(2)

r tv&

I
x"'

0 1/4 1/2 3/4

(c)

(a)

j =0 1 2 3 4 5 6 0 1 2 3 4 5 6

FIG. 7. Mapping of the directly calculated film energy
levels (solid dots) at the 2D Brillouin zone center I' onto the
truncated crystal energy levels for (a) a 6-layer Si(110) film
and (b) a 6-layer GaAs(110) film. The legends are the same
as in Fig. 6. I indicates the X point in the second bulk
Brillouin zone.

We next compare the shapes of valence wave functions
of the % = 12 layer Si(001) film as obtained by the sin-
gle basis function TC approximation [Eq. (12)] and the
direct calculation [Eq. (15)]. We will illustrate the com-
parison separately for cosine-type (Fig. 8) and sine-type
(Fig. 9) wave functions. The TC wave function gT&. (r)
is calculated from Eq. (12), given the periodic parts u (r)
and u (r) of the bulk wave functions. The latter are the
real and imaginary parts of the sum in Eq. (16). Nor-
mally, u (r) and u (r) are not uniquely defined since
u(r) = u (r) + iu (r) is defined only up to a constant
complex phase factor. We Axed the phase factor by set-
ting the origin at a bond center site so that real B„(G)'s
can be used in Eq. (16). Figures 8(a) and 8(b) show
u (r) and u (r) for the bulk state n = 3, j = 1, i.e. ,
k* = —(0, 0, s). These are plotted on the plane denoted
as "plane II" in Fig. 8(c) (planes I and III, which contain
Si atoms, are nodal planes for this wave function). Two
features of u and u are noteworthy: (i) u s . i(r)
has curved nodal planes intersecting the (001) = z di-
rection at z = 1/4a and 3/4a. As we will see below,
these will satisfy approximately the boundary conditions
of the film's wave function at z = 0 and z = L. (ii) The

(b) (s s) u (r)

0 1/4 1/2 3/4

[ Cosine-type TC state: n = 3, j = 1

(a) u (r)

(c)

(d)

Directly calculated film state: f = 20 (b) u (r)

(e) Sine-type TC state: n = 4, j = 1

I TC boundaries

FIG. 8. Wave function contour plots for the cosine-type
TC state: n = 3,j = 1. Solid (dashed) lines are positive (neg-
ative) contours. Parts (a) and (b) show the real and imaginary
parts of the bulk Bloch state u —s ~=i(r), scaled by i/2. The
contours in these panels are shown in a (110)plane [denoted as
plane II in part (c); This plane contains no atoms. The atoms
shown in parts (a) and (b) are projections of those in planes
I and III]. Note that u s i(r) has bonding character, with
wave function maxima and minima at the bond center sites.
Its nodal planes intersect the (001) direction at z = 0 and
1/2 in units of lattice parameter a. The function u s ~ i(r)
has antibonding character with zero amplitude at the sites
where u s i(r) has extremal values. The nodal planes for
u s ~ i(r) intersect the (001) direction at z = 1/4 and 3/4.
Part (d) shows the TC wave function constructed according
to Eq. (12) using the u's shown in parts (a) and (b). Part
(e) shows the directly calculated wave function for this state.
Contour step is 0.4 /i/V«tt where V„tt = 399.86 A is the
volume of the supercell containing 12 layers of Si embedded
in 8 layers of vacuum.

(d)

Directly calculated film state: f = 21

(e)

Tc boundaries

FIG. 9. Wave function contour plots for the sine-type TC
state: n = 4, j = 1. The legends and contour step are the
same as in Fig. 8. The plane on which the contours are shown
is, however, not the (110) plane of Fig. 8(c) but the (110)
plane [plane II' in (c)]. For this state, all the (110) atomic
planes are the nodal planes. In bulk the n = 3,j = 1 and
n = 4, j = 1 states are doubly degenerate. This degeneracy
was lifted in the construction of the TC states by introducing
a very small lattice distortion ( 0.01% in units of a) in the
[110] direction.
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function u s i(r) has a low amplitude over the entire
plane; its maximum amplitude is much smaller than that
of uI s i(r). Hence, for n = 3, j = 1 the TC wave
function of Eq. (12) is essentially cosinelike,

(a) Si(001)

Direct
o TC

(b) Si(110} (c}GaAs(110)

i(r) - V2u„s, , (r) cos(k,*z) (24) Ip

This type of envelope function (having maxima at the
boundaries) is abseiit in an EMA description [Eq. (3)].

