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Slow modes in crystals: A method to study elastic constants
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We propose a microscopic expression for a displacement field in a crystal and derive nondissipative
equations of motion for the slow hydrodynamic and broken-symmetry modes, including the vacancy-
diKusion mode. Comparing these equations with the macroscopic ideal equations of elasticity we
obtain exact expressions for isothermal elastic constants.

I. INTRODUCTION

For a one-component crystal consisting of spherically
symmetric particles there are in general eight slow hy-
drodynamiclike modes. These are Bve densities of con-
served quantities, i.e. , number, momentum (three compo-
nents), and energy densities, and in addition three modes
due to broken continuous symmetry, corresponding to
the macroscopic displacement field. On the other hand,
on the macroscopic level2 one introduces six propagat-
ing sound modes or elastic waves (three branches for a
given wave vector, two possible velocity signs for a given
branch) and a diffusive energy mode, usually neglecting
existence of the eighth mode, the vacancy-diffusion mode.

Martin, Parodi, and Pershan clearly recognized the
deficiency of the usual macroscopic description. Start-
ing from general ideas of hydrodynamiclike description
of broken-symmetry phases they derived the full set of
evolution equations for all the eight slow modes. They ar-
gued that vacancy diffusion is possibly due to the distinc-
tion between the displacernent field and the mass trans-
port.

The analysis of Martin, Parodi, and Pershan was
purely phenomenological. In particular they did not cal-
culated any reactive or dissipative coefBcients. The prob-
lem of deriving the full macroscopic description of a crys-
tal from a microscopic theory remained unsolved.

Here we study the time evolution of the slow modes
in crystals using techniques developed in nonequilibrium
statistical mechanics of systems with broken continuous
symmetry. We identify all eight slow hydrodynamiclike
modes: We propose a microscopic expression for the dis-
placement field. Next we derive nondissipative equations
of motion for the slow modes. The extension to include
dissipative processes is straightforward and will be re-
ported elsewhere.

We derive here exact expressions for the reactive co-
eKcients in the evolution equations. These expressions
will not charige if we include dissipative processes. Next
we introduce the vacancy concentration as a combination
of the conserved (hydrodynamic) and broken-symmetry
modes. Finally, we derive the usual equations of ideal
elasticity. 2 By comparison of the microscopically derived
evolution equations with the macroscopic ones we iden-
tify exact expressions for the elastic constants.

II. MICROSCOPIC DEFINITION OF THE
DISPLACEMENT FIELD

To identify additional slow modes that owe their ex-
istence to broken translational invariance we follow An-
derson's presentation of the spin-wave excitations. I et
n, (r) be the equilibrium density profile in a crystal. It
can be decomposed into components corresponding to
different reciprocal-lattice vectors:

n, (r) = no+ ) noe'
(G,CQO)

(2.1)

Elastic constants of the hard sphere solid have been
calculated before by using density-functional theory. s 4

The basic idea was to calculate the free energy for a
strained crystal3 and then to differentiate it with respect
to the elements of the strain tensor. The expressions for
the elastic constants obtained in this way depend sensi-
tively on the approximate parametrization of the density
field in the strained crystal. The same remark applies to
the results derived from kinetic theory. s In contrast our
expressions do not depend upon any parametrization of
the density profile in the strained crystal. The elastic
constants are explicitly expressed in terms of equilibrium
quantities: the long-wavelength limit of the structure fac-
tor and integrals of the direct correlation function with
derivatives of the equilibrium density profile.

Our formulas for the elastic constants are similar in
structure to the Triezenberg-Zwanzig formula for the
surface tension and complementary to those derived by
Squire, Holt, and Hoover. The relation between our
expressions and those of Squire, Holt, and Hoover is
the same as between the Triezenberg-Zwanzig7 and the
Kirkwood-Buff formulas for the surface tension.

