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We report calculations of the effect of interelectron interactions on the tunneling rates of electrons
from the surface of liquid helium in which the short-range correlations are treated in a harmonic
lattice model of the electron system. We consider two guasistatic approximations of this lattice model,
corresponding to the extreme cases in which the remaining electrons have no chance to readjust to the
motion of the escaping electron (frozen) or follow the motion adiabatically (adiabatic). By comparing
our results to recent experimental data we find little difference between these two extreme situations,
and conclude that the quasistatic approximation is sufficient to describe the physics of the existing
experiments. We comment on the experimental conditions under which dynamical correlation effects

may become observable.

I. INTRODUCTION

The system of electrons on the surface of liquid helium
is a remarkable many-body system in which the electron
surface density, n,, and hence the relative strength of
electronic correlations can be varied over a wide range.
Under typical experimental conditions, T ~ 0.1-1 K
and n, < 2 x 10° cm™2, the Fermi energy, Efp =
wh®n,/m <10 mK, is much smaller than the temper-
ature and thus this system behaves as a classical two-
dimensional (2D) electron gas (m is the electron mass).
In this regime the ratio between Coulomb and thermal
energies defines the plasma parameter, I' = e?(mn,)/2/T
(e is the electron charge), which can be continuously var-
ied from the weakly correlated (I' < 1) to the strongly
correlated (T' > 1) regimes. Of particular interest is the
behavior close to I' = 128, where the system is known to
crystallize into a triangular lattice.!

The study of tunneling of electrons from the surface of
liquid helium?™* provides another (albeit indirect) probe
of many-particle correlations and, more importantly, may
ultimately lead to novel effects and new device applica-
tions. The problem is also of some theoretical interest
since tunneling from the two-dimensional electron gas is
a complicated dynamical process which involves, in prin-
ciple, the rearrangement of all the degrees of freedom of
the many-body system.

The first attempt to study the escape rate of a SSE
in the tunneling regime was made by Goodkind and co-
workers.23 These experiments were done in an exter-
nal pressing field 0 < E;, < E9 = 2wen,, with 0.5 K
<T <1K, and found that at the lowest temperature the
escape rate of a surface electron (SE) becomes virtually
independent of temperature. However, the observed rates
were much faster than the theoretical estimates of tunnel-
ing rates, and it is now believed that these experimental
results, recently reconfirmed by experiments by Andrei
et al.,* were not related to tunneling. ® An attempt to
understand the physical origin of the anomalous behav-
ior was made by Azbel and Platzman” who considered
the many-body effects on the evaporation of a SSE and
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concluded that a temperature independent (“pseudotun-
neling”) regime was indeed possible.

The first conclusive observations of tunneling of SE’s
were recently made by Andrei et al.* These authors used
very low temperatures 7' > 30 mK and a pulling external
field to create the experimental conditions under which
the tunneling rate becomes accessible. Indeed, in a cer-
tain range of densities (see below) their data are consis-
tent with tunneling through an effective many-particle
potential proposed earlier.8:12

The purpose of this paper is twofold: First of all we
would like to develop a quantitative description of the
available experimental data and decide to what extent
many-particle correlations are important in understand-
ing tunneling from this system. The upshot of our dis-
cussion will be that although correlation effects com-
pletely dominate the experimental rates, all the effects
observed so far can be understood analytically on the
basis of a simple quasistatic treatment of correlations.
The second point of the paper is to set the limits of ap-
plicability of the quasistatic approximation and to define
the experimental conditions under which the more in-
teresting dynamical effects become observable. Our cal-
culations are based on the effective potential obtained
in Ref. 9 in the harmonic lattice model of the electron
solid. This approach is appropriate for the description
of the present experiments* which are carried out in the
crystalline phase. It can also be applied to the case of
a strongly correlated electron liguid because the effective
potential is mainly determined by short-range correla-
tions; remarkably, already for I' > 50, these are quanti-
tatively described by the pair correlation function of the
harmonic triangular lattice (for more details see Ref. 10).