The two functions u+ s i(r) and u„s i(r) are
combined according to Eq. (12) to give the TC wave
function @ s . i(r) shown in Fig. 8(d). It is compared
with the directly calculated film wave function @"iP(r)
shown in Fig. 8(e). We see that the single TC basis func-
tion approximation provides an adequate representation
of the film wave function. In particular, the boundary
conditions at z = 0 and z = L are approximately sat-
isfied in the TC representation by the nodal surface of
u s - i (r), not by the envelope function.

A similar plot is shown in Fig. 9 for the sinelike n = 4, j
= 1 film state. Notice that u+

4 . i(r), not uI
4 . i(r),

is the dominant term here, so

0)

Q)
C:

UJ

E bUlk E bulk

g

bulk

g

6 8
I

12 16 20 6 8 10 6 8 10 12 14

Film Layer Thickness N

FIG. 10. The size dependence of the highest (non-ZCS)
valence-band state and the lowest conduction-band state for
(a) Si(001), (b) Si(110), and (c) GaAs(110). The solid dots
connected by solid lines are the results of the direct calcula-
tions and the open squares are the TC predictions. The zero
of energy is at the bulk VBM.

, (r) - V2u„4,-,(r) sin(k,*z) (25)

The u's in Figs. 9(a) and 9(b) are combined according to
Eq. (12) to give the TC wave function QTc4 i(r) shown
in Fig. 9(d). In this case, the boundary conditions at z =
0 and z = L are satisfied by the sine envelope function,
sin(k,*z), not by the nodal surfaces of u 4 i(r). Com-
parison between Fig. 9(d) and Fig. 9(e), which gives the
directly calculated film state, shows again how accurate
a single TC basis function representation is.

8. Thickneas dependence

The calculations above pertain to a film with a fixed
number of layers, N. We have repeated them as a func-
tion of N as well as for layer orientation e = (001) and
(110) for Si and (110) GaAs. The dependence of the
highest valence-band energy level (j = 1) and the lowest
conduction-band energy level on the layer number N and
orientation e is shown in Fig. 10, where the TC results
are compared with those of the direct calculation. To
facilitate (later) coinparison with the effective-mass re-
sults, in Fig. 10 we have omitted the j = 0 ZCS states
which have no correspondence in the EMA approach. We
find excellent agreement between the two calculations for
Si(001) and (110), while for GaAs(110) there is a good
agreement for the valence-band states but a nearly fixed
TC error of 0.4 eV in the conduction band. This might
reflect interaction with surface states present only in the
direct calculation.

We thus conclude that the simple TC approach of
Eqs. (12)—(14) provides a reasonable approximation to
the far more complex direct film calculation. Moreover,
these direct numerical calculations show that the sum in
Eq. (10) is rapidly converged and only one to two terms
are sufficient for an accuracy of 0.02 eV. Hence, the use of
the TC basis set afFords high numerical accuracies with-

out the need for large basis sets. This should be con-
trasted with a direct calculation, e.g. , with a plane wave
basis 3' where a much larger number of basis functions
is required to achieve the same accuracy.

E. Eliminating the spurious TC states

As noted in Sec. II, the quantization condition k* =
&j, j = 0, 1, 2, . . . , jl. , includes jL, + 1 states per band
n, so one of these must be spurious. The projection tech-
nique of Eq. (18) permits a straightforward identification
of such "extra TC states" that need to be deleted from
the spectrum. These states, which have a null projection,
are indicated in Figs. 6 and 7 by large open circles. lVe
see that the spurious TC states are at the energy extrema
(k = ko) of a given band

The elimination of one of the two degenerate zone
boundary j = jL, states, Xi~ and Xic, from the TC
spectrum of the 12-layer Si(001) film in Fig. 6(a) is un-
derstandable: the destructive interference between two
running waves can generate only one state satisfying the
boundary condition at z = 0 and z = L. There are, how-
ever, TC states of true energy minima also being elim-
inated in Fig. 6(a). These are the (n, j) = (1, 0)[I'i„];
(3, 6) [X4„];(4, 6) [X4„];and (5, 5) [b,i,] states. They are
eliminated from the TC basis set (similar to the elimi-
natioii of the n = 1, j = 0 state in the EMA approach)
because their wave functions constructed according to
Eq. (12) are nodeless in the confined direction (see Fig.
11, for example, for the two degenerate X4„TC states),
and hence these states cannot satisfy the film's boundary
conditions.