The paper is organized as follows. In Sec. II we in-
troduce and justify a microscopic expression for the dis-
placement field. In Sec. III equations of motion for all the
eight slow hydrodynamic and broken-symmetry modes
are derived. In Sec. IV we compare these equations with
the phenomenological linear equations of elasticity and
obtain expressions for the elastic constants. Finally in
Sec. V we summarize our results and end with some com-
ments.
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where (G) denotes the set of reciprocal-lattice vectors,
n~ is the amplitude of the component of the density pro-
file corresponding to the reciprocal-lattice vector G, and
no is the average macroscopic density,

requirement is that the ensemble-averaged displacement
field (u(k)) calculated for the considered state should
have form

(u(k)) = dre '"'a(r). (2.7)
np = v ' drn, (r),

with v the volume of the unit cell.
The amplitudes n~, with G P 0, specify a particu-

lar state from a manifold of equivalent broken-symmetry
states. They are the order parameters of the crystal. By
changing the phases of att the order parameters,

n~~n~e ' ' for all GQO, (2 3)

we obtain an equivalent but difFerent state of the crys-
tal. This state corresponds to the original crystal moved
by a vector a. The important fact is that changing the
order parameters through a uniform translation a does
not change the free energy. Now we consider small per-
turbations of the equilibrium state with a slowly varying
displacement field,

u(k) y ( a~ ) d ik—r e( )
(h , h ) JV Or

1= ——) i G n~b'n(k —G),
C

(2.8)

Here and in the following brackets ( ) denote an aver-
age over a nonequilibrium (strained) ensemble compati-
ble with the prescribed displacement field a(r).

It is clear from the above discussion that the displace-
ment manifests itself in the change of the rapidly vary-
ing components of the microscopic density field, n(r) =
P, b(r —R,), where R,, denotes the position of the ith
particle. Guided by this fact we propose a definition that
essentially is a projection of the microscopic density on
the equilibrium density gradient:

a r =Re ik'r (2 4)
where h~(k, r) = exp(ik r)(O/Or )n, (r). The inner
product is defined as

of small magnitude ~a~; i.e. , we move different parts of the
crystal out of phase using different displacement vectors
in different positions. Here and in the following lower-
case letters k, q, . . . denote wave vectors from the first
Brillouin zone of the reciprocal lattice. Using displace-
ment field (2.4) we change the order parameters,

—ia aexP( —ik r) n (I iG . ae —k
)
(2 5)

1
(a, b) = — dra*(r)b(r)

and the constant JV as

A'= (h, h ) = —) | ~n~~2

1 On, (r) 5
3v „ Or j

(2 9)

(2.1O)

n', r =n, r —ar =n, r — ' ar,On, (r)
r (2 6)

where function a(r) has no Fourier components outside
the first Brillouin zone of the reciprocal lattice [note that
n, (r) is the density field of the unstrained crystal]. The
density field (2.6) can be obtained as a linear combina-
tion of the transformations (2.5). Now the important

As the relevant free-energy change vanishes at k = 0 and
is a scalar quantity, it must be of the order of at most
A:2 for small wave vectors. Hence we have a low-energy
excitation.

Note that in order to get the low-energy excitation we
need to change only the order parameters n~, G g 0.
There is no change of the average density no.

Although we have identified relevant low-energy exci-
tations, finding a microscopic expression for the displace-
ment field is not as simple, unless one restricts oneself to
a model situation in which every lattice site is occupied
by a specified atom. Unfortunately there are no vacan-
cies in this case and one is left with seven slow modes
only. Density is not an independent variable anymore.

A sensible microscopic expression for the displacement
field u(k) should satisfy the following conditions: Con-
sider a strained state of a crystal with the average density

h (k, r) = e'"' n, (r),
re

6 p(k, r) = e' '
~
n, (r),

Or~Orp j
(2.11)

where [O"n, (r)/(Or OrpOr~. . .)] denote orthogonalized
higher-order gradients and n, P, . . . denote Cartesian
components (x, y, z). We decompose the difference be-
tween the microscopic density field and its equilibrium
average along the basis (2.11), using the inner product
(2.9). The result is

Note that there is no summation over n in Eq. (2.10).
In general fV has to be replaced by a second-rank ten-
sor. Here we have assumed cubic symmetry. It can be
easily checked that deFinition (2.8) agrees with our intu-
itive discussion above: For a state in which the average
density has the form n, (r) —(On, (r)/Or) a(r) one gets
(u(k)) = f drexp( —ik r)a(r).