In the next section we will follow this approach and
obtain the dependence of the electronic correlation po-
tential, Ue(z) and the tunneling rates, on density and
external field E,. In Sec. III we will analyze our results
and comment on the relation to previous work. Finally, in
Sec. IV we will present the comparison with the available
experimental data, and in the last section we suggest ex-
perimental conditions under which dynamical effects on
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the tunneling rates should become observable and briefly
summarize our conclusions.

II. THE EFFECTIVE POTENTIAL AND THE
TUNNELING RATE

A. Approach

In the system under consideration the motion of an
electron in the direction perpendicular to the surface
(hereafter taken as the z direction) is determined by a
potential energy, U(z), consisting of three contributions:
The first is the attractive potential to the image charge
below the surface; the second is the potential eE | z due
to the external electric field; and finally, a third contribu-
tion, Uee(z), from the interaction of the escaping electron
with the other electrons on the surface:

de? c-1
U(z) = T +eE1z+Uee(z—(2)1), A= 4(e+ 1)

(1)

Here ¢ = 1.0572 is the dielectric constant of liquid he-
lium and (z); is the average distance of the electrons
from the helium surface. The function U(z) is shown
in Fig. 1 for different values of the pressing field. The
case E; = EY = 2men, corresponds to the equilibrium
case for which the lifetime of surface electrons is virtu-
ally infinite. Such a situation is reached experimentally
by charging the helium surface by a continuously act-
ing electron source. The surface ceases to charge when
the total electric field above the two-dimensional electron
system, EI = FE,| —2men,, becomes zero. For £, < Eg,
the ground state of the SE is metastable (Fig. 1, curve

u'/(e?/a)

z’/a

FIG. 1. Frozen (dashed lines) and adiabatic (solid lines)
potentials without image charge contribution (U’= U-+\e?/z)
as a function of the distance z’ from the electron crystal: (1)
equilibrium pressing field E. = E} = 2men,; (2) the case
E, <E} (EL =09EY).
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2) and in a finite time the surface of the helium dis-
charges to a new equilibrium value of the concentration
n, = E| [2me.

Before presenting our calculations we would like to
make some remarks motivating a number of the approx-
imations involved. A rigorous treatment of the problem
of the lifetime of a surface electron (SE) requires the con-
sideration of the dynamical response of the electron gas
to the escaping of the electron. Since solving the problem
in general is extremely difficult, especially in the tunnel-
ing regime, we will limit our consideration to the two
extreme quasistatic limits: the so-called frozen and adia-
batic approximations.®® In the frozen approximation one
imagines that the escape is very fast and the remaining
surface electrons do not have a chance to rearrange them-
selves during the tunneling process. In the crystal this
simply means that electrons on the helium surface re-
main localized in the sites of the undeformed triangular
lattice. The opposite adiabatic limit corresponds to a
situation in which the positions of the surface electrons
are determined by the equilibrium configuration in a 2D
electron system with the escaping electron located at a
given height z above the surface. Obviously, this leads
to a partial “screening” (i.e., a shrinking) of the hole left
behind by the tunneling electron and thus to a reduction
of the correlation contribution to the effective potential.
The actual value of the escape rate should lie in between
the values calculated in the frozen and adiabatic approx-
imations.

In the static approximation the dependence of the
tunneling rate, W, on concentration and external field
is determined by the the potential U(z) with Ue(z)
dependent on coordinate z, but not on time. In the
WKB approximation the formula for the tunneling rate
W = 77! of a SE from the ground state level can be
easily derived by matching the hydrogenic wave function
P(z) = 2732 exp(—v2) (v = ag' = mAoe?/h?) with a
WKB wave function at z 2> 2; = 2ap (see, for example,
Ref. 11). The resulting formula has the form

|} [ v )
(2)

where the limits of integrations satisfy the equation
U(z1,2) — A1 = 0 and A; is the energy of the ground
state surface level [for the discussion of the formula
(2) see Sec. IV]. Under typical experimental condi-
tions, the dependence of A; on the external field E, is
fairly weak and can be calculated by perturbation theory,

Ay = A + eE, (2)1, with A{” = —76 K.