Figure 6(b) shows that the null projection rules also
hold for the odd-layer (N = 11) Si(001) film. The n =
2 band in this case is an exception where, due to the
fact that the film thickness L = Nd is not a multiple
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Forbidden TC States at X4v

(a) n = 3, j = 6

(b) n = 4, j = 6

function character. We see that for a (001) oriented Si
film all film states originating &om valence bands n = 1,
2, and 4 are sinelike, whereas all film states associated
with the third valence band (n = 3) are cosinelike, hence
unrepresentable by the EMA. An example of a cosine-
like film state is the (n, j) = (3, 1) level of Eq. (24) and
Fig. 8. As discussed above, a cosinelike state can ex-
ist when ug&. (r) is small for all r and the boundary
conditions at z = 0, L are satisfied by the nodal planes
of uI &.(r) rather than by its envelope. In contrast, in
the effective-mass particle-in-a-box approach, the nodal
structure of the periodic piece u k (r) of the wave func-
tion of Eq. (3) is not taken into consideration. In fact,
it was argued that if a nodal structure exists, it will
not affect the sine-envelope for a smooth varying func-
tion g M (r) near the boundaries. This is not generally
true, as exampled by the existence of cosine-type states
in the direct calculations [Fig. 8(e)].

TC boundaries

FIG. 11. Wave functions for the two degenerate forbidden
TC states at 2C4„ in Fig. 6(a). (a) The n = 3,j = 6 state
"belongs" to the same cosine band as the n = 3, j = 1 state
in Fig. 8 and is hence plotted in the (110) plane, whereas (b)
the n = 4, j = 6 state "belongs" to the same sine band as the
n = 4,j = 1 state in Fig. 9 and is plotted in the (110) plane.
The contour step is 0.4 /QV„n where V„~~ = 399.86 A. is the
volume of the supercell containing 12 layers of Si embedded
in 8 layers of vacuum. These are spurious TC states since
they do not vanish near the TC boundaries.

of a(ooi) —2d, there is no TC basis function at Ki
for the n = 2 band. The null projection in this case is
governed, instead, by minimization of the band energy,
i.e. , eliminating the highest energy state at I'25~„.

The same rules for elimination of the extra TC states
apply to the (110)-oriented films: they are the lowest
energy states in each band (large open circles in Fig. 7).

IV. QUANTUM FILM PROPERTIES
ABSENT IN AN EMA DESCRIPTION

Having established the close similarity between the
TC and directly calculated states of quantum films, we
now contrast the TC results with those of the "standard
model, " i.e. , the effective-mass particle-in-a-box predic-
tions (a)—(c) discussed in Sec. I.

A. Cosinelike envelope functions with maxima
at the boundaries

Equation (3) shows that the EMA envelope function is
sinelike, hence it reaches its minimum amplitude (zero)
at the film boundaries. In contrast, Eq. (12) shows that
the TC function can have both sinelike and cosinelike
envelope functions. Table II classifies the directly cal-
culated film states according to the dominant envelope

B. Size-independent "zero-con6nement states"

A special case of the cosine-type envelope function is
the "zero-confinement state" (ZCS). This is the k,* = 0
state (i.e. , j = 0) of Eq. (24). The discussion of Sec. III E
showed that the j = 0 solution of a quantum film is per-
mitted if the bulk energy at this point is not the minimum
energy of that band. Hence, the j = 0 valence-band max-
imum in even-N Si(001) [Fig. 6(a)], Si(110)[Fig 7(a)], and
GaAs(110) [Fig 7(b)] are all allowed solutions in a quan-
tum film, in contrast with the EMA result of Eq. (3).
With j = 0, Eq. (24) reads

(26a)

Likewise, Eq. (13) gives

TC bL11k
n=3 j=O = VBM (26b)