To discuss the projection in deFinition (2.8) in a slightly
more formal manner we define the following set of func-
tions:

hp(k, r) = e'"'n, (r),
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6n(k+ G) = [v(k) —iG u(k) + jng, (2.13)

where k belongs to the first Brillouin zone and 6n(k+G)
is the Fourier transform of 6n(r) with the wave vector
k+ C. Multiplication of (2.13) with nG or iG n& yields
again v(k) and u~(k) as in (2.8).

The second term is the component n~~ (r) of the density
field, parallel to the equilibrium density gradient, i.e. ,

1
n(r) —n, (r) = —) v(k)hp(k, r)

k
1——) u (k)h (k, r) + . (2.12)

k, a
The k summations in Eq. (2.12) are restricted to the
erst Brillouin zone. The expansion coefEcients are the
projections of 6n(r)—:n(r) —n, (r) on the basis functions
(2.11), where v(k) is given by an expression similar to
(2.8) with h~ replaced by hp. An alternative way to
write (2.12) is

Then we set k = 0, carry out the velocity integrations in
Eq. (2.17), and use the definitions of the displacement
field (2.8) and the normalization constant (2.10). In this
way the relation (AB), = k+T follows at k = 0.

In using the Bogolyubov inequality, we assume in fact
the stronger result

lim (AB), = (k~T/np). (2.20)

In general one can prove (2.20) if the equality at
k = 0 holds unless there are long-range interparticle
interactions. s P Note that result (2.20) follows from the
fact that the translational symmetry is broken; i.e. , the
Hamiltonian is invariant under all translations and the
equilibrium state is not.

To evaluate (IBI ) we express the correlation func-

tion of the time derivatives of the momentum in terms of
the correlation function of the stress tensor o (k). The
stress tensor is defined through the continuity equation
for the momentum:

(2.14)

1 0
n~~(r) = ——) u (k)h (k, r) = —) u (r) n, (r)

k,n 0,'

n, r —ur —n, r.
g(k;t) = ik 0. (k;t)—.

In this way we obtain

(2.21)

To further justify definition (2.8) we show that the
Pourier transform of the correlation function of the dis-
placement field diverges in the long-wavelength limit. To
do so we use Bogolyubov's inequality

(IAI')„(IBI')„&I (AB)., I' (2.15)

g(r) = ) mV;6(r —K,), (2.16)

with V, the velocity of the ith particle and m its mass,
and a dot denotes the time derivative. We consider the
cross correlation

(AB), = —(n u( —k) n g(k)),
1

1= ——(n. u(-k) n g(k))U eq (2.17)

and demonstrate that at k = 0 the cross correlation
(AB), equals k~T where k~ is the Boltzmann con-
stant and T is the temperature. The quantity u( —k) can
be calculated from (2.8) and the microscopic continuity
equation

mn(r; t) = —V' g(r; t),

and one finds

u( —k) = dre* ' ' V' g(r;t)1,„.,Bn, (r)

(2.18)

(2.19)

with A = V ~zn u( —k) and B = V ~zn g(k). Here
brackets ( ), denote the equilibrium ensemble average,
n is a unit vector, and N = np V denotes the number of
particles (the thermodynamic limit is implied). Finally
g(k) is the Fourier transform of the microscopic momen-
tum density,

(I&l') = —(lk( ) "I') =+'—(I&. ~ (&) "I')
(2.22)

where k = k/k.
Finally we consider Bogolyubov's inequality (2.15) at

small wave vectors. We estimate the cross correlation
(AB), using relation (2.20) and arrive at the inequality

—(In u(k)l )
(I(:gT)

limk 0& k o k n2

(2.23)

For general potentials the denominator is bounded. The
tensor character of (u( —k) u(k)), implies that in gen-
eral all the functions (u (—k) up(k)) diverge at least as
k as k —+ 0 (Greek indices denote the Cartesian com-
ponents of vectors and tensors). The divergence of the
susceptibility (u~( —k) up(k)), implies that there exists
long-range order in the displacements fields and that the
time evolution of the long-wavelength components of the
displacement field are slow: The characteristic relaxation
time is directly proportional to the static correlations.