W =

B. Correlation contribution to the tunneling
potential

We now turn to the discussion of the interaction po-
tential Uee(z') (here 2/ = z — (z);) which was already
calculated in Ref. 9. Here we will only outline the gen-
eral approach and present our results. Ue(z') can be
expressed in terms of the interaction potential of the es-
caping electron in the presence of the surface electron gas
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and a uniform neutralizing background, U.(z'), Uee(2') =
U.(z') — eEY2', where the contribution U.(z') incorpo-
rates all effects due to correlations.

In principle, the value of U.(2') can be determined from
the work necessary to move an electron from the charged
layer to a height 2’ above the surface [for simplicity, we
will omit the prime on z in the calculation of U.(2’)]:

’

Ud(z) = /; T e[BY + Boo(#)]dz. 3)

Here E..(z) is the z projection of the field due to the
remaining surface electrons. If the electron density is mi-
croscopically uniform then for z > 0 we have E..(z) =
—2men, = —E% and, therefore, U.(z) = 0. In a crys-
tallinelike state, the electronic field goes to zero near the
surface ( z < n, S ) and tends to the limiting value — E¢
for large values of z > ng Sz

Rather than obtaining Uc(z) directly from the formula
(3) it is more convenient to eliminate the integration over
z and reduce the calculation to a purely two-dimensional
problem. This can be done by reinterpreting the expres-
sion for U,(z) in terms of the energy of a defect in a pla-
nar Wigner crystal with a compensating bacl-ground; this
problem can then be solved by using methods developed
for treating three-dimensional problems with long-range
interactions. More precisely, an electron at a height z
above an empty site, I, should be interpreted as a sub-
stitutional impurity in a two-dimensional Wigner crys-
tal, where z is a parameter that determines the interac-
tion of the impurity with the particles of the crystal. As
z — oo the substitutional impurity corresponds to a va-
cancy, while for z = 0 it becomes a particle of the host
two-dimensional crystal.

The impurity energy, U.(z), is equal to the difference
®(z) — ®(0), where ®(2) is the energy of a closed system
(electrons plus background) under the condition that one
particle is located a distance z above an empty site lg.
®(z) consists of three contributions: the interaction en-
ergy ®.. of the surface electrons with one another, the
interaction energy of the electrons with the positive back-
ground, ®.,, and the potential energy of the background,
Do

2
e _
Pee = — Z Ry +w —up|™?t
LD Lo
+e® D [(Ru, +w)? + 27712, 4)
o
|

X(k,l‘,Z) = (50/7")1/2% [E ei(k+g)-r,¢_1/2 <50 27

g

Here a is the lattice constant, Gy = 27r/\/§, and g denotes
vectors of the two-dimensional reciprocal lattice. The
functions v, (z,y) and ¢, (y) are defined by the relations

Yo (z,y) = /1 tYexp(—z/t — yt)dt,

6. () = %, (0,9), (11)

|k + g|%a?

YURY M. VILK AND ANDREI E. RUCKENSTEIN 48

r 2/ d?r
——nge —_—.
© (s 7 + 22172
(5)

Here Ry is the vector joining sites ! and l', u; is the
displacement of an electron from site I, IV is the number
of sites, and integration in (5) is carried out over the full
two-dimensional surface, S.

In the harmonic approximation the potential energy of
the system can be written as

Pep = *(N-1)

—nge

® =P+ = ZA",u,u,,

1 1
2 S,
¢ Ruyw (R,?’,O RZ, + 22)3/2) » (6)

1£l,

where A}], is the matrix of the force constants of a two-
dimensional Wigner crystal, and u; is assumed to be zero
for Il = lp. Up to an additive z-independent contribution
@4 has the form

Do (z) = €? llm (Z(R2+z2 72

170

d?r
" f W) "

1. Frozen potential

First, we will discuss the result for the energy of the
impurity in an undeformed crystal, U, o(2) = U.(z;u; =
0), which determines the tunneling rates in the frozen
approximation. Clearly, U, o(z) = ®¢(z) — ®0(0), where,

from (7),
Dy (2) = €2 hm (X(k 0,z) — 27;:&6_"2) ,  (8)
with

—ik-R,
e vt
x(k,r, z)

Xl: [(Ry +1)% + 22)1/2° (9)

The explicit form of x(k,r, z) can be easily calculated by
the Ewald summation method,'2

A7) e e (b))

and are expressed fairly simply in terms of the error
functions.!? These functions decrease exponentially for
large values of the argument y; we will thus confine our-
selves to the first two terms in the sums over ! and g
in (10), corresponding to the contributions with g =
0,28p/a, and I =0, 1.