This ZCSis hence predicted to have a constant envelope
throughout the film and its energy does not depend on the
size N. Figure 12 shows the ZCS wave function and en-
ergies found in direct calculation for N = 12 Si(001).
It is clear &om Figs. 12(a) and 12(b) that this state
is not a surface state, as it has a constant amplitude
throughout the film. Figure 12(c) shows the energies of
the ZCS as obtained in the direct calculation for a few
even-N Si(001) films [note: odd-N Si(001) films do not
have ZCS]. This figure shows that the energy of this state
is indeed size-independent [solid dots in Fig. 12(c)]. Of
course, the effective-mass model [represented by the dot-
ted line in Fig. 12(c)] always predicts size dependent en-
ergies. Direct calculations for (110)-oriented films (solid
dots in Fig. 13) predict a small size dependence ( 25
meV for Si and 10 meV for GaAs). This reflects the
fact that for (110) films the imaginary part of the Bloch
function uI s &. &„o(r) at the film boundaries has a low

amplitude but not an exact nodal plane. Consequently,
for (110) films inclusion of a single bulk state [Eq. (24)]
does not suffice to satisfy the film boundary conditions
and a small admixture of other states occurs. This leads
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Zero-Confinement State for Si(001) Zero-Confinement States

(a} Directly calculated wave function for a 12-layer Si(001}:f = 22

(a) Si(110)
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(b) GaAs(110)
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FIG. 13. The size dependence of the energy of the directly
calculated zero-confinement states (solid dots) for (a) Si(110)
and (b) GaAs(110). The EMA predictions are shown as dot-
ted lines.
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FIG. 12. The zero-confinement state for Si(001). (a) The
directly calculated ZCS wave function for a 12-layer Si(001)
is shown in a (110) plane [plane II in Fig. 8(c)]. The legends
and contour step are the same as in Fig. 8. (b) The same
wave function is squared and averaged over the xy plane per-
pendicular to the [001] direction. The solid dots indicate the
positions of the atomic planes. Note the constant amplitude
throughout the film. (c) The size dependence of the energy of
the ZCS is shown as solid dots and contrasted with the EMA
predictions (the dotted line).

derived conduction-band states in Si /Ge .z~ The oscil-
lations shown in Fig. 10(a) and Fig. 14 are, however, in
the valence band. Their amplitudes are about fivefold
larger than those for superlattices. The origin of such
oscillations lies in the change of the point group symme-
try as the number of layers N changes from even (D2h,
symmetry) to odd (D4h symmetry). In the EMA, how-
ever, the quasiperiodic potential Vz„,. g;, (r) is removed
(see Sec. I) so the symmetry information responsible for
these oscillations is lost.

These oscillations can be analyzed in terms of the TC
approach. In Figs. 8 and 9, we showed two typical film's
wave functions for a 12-layer (001) film: the bulk pe-
riodic function u t, (r) in one case (n = 3) possesses

to a weak N dependence of the ZCS. This N-dependence,
however, is far weaker than that expected &om conven-
tional quantum confinement (dotted lines in Fig. 13).

C. Even-odd energy oscillations in (001) Blins

We have seen in Fig. 10(a) that the Si(001) film ex-
hibits marked even-odd energy oscillations for the non-
ZCS highest valence state (n = 4, j = 1). It shows
that the TC approach captures closely the magnitude
of these oscillations, as revealed by the direct calcula-
tions. These oscillations, as expected, are absent in the
efFective-mass description, shown in Fig. 14. Energy level
oscillations were previously noted in (001) superlattices,
e.g. , the L-derived and X-derived conduction-band states
in (A1As) /(GaAs) (Refs. 20, 25, and 26) and the L

1

E bulk

~ 0

CD

CD

-1
g

I

6 8

Direct
EMA

12 16 20

Film Layer Thickness N

FIG. 14. Comparison between the results of the direct
calculation (solid dots connected by solid lines) and the EMA
predictions (dotted lines) for the size dependence of the energy
of the highest (non-ZCS) valence-band state and the lowest
conduction-band state for Si(001).
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nodal (N) planes at the boundaries, (N, N), whereas in
the other case (n = 4), it reaches extrema [E = either
a peak or a minimum] at the boundaries, (E, E) T. he

(E, E) and (N, N) combinations correspond to sine- and
cosine-type envelopes, respectively. For odd-layer Alms,
both (E,E) and (N, N) are, however, symmetry forbid-
den. Instead, we have an (E, N) and an (N, E) combi-
nation. These imply that, for even-layer films, the quan-
tized k,* is given by (k,*)'"'"=

&j, whereas for odd-layer
films, (k,*) = (k,*)'"'"—

& . Hence, the energy pattern
e "s 4(k,*) changes &om even to odd.