On physical grounds one expects that the correlations
of the displacement fields are the only correlations with
long-range order. Indeed, if one replaces (h, n) in (2.8)
by a more general expression (f, n), then one easily veri-
fies that the correlation function corresponding to (2.17)
yields (k&T/np)(f, n. V'n, ). For functions f(r) orthog-
onal to 7'n, (r), orily a trivial inequality survives, and
the argument for the existence of the long-range order
in (f(—k) f(k)), breaks down. We assume therefore
that only the susceptibilities (u (—k) up(k)), have the
leading singularity, and more explicitly we assume that
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III. EVOLUTION EQUATIONS FOR SLOW
VARIABLES

Apart from the displacement field we also have the
five usual slow hydrodynamic variables. ' These are
number, momentum, and energy densities, n(k), g(k),
and e(k), respectively. These five variables satisfy lo-
cal conservation laws: Their time derivative equals the
divergence of the corresponding current, and therefore
their time evolution is slow in the long-wavelength limit
k ~ 0.

For simplicity we neglect energy conservation and
study the time evolution of the deviations of the slow
variables 6n(k), g(k), and u(k) from their equilibrium
values. s Note that (g(k)), and (u(k)), are vanishing.
By neglecting the energy mode we will obtain the isother-
mal elastic constants, instead of adiabatic ones. To derive
the equations of motion we use the projection operator
method. P As this technique is fairly standard we will

only sketch the actual calculations. We define a scalar
product

(alb) = —(6a(—k) bb(k)), .
1

(3 1)

Here 6a(k) denotes any of the slow variables 6n(k), g(k),
and u(k). Note that for a broken-symmetry state we
have two scalar products. One has been defined by Eq.
(2.9); it determines the value of the slow mode in terms of
the geometrical structure of the broken-symmetry phase.
The other, defined through Eq. (3.1), is the usual scalar
product used in the projection-operator method and is
related to equilibrium fluctuations.

We define a projection operator on the slow subspace:

they diverge exactly like k ~. Furthermore, we assume
that if there is no clear physical reason to expect a
long-wavelength divergence then the correlation function
should be regular for k —+ 0. Note that a A:

2 divergence
of (u~( —k) up(k)), agrees with the result obtained from
the phenomenological Landau-type approach to the dis-
placement fluctuations.

By using the basic assumption that (u( —k) u(k)), are
the only divergent correlations in the limit k ~ 0, it
follows that the inverse matrix (u lup) reduces to

-1= 1
(u lup)

On, (rg)
drqdr2

' k rq2c2(rq, r2)
Tln

Bn, (r2)x k ry2,
OT2p

(3.4)

On, (rq) Bn, (r2)
&2

BTy~ BT2p

X C2(rl. , r2)T12~T12b. (3 6)

It is a fourth-rank tensor with cubic symmetry, and
therefore contains only three independent scalars. Con-
sequently it obeys, apart from the obvious symmetries,
(o. ~ P) and (p ~ 6), also the Voigt symmetries
(~P) (~~)

Using Eqs. (3.3)—(3.4) and (3.6) we obtain the follow-
ing equations of motion:

O
m —(6n(k; t)) = ik (g(k; t)), —

—(g (k; t) ) = i k (k~ T/S(0) )—(6n(k; t) )

Ap~pk~kp (up—(k; t)), (3.7)

as is shown in the Appendix. Here c2(rq, r2) is the
Ornstein-Zernike direct correlation function of the solid,
defined as the inverse of the density-correlation function,
l.e. )

dr2
l

—c2(rq, r2) l (6n(rq)6n(rs)), = 6(res).
r' &(r&2)

tie 1

(3.5)

The approximate equalities in Eq. (3.4) are asymptot-
ically exact in the long-wavelength limit k ~ 0. The
terms neglected are higher order in the wave vector A: and
do not contribute to the hydrodynamiclike equations. To
write the evolution equations in a compact way we define
the tensor

&f(k) =) «(k) (alb) '(blf) (3.2)
mnp —(u (k;t)) = (g (k;t)),

a, b

Here (alb) denotes the inverse of the matrix (alb),
where a and b denote slow variables. In the k ~ 0 limit
(u~lup) are the only nonvanishing oK-diagonal elements.