In this approximation the expression for U.(z) can be
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written down analytically for arbitrary values of z:
2
Uc,o(z) = e;[4.21 — erf(ﬂé/zz)/z + 20607 erf(ﬁé/zi)

—(Bo/m)V/? (2e~Po%" — 6{1/’—1/2[,3952, Bol
+é_1,2[00(Z* + 1)1P)],  (12)

where Z = z/a . In turn, this leads to the following
asymptotic form of U.(z) for large and small values of
the argument: (a) for z > a,

U.o(z) ~ 4.21€*/a — €%/z, (13)
0 2 €
Uco(z) ~eE|z—5.5z s (14)

We note that, as expected, our value of U.g(o0) =
4.21€?/a is consistent with cohesive energy (per particle)
of the Wigner crystal, Ew = —U, o(c0)/2 ~ 2.1e2/a.13

2. Adiabatic potential

Next we will consider the crystal-deformation correc-
tion, 6U4(z), to the defect energy in the adiabatic ap-
proximation:

0Uq(2) = Uq(z) — Uco(2) = ®(2) — ®o(2), (15)

where the displga,cements u; are determined from the con-
ditions, 0®/0uj = 0, calculated for a fixed position of the
impurity. These conditions translate into

D A, = Fi_y,(2) = Fi_,(0), (16)
l!
with
R,
Fi(h) = €2 ! (17)

(R + hayire:

According to (16), the field of displacements in the two-
dimensional Wigner crystal induced by the substitutional
impurity under consideration is equivalent to the defor-
mation caused by a vertical dipole, whose negative charge
is located at a height h = z and positive charge at
h = 0. The force with which such a dipole acts on a
particle of the crystal at the site I = ly is denoted by
Fi(z) = Fi(z) — F;(0). By applying the Fourier trans-
formation to the equilibrium equation (16) we obtain

A (K)u] = Fi(z,k) exp(—ik - Ry,), (18)

where A;i(k), ui, and F(z,k) are the Fourier transforms
A}, ui, and Fj(z), respectively. We find the solution
of Eq. (18) with the aid of the static Green’s function
G(k) = A (k),

u'(k) = GY (k) F(z,k) exp (—ik - Ry,), (19)
leading, through integration over the Brillouin zone (BZ),
to the following expression for the displacement field, u;:
uf = ! / GY (k)Fi(z,k)exp (—ik - Ry,).  (20)

s JBZ

n
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By substituting (7) and (20) into (15) we obtain, after
several transformations, the desired expression for the
deformation correction 6Uy to the defect energy,
GY (k) Fi(z,k)Fi(z k)dz—k (21)
BZ ’ T (2m)?

When calculating the functions F*(z,k) and A;;(k),
we must again make use of the Ewald method since the
lattice sums involved converge slowly. Both F*(z,k) and
the matrix elements, A;;(k), can be expressed in terms
of x(k,r, z) in (10) as follows:

1
U, = 3

e

; 7]
— —_e2 i —
F(z,k) = —e Th_% o x(k,r, z) — x(k,r,0)], (22)

2
ij — _e2 1
A (k) € 11-1—1>I(l) 37‘,‘37‘j

[X(k’r’ 0) — x(0,r, 0)] (23)

Finally, Eqs. (10) and (21)—(23) enable us to numerically
determine the deformation correction §U4(z) to the cor-
relation potential which will be used below to estimate
the tunneling rates in the adiabatic limit.