This pattern change can be phrased in a slightly dif-
ferent way: since the spurious states to be removed
(Sec. III E) are always at the energy minima, one can
postulate a band dependent A."*, opposite to what has
been done so far, with its minimum always tied to
the energy minimum, same as in the EMA. Using this
notion, the quantized states in Figs. 8 and 9 for a 12-
layer (001) film correspond to j' = 5, not 1, with
k* = kf~l —k'* = —(—). A prime for j and k* is used
here to indicate that they do not start from I'. For the
N = ll odd-layer film shown in Fig. 6(b), the smallest
k,* for the n = 3 and 4 bands is —(ii) given by j' = 5,
instead of the familar form —(ii). This leads to the
same energy pattern change discussed above. Of course,
since this pattern change (= energy oscillation) depends
on the existence of a unique (even or odd) N, they are
expected to exist only in ideally abrupt Alms.

D. W'hat can one expect from
approaches other than the EPM?

Our forgoing discussion illustrated the results using the
EPM. We now discuss how the results could change if
other band structure representations are used.

(i) Tight binding scheme. The above discussion shows
that in order to obtain the correct solutions for boundary
problems, it is essential to allow the wave functions to
adjust variationally to the imposed boundary conditions.
In view of this, the tight binding scheme, in which the
degree of freedom of the wave functions is limited to that
of the orbital coeKcients, may lead to results that differ
from those obtained. when @(r) is variational at each r;.

(ii) LDA calculation. (a) With an ideal film surface, an
LDA calculation produces results that closely resemble
those of the EPM. Figure 15 shows the xy-planar aver-
aged wave functions squared for the f = 20 (cosine-type),
f = 21 (sine-type), and f = 22 (cosine-type ZCS) stat, es
for the 12-layer Si(001) film as obtained by the EPM and
self-consistent LDA calculations. While the wave func-
tions are very much the same, the ZCS state no longer
has the constant envelope function in the LDA calcula-
tion and its energy hence shows some size-dependence.
The reason for this is that the self-consistent procedure
in the LDA approach modifies the surface potentials such
that in the surface regions they deviate &om a superpo-
sition of atomic potentials [see dashed line in Fig. 4(a)].
In essence, the energy level of the ZCS state can go either
up or down depending on the details of the surface po-
tentials. However, these variations are weaker than what

Near-Gap Valence States for a 12-Layer Si(001) Film

EPM Self-consistent LDA

f= 20
{cosine-type)

f=2j
{sine- type)

f= 22

(ZCS state)

FIG. 15. xy-planar averaged wave functions squared given
by the EPM and self-consistent LDA calculations. The solid
dots are the atomic planes of Si.

is expected from quantum confinement (1/L ). (b) With
surface reconstructions or chemisorptions. In such cases,
we expect that the single basis function TC approach
may not suKce to describe all the film states. Mixing
between different TC basis functions that are close in en-

ergy needs to be considered. Even in such cases, the sin-
gle basis function TC approach provides valuable insights
to the problem as it classifies the unperturbed bulklike
states into two subgroups: (1) sinelike states with low
amplitude at the surface which are, therefore, surface
insensitive, and (2) cosinelike states with large ampli-
tudes on the surface which are more sensitive to surface
changes. This division justifies the use of the EMA ap-
proach for quantum films, when the sinelike states hap-
pen to be dominant near the band gap.