To get the nondissipative equations of motion for the
slow variables we project their time derivatives on the
slow subspace and average over a nonequilibrium ensem-
ble. To get the explicit form of the evolution equations
we have to calculate matrix elements of the Liouville
operator Z. It is easy to show that the only nonzero
elements are (hn(k; t)) = i k np (u(k; t)) . —(3.8)

where S(0) = limk p S(k) = (nln) /np is the static struc-
ture factor, and the summation over repeated Greek
indices is hereafter assumed. Note that Eqs. (3.7) do not
contain any dissipative terms. However, the nondissipa-
tive reactive coefBcients are exact. They will not change
when dissipative processes are included.

In the macroscopic theory of elasticity, in which the
density of vacancies is assumed to be a time-independent
constant, there is the following relation between the den-
sity change and the displacement:

(g lan) = —(nl&g ) = —iA: npkaT,

(g l«p) = —(u l&gp) = ~ p(k~T)
(3.3)

Equations (3.7) are more general; the density and dis-
placement are independent variables. This additional
freedom allows for a vacancy diffusion. To define the
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nonequilibrium density of vacancies we are looking for a
mode in (3.7) that does not decay: On physical grounds
we expect the vacancy concentration to decay via a diffu-
sive process that is absent on the present, nondissipative
level of description. With this in mind we define the
nonequilibrium density of vacancies as the following lin-
ear combination of the density and displacement fields:

(bc(k; t)) = —(b'n(k; t)) —ik nc (u(k; t)) . (3.9)

Note the difference in sign between bn and bc; the den-
sity n counts the number of particles and c counts vacan-
cies. Using definition (3.9) we rewrite evolution equations
(3.7):

—(tIc(k;t)) = 0,
Bt
0—(g (k;t)) =ik (npkiiT/S(0)) (bc(k;t))

—A p~pk~kp (up(k; t)),

mno —(u (k;t)) = (g (k;t)).

(3.10)

Here A p~g = A p~g + npkgyT/[2S(0)j(6 &Spy + 6 g6p&).
As has been anticipated the vacancy diffusion mode does
not decay in the nondissipative limit.

IV. ELASTIC CONSTANTS

In the previous section we obtained the nondissipative
equations of motion for the slow modes in the same form
as the ideal equations of elasticity with the vacancy mode
included. By taking the time derivative of the last equa-
tion in (3.10) one arrives at the usual linear equations of
ideal elasticity:

mnp (u (k;t)) = Ap~pk~kp (u—p(k;t)) . (4 1)

Then we can identify the matrix A p~pkpkp with the
so-called wave propagation matrix. is The tensor A p&p

equals A p~b in Wallace's book, as implied by his
Eqs. (3.11) and (7.20). It obeys all Voigt symmetries, as
shown below Eq. (3.6), and is related to the stress-strain
elastic constants~7 B p~p.

B p,g= A,pp+ Ap, b
—A p, g

= (& ~p~+ &w ~
—& p~~)

+ (npk~T/S(0)) 6 p6~h. (4 2)

B p~p are macroscopically defined as the derivatives of
the elements of the stress tensor with respect to the ele-
ments of the strain tensor.

The expressions (4.2) for the isothermal elastic con-
stants involve the long-wavelength limit of the structure
factor and integrals over the direct correlation function
with derivatives of the equilibrium density profile. The
expression for B»» does not involve the structure fac-
tor, so that

it should be easy to calculate it using results of a density-
functional theory. The functional form of B»» is essen-
tially the same as the Triezenberg-Zwanzig formula for
the surface tension. Both B»» and the surface tension
are the rigidity constants of broken-symmetry phases.
Note that B&y&y is zero in the liquid state.