III. THEORETICAL RESULTS
A. Correlation contribution to the potential

Although 6U,4(z2) is, in general, accessible only numer-
ically, in the limiting cases z < a and z > a we can
obtain simple analytical forms

8Uq~ —0.73e*/a + (3/4)e*/z, z > a,
(24)
8Ug~ —e%/a(z/a)?, 2z < a.

The deformation correction to the vacancy energy,
8U4(c0) = —0.73e2/a, and the resulting total vacancy
energy, U, = U, 0(00) + 6Ug(cc) = 3.48¢%/a, should be
compared with the corresponding quantities, §Uy(o0) =
—0.78¢2/a and U, = 3.43e2?/a, obtained in the Monte
Carlo calculations of the energy of a vacancy in a two-
dimensional Wigner crystal by Fisher et al.'* The small
difference between these results and ours (of the order
of 1.5%) is clearly associated with the omission in (6) of
the higher terms of the expansion of the energy in the
displacements ;. The error is expected to be greater in
the liquid phase.

From (24) it is clear that for z > a there is a sub-
stantial deformation contribution to U,(z) caused by the
escape of an individual electron—this corresponds to the
compression of the correlation hole left behind by the
escaping electron. More explicitly, when (13) and (24)
are taken into account, the asymptotic form of U,(z) for
z>alis

e?  e?
U.(z) =3.48 e (25)

In the range of small z (2 < a) the deformation cor-
rection, 6Uq4(z) ~ (2/a)?, is negligible. In this limit the
asymptotic form of U.(z) coincides with that of U, o(z)
and the total electron energy U(z) in an arbitrary press-
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ing field is given by
U.(z) = eE 1z — cz®e?/a®, (26)

where ¢ = 5.5 for the lattice model considered here. We
expect that this value should serve as a lower bound in
the real electron system in which case coefficient c is de-
termined by the form of the pair correlation function
(c = oo in an ideal gas). Spectroscopy experiments of
surface electrons'® show that in the range 9 < I' < 44
the coefficient ¢ differs little from its value in the lattice
model and even for " ~ 10 it is bigger by no more than
20%. We also note that the correlation hole model pro-
posed in Ref. 8 leads to ciye = 5.0, a value lower than that
obtained for the crystal. The Iye potential thus consid-
erably overestimates the correlation effects in the liquid
phase.

Our numerical results for the function U.(z) are shown
in Fig. 1. Using the function U.(z) we can now calculate
the tunneling rate using the WKB expression for tunnel-

ing (2).
B. Tunneling rates

The first calculation of tunneling rates of SE’s was pre-
sented by Yiicel and Andrei® who solved the Schrédinger
equation numerically using the Iye potential® [corre-
sponding to Eq. (26) with ¢ = 5]. These authors used
very low temperatures (I > 30 mK) and pulling external
field sufficient to produce measurable rates. Under these
conditions only the small 2z behavior of the potential is
important (the outer turning point is much smaller than
a, z2 < a) and the form in (26) is indeed appropriate.
However, as already mentioned above, the Iye potential
underestimates the rates. In addition, the analysis of Ref.
5 does not take into account that the SE’s are located a
finite distance from the helium surface, (z); = 1.5ap [see
(1)]. This omission leads to an overestimate of the rates,
and partially compensates the result of the inaccuracy of
the Iye potential. Finally, the explicit numerical proce-
dure used in Ref. 5 is difficult to apply in the case of a
more complicated form of an effective correlation poten-
tial which should be used in the general case.

The use of the WKB formula (2) requires some dis-
cussion. First of all, in our case the use of the WKB
approximation is justified since, under the conditions of
present experiments, the electric field which tends to de-
stroy the quasibound state is always much smaller than
the “atomic” field, B, < A¢e/a%. In fact, we checked
the validity of the WKB formula (2), by comparing it
with the numerical results of Ref. 5 for the case of the
Iye potential: We found that the accuracy of the formula
(2) is about 10% in the appropriate range of fields and
densities. In addition, explicit calculations using (2) re-
quire particular care due to the characteristic exponential
dependence of the escape rate W on various parameters.