V. MATRIX ELEMENTS
AND OPTICAL PROPERTIES

In this section, we discuss optical properties of Si(001)
films obtained from direct calculations. We show that
the TC approach provides a way of systematizing the
trends in the optical data which otherwise seem random.
The transitions at the I' point of the 2D Brillouin zone
can be classified as either direct or pseudodirect. Gener-
ally speaking, these transitions do not obey the bulk k
conservation rule and thus pseudodirect transitions may
have nonzero matrix elements. By mapping the directly
calculated film states onto the the TC states, two fea-
tures are observed: (i) A dipole matrix element between
an initial state (n, ji) = (n, i) and a final state (m, j2) =
(m, f) (where n and m index the bands and j, indexes
k ) is nonzero only for a subset of (i, f) Explicitly, it. is
zero either for all even (i —f) or for all odd (i —f) for
a given n, m. (ii) Direct transition in k-space may have
vanishingly small matrix elements. However, pseudodi-
rect transitions that occur near the energy of a forbidden
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A. Intraband matrix elements

The dipole matrix element between the states (n, i)
and (m, f) is given by

M[(n t) (~ f)l =(@-,'lpl@-, X)

= —i „*;rV' f rdr (27)

direct transition can be as strong as allowed direct tran-
sitions. These points are illustrated in what follows.
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(a) Empty-Film Model
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~,

2

f=1 o. ~ iI

(b) 12-Layer Si(001) Film

Here, p = —iV' is a momentum operator, which is odd
with respect to an inversion (r -+ —r) operation; its com-
ponents (p, p„, Ii, ) are ocld with respect to mirror re-
flections (x -+ —x; y -+ —y; z ~ —z).

It is instructive to first examine Eq. (27) using a sin-
gle Fourier component approximation to the film's wave
functions. This is equivalent to examining matrix ele-
ments of an empty film. Let us use mG to index the
reciprocal lattice vector C. Thus, the empty film's wave
function for n = 1 (or mG. = 0) is

(j7rzi
vPo, (z) = sin

~
(28)

where the quantum number j [= eitheri or f in Eq. (27)]
indexes k,* =

&j. Inserting Eq. (28) into Eq. (27) leads
to the intraband matrix element for the empty film model
(n=m =1)

M[(1 t) (1 f)] = 1 —(—1)' ~ 2if

This equation reveals that M[(1, i); (1, f)] vanishes when
(i —f) is even. The reason for this is that each go z(z)
has a definite parity with respect to a mirror reBection
(z -+ —z) at the center of the film: even parity for j =
odd and odd parity for j = even. The nonzero matrix
elements, according to Eq. (29), are functions of both i
and f. For a fixed f = 1, the matrix element squared
M*M = ~M~2 is proportional to (i) 1/L if i f = 1;
but (ii) to 1/L if i jL, » f = 1 because jL, is also
proportional to L.

Figure 16 shows the intraband matrix elements
squared ~M~ for the n = 1 and 2 valence bands of the
12-layer Si(001) film in Fig. 6(a). The indexes i and
f here for the initial and final states correspond to the
quantum number j in Fig. 6(a). We show results of the
empty film model [Fig. 16(a)] and of direct calculations
[Fig. 16(b)]. (Of course, since matrix elements between
occupied valence-band states are considered here, these
do not correspond to actual optical transitions. We use
Fig. 16 only to discuss the nature of the dipolar p cou-
pling. ) This figure is presented using the extended zone
scheme in which the n = 2 band is part of the n = 1 band
with j = 7, 8, 9, . . . , 12. We see &om Fig. 16 that ~M~2
decreases as i increases or as f decreases. The agreement
between the direct calculation [Fig. 16(b)] and the empty
film model [Fig. 16(a)] is reasonable. In general, however,
the intraband matrix elements squared depend not only
on i and f but also on band indexes n and m.

2 4 6 8 10 2 4 6 8 10

Initial Quantum State i

FIG. 16. The nonzero intraband matrix elements squared
between state i and f calculated from (a) an empty film model
and (b) a 12-layer Si(001) film with n = 1 and 2.

B. Interband transitions

~~ 10
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——Direct Transitions

(5 I) —(3 ~)
t 05~ r Oy
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t 'r).y ~ .yl l 1

I
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3 4 0 1 2 3 4 5 6

Initial Quantum State i

FIG. 17. The directly calculated matrix elements squared
for interband transitions in a 12-layer Si(001) film. These are
transitions from the two lowest conduction bands n = 5 and 6
with initial state index i to the highest (non-ZCS) n = 3 and
4 valence-band states with final state index f = 1 (see Fig. 6).
In the plot, i = 1 corresponds to direct bulk transitions.