We expect that formula (4.2) for the elastic constants
also applies to the hard sphere solid, as it is well de-
fined for that case. However, the present derivation does
not include the hard sphere case, because the right-hand
side of the essential inequality (2.23) vanishes for hard
spheres. The reason is that the denominator of Eq.
(2.23) is divergent in the hard sphere limit, as are the ex-
pressions for the elastic coeKcients of Squire, Holt, and
Hoover. 6

V. CONCLUDING REMARKS

To summarize, two main results have been presented.
First we have proposed a microscopic expression for the
displacement Beld. We showed that it agrees with an in-
tuitive understanding of the displacement. The Fourier
transform of the displacement correlation function has
been proved to diverge at least as k z in the long-
wavelength limit k ~ 0. Second, we obtained new exact
expressions for the isothermal elastic constants. These
expressions can be used to study elastic properties of
crystals near the melting point where the presence of va-
cancies cannot be neglected.

The present theory can be straightforwardly general-
ized to include disspative processes. In this way Green-
Kubo expressions for the disspative coefficients can be
derived. Of particular interest would be the expression
for the vacancy-diff'usion tensor. One could then try to
use it to understand why the characteristic time scale for
the vacancy diffusion is much larger than the time scales
associated with, for example, sound attenuation. With
some modifications the present method could perhaps be
used to study dynamics of other broken-symmetry sys-
tems, such as, for example, liquid crystals.
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APPENDIX

To derive approximate relation (3.4) we start with
the integral equation that is equivalent to the Ornstein-
Zernike equation:

dr2
~

—cz(ri, rz)
~

(6'n(rz)6n(rs)), = 6(ris)
(ne ri ' j

Bxyxy = &xxyy j (4.3) (Al)
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We multiply both sides of Eq. (Al) with

,k.„On.(ri) One(rs)
lVV OT1 OT3 p

and integrate. This leads to

(A2)

dridr2drse' " '
~

—c2(ri, r2)
~
(bn(r2)bn(rs)), e ' '" ' = b~p.

,k.„».(») (b(»2) ,„.„On, (rs)
) T3p

(A3)

(bn(r2) bn(rs)), (bn~~ (r2) bn~~ (rs) )
On, (r2)

( ( ) ( ))
One(rs)

(A4)

After substituting this in Eq. (A3), the r3 integral re-
duces to

drse '""u (rs)
' ' = Jap(k). (A5)
T33 T3P

We use the identity

) ) e
—~(Q+~) (» —ei) yb(z. r )

g
(A6)

and the spatial symmetries of the correlation matrix
(uz(r2)us(rs)), and we put (A3) in the form

Now we use the assumption that the only long range -cor-
relations (diverging susceptibilities) in the microscopic
density field n(r) =

n~~ (r) + n~(r) are caused by the dis-
placement field with n~~(r) defined in (2.14). We neglect
all remaining short-range correlations, i.e. ,

6 p(k) = — dridr2=1 On, (ri)
Tia."""~"'") - ( „,)'i

X
One (r2) —ik. rq A8

T2p

Using the equation for the equilibrium density profileis

1 On, (ri)
&e ~1 rim

On, (r2)dr2c2 (ri r2)
OT2cx

(A9)

we can transform (A8) into

6 p(k) =—1 On, (ri)
Tin

(1 — k. ). (A10
OT2p

In the derivation of this result we have only kept the dom-
inant terms in (bnbn), which are of G(k ). For consis-
tency we should only keep the dominant small k terms in
(A10). As the direct correlation function is supposedly
of short range, we can simply expand the integrand in
(A10) in powers of k. The resulting integral exists and
yields for k —+ 0,

b, ~(k) (unius) = b' p, (A7)

where the (nP) element of the inverse matrix A(k) =
U ll 1s

p(k)
1 On, (ri)ri r2

Tice

One (r2)Xc2(rl r2) (k ' r12)
r2CL

= (1/kgyT)A p~sk~ks. (A11)
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