Turning next to the actual optical interband
transitions, Fig. 17 shows the directly calculated
~M[(n, i); (m, , f)]~2 for transitions from an initial state
i in the n = 5 and 6 conduction bands to the Anal

f = 1 states in the m = 3 and 4 valence bands for a 12-
layer Si(001) filin. For transitions between (n, i) ~(m, , f )

(5,i)+(3,1) and (6,i)-+(4,1), ~M~ vanishes at even
(i —f), the same as the empty film model, Eq. (29). How-
ever, since there are two types of film states (sine- and
cosine-type in Tables II and III), ~M~ may also vanish
at odd (i —f) This is se. en in Fig. 17 for transitions be-
tween bands of diferent types, i.e. , (6,i) I(3,1) (sine- to
cosine-type) and (5,i) I(4,1) (cosine- to sine-type). All
transitions in Fig. 17 are polarized in the xy-plane.
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Evolution of the Transition Energies as a Function of Sizes

L = L macro L —L mesos L- nm

s(D) = E (PD) s(D) & s (PD) E(D) & s (PD)

The patterns in Fig. 17 are the consequence of pari-
ties of the film wave functions under inversion. The final
valence-band states m = 4, f = 1 and m = 3, f = 1 have
an even and an odd parity, respectively, whereas the par-
ities of the initial conduction-band states are determined
by its band index n and the momentum quantum num-
ber i. That is, (—1)' for state i in the n = 5 band and

(—1)'+i if the state is in the n = 6 band (the minus sign
here indicates an odd parity). When the overall parity,
tabulated in Table IV, of the integrand in Eq. (27) is odd,
M[(n, i); (m, 1)] is zero.

One notices &om Fig. 17 that certain pseudodirect
transitions may have iM(n, i; m, 1) i

comparable to the
direct transitions (i = f = 1). Two factors are respon-
sible for this: (i) The transition may actually be direct,
since a directly calculated conduction-band film state (al-
though shown in Fig. 6 as a point) generally involves two
TC basis functions (see Table III). One example of this is
the (6,3) state which has a large projection onto the (5,1)
TC basis function. Transition (5,1)~(3,1) in Fig. 17 is
not pseudodirect but direct, as is the (6,3)—+(3,1) tran-
sition. (ii) The spectral weight of the direct transition
(i = f = 1) is shifted to the neighboring pseudodirect
transitions (i = f+I = 0,2) when the direct transition is
dipole forbidden. Examples of the forbidden direct tran-
sitions in Fig. 17 are the (5,1)~(3,1) (cosine- to cosine-
type) and (6,1) +(4,1) (sine- to sine-type) transitions.
This implies that for Si fiLms there mill be a strong pseu
dodirect transition at an energy below the direct transition
of 9.) eV.

TABLE IV. Parities for vP', (r)V'Q y(r) for interband
transitions. The parities of the initial and final states are
given in square brackets. The plus (+) and minus (—) stand
for even and odd parity, respectively.

(31) [
—

]

(4,1) [+]

Now, with the knowledge about matrix elements, we
have a more complete picture about the deconfinement
effect, i.e. , the increase and then decrease of the direct
band gap, resulting from film size reduction. In addition
to the discussion in Sec. IIIC, the finite size splits the
direct bulk transitions (across the gap) into a direct and
a pseudodirect branch, as shown in Fig. 18(a). For large
enough sizes, the pseudodirect transition energy is al-
ways larger than that of the direct transition. But when
the size is reduced to nanoscale, the pseudodirect tran-
sition will have a lower transition energy. Figure 18(b)
shows schematically the evolution of (i) the direct, (ii) the
strong pseudodirect (originated from bulk direct transi-
tions), and (iii) low energy but weak pseudodirect tran-
sition (originated from the bulk indirect transition).

VI. SUMMARY

Our pseudopotential band structure calculations re-
veal several features of the semiconductor quantum films
that are unexpected on the basis of the effective-lnass
particle-in-a-box model. These include (i) nonmonotonic
size dependence of the band energies with even-odd en-
ergy oscillations for the top of the valence-band states,
(ii) the presence of states with cosine-type envelope func-
tions, nonvanishing at the boundaries, and (iii) the zero-
confinement states pinned at constant energies. The
presence of surface boundaries selectively enhances cer-
tain pseudodirect optical transitions by several orders of
magnitude a useful feature for optical device design.
We explain all these results in terms of a simple truncated
crystal approach, which provides a one-to-one mapping
between the eigenstates, eigenvalue spectra of a film, and
those of the corresponding bulk material at a special sub-
set of the bulk k points.
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FIG. 18. (a) Schematic drawings showing that a degen-
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pseudodirect transition in quantum films. (b) Band gaps as
a function of size for the band structure shown in part (a).

APPENDIX: FILM PSEUDOPOTENTIALS

The local empirical pseudopotential used previously for
Si (Ref. 12) and GaAs (Ref. 13) has the reciprocal-space
form
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v( (Al) TABLE V. Comparison between the EPM and experi-
mental (Ref. 16) energy levels for Si and GaAs (in eV).

V(q) = bi(q' —b&)/(bse ' —1) (A2)

with bg ——0.53706, 62 ——2.19104, b3 ——2.05716, and b4
= 0.48716 in rydberg atomic unit. The four parame-
ters (6;) in Eq. (A2) are determined &om both the three
empirical pseudopotential form factors [used to derive
(a,) in Eq. (Al)] and the experimental work function of
Si as an additional constraint. The work function (C) de-
pends on surface orientation. However, the dependence
of the confined states on 4 is rather weak (a change of
a few tenths of an eV in the work function afFects the
energy levels 2 eV below the vacuum level by only 0.01
eV). Here we used the experimentally determined value
Ci = 4.9 eV (Ref. 15) for the Si(110) surface. Table V
compares for Si the bulk energy levels, calculated using
this potential and a kinetic energy cutofF of 4.5 Ry, with
experiment. The results agree to within a few tenths of
an eV.

Equation (A2) does not produce a good fit for GaAs.
We use instead Eq. (Al) with ai ——1.22 (0.35), az
2.45 (2.62), as ——0.54 (0.93), and a4 ———2.71 (1.57) for
Ga (As), respectively, taken &om Ref. 13. To get also
the correct work function, we have added an external
potential which has the real space form

V,„i(z) = hV (erf[o.(zsi —z)] + erf[n(z —zq„)]f

(A3)

where (a,) are four parameters derived &om fitting the
pseudopotential form factors to experiment. This poten-
tial, originally designed for bulk materials, does not pro-
duce the correct work function (which is a surface prop-
erty). Based on Eq. (Al), we derive a different analytic
potential for Si (cubic lattice parameter: a = 5.43 A),

~25
r...
X4„
Xg,

L3t„
Lg
L3

EPM
0.00
3.24
4.11
-2.98
1.28

-1.25
2.18
4.02

Si
Expt.

0.0
3.35
4.15
-2.9

1.13 (A)

-1.2
2.04
3.9

r,.„
r,.
r...
X5„
Xg
X3~
L3„
Lg

GaAs
EPM
0.00
1.45
4.26
-2.21
1.95
2.11
-0.91
1.67

Expt.
0.0
1.63
4.72
-2.80
2.18
2 ~ 58
-1.3
1.85

where the error function erf(z) with a damping factor
o. = 5 is used to reduce numerical noise, and z~~ and
zp are the boundary positions of the GaAs film. Using
hV = 0.69 Ry in (A3) gives a work function 4 = 4.9
eV. Comparison between the results of the TC and di-
rect calculation for Si 6lms suggests that the boundaries
(zgi and zs„) for GaAs should be placed half interlayer
spacing outside the surface atomic planes. A 4.5 Ry ki-
netic energy cutofF is used also for GaAs. The calculated
energy levels are compared with photoemission and pho-
toelectron spectroscopy data ' in Table V. They are
compiled in Ref. 19. The agreement is not as good as for
Si. The important energies in these calculations, how-
ever, are not the absolute energies but the energy dif-
ferences between the direct film calculation and the TC
approach. The latter uses also the directly calculated
wave functions and band structure (for the bulk) as in-
put. The relevant energy difFerence is thus the difFerence
between results of two direct calculations and is accurate
to within a few hundredths of an eV.
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