First of all, the Stark correction to the energy of qua-
sibound states should be taken into account even in the
case of very small external fields. This leads to a linear
change in the binding energy, A; = Ago) +eE | (z)1 with
(2)1 = 1.5ap; since the upper limit on the integral in (2)
is much larger than the Bohr radius, z; > ap, this in
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turn produces a nontrivial correction to the exponent of
expression (2). This issue becomes especially clear in the
single particle limit, n, — 0, in which case the asymptotic
form of W at small E,| reads (in dimensionless units)

2 \? 2 |24,]3/2

W () oo (b )
From this expression it is easy to see that in the limit
E, — 0 the linear Stark effect leads to a numerical fac-
tor, exp(3) ~ 20, in the rate W. We also note that the
exponential factor in (27) is the same as in the 3D Stark
effect’! as well as in the 1D symmetric [¢;(—2) = 9¥1(2)]
hydrogen atom!® [recall that in the case of SE’s the wave
function 4(z) is not symmetric %;(z) = 0 for z < 0].
However, the prefactor is different in all those cases and,
in particular, there is no factor of 4 in the formula for
W in the case of the symmetric 1D hydrogen atom in
the Ref. 16. This is due to the difference in boundary
conditions between our case and that considered in Ref.
16. In addition, the correction to A; is not important
in the latter case since, in the symmetric 1D hydrogen
atom, the Stark effect is quadratic in the strength of the
electric field.

Another correction to A; which leads to observable
effects in the rate is the change in the binding energy
due to the finite value of the barrier at z = 0 (Vo = 1 V)
and the finite width of vapor-liquid helium interface.l”
The latter can be included by replacing the usual image
charge potential’” by the phenomenological potential for
the polarization attraction, Age?/(z + B) (8 = 1.01 A).
The corresponding correction to the binding energy due

to both of the above mentioned effects was given in Ref.
17:

1/2
_p0 2 (P
Ay =AT+ = B Vi . (28)

C. Accuracy of quasistatic approximations

(27)

Before discussing the comparison with experiment we
would like to make some general comments concerning
our use of the quasistatic approximation. First of all, we
notice that in the case of pulling external field § > 1 and
only the small z behavior is essential (z,, < 22 < a). As
discussed above, in this limit the deformation correction
to U.(z) is negligible and thus the frozen approximation
is appropriate in both thermal activation and tunneling
regimes.

In the opposite limit, § <1, the relevant value of
z becomes comparable with the lattice constant, a,
and the frozen and adiabatic potentials can different
considerably—in this regime dynamical effects are likely
to become important. Let us estimate some of the rele-
vant time scales in the problem: For the thermally acti-
vated escape of a SE the characteristic time (or inverse
“attempt frequency”) is given by 7y, ~ a/vin, where
T/m is the thermal velocity. On the other hand,
the time scale for the dynamical response of the elec-
tron crystal is determined by the Debye frequency of the
Wigner crystal, 7.,' ~ wp ~ (e?/ma®)!/2. Since in our

Vth ~
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case I' > 1, Tee/Ttr ~ 1/TY/2 & 1, the adiabatic po-
tential is appropriate for calculating thermal activation
rates.

The tunneling case is more complicated. As discussed,
for example, by Landauer and Buttiker,'® the character-
istic time associated with the tunneling process is the
absolute value of the imaginary time which the particle
“spends” under the barrier, 7¢,. In the case of interme-
diate pressing fields (6 ~ 0.5) the second turning point
zo is of the order of lattice constant zo ~ a and the
time 7y, can be estimated as 7y, ~ a/Ubar, Where Upar
is the absolute value of the velocity under the barrier,
Vbar = V(U —A1)/m ~ (e?/ma)'/?. Thus, we have
Tee ~ (€2/ma®)~Y/2 ~ 7. and hence dynamical effects
should be important when the external field is in the
region of intermediate pressing fields (6 $0.8). As al-
ready mentioned above, in this case an upper bound on
the dynamical effect can be estimated from the differ-
ence between our results in the “adiabatic” and “frozen”
approximations.

IV. COMPARISON WITH EXPERIMENT

The observation of tunneling of a SE was recently re-
ported by Andrei et al.* At sufficiently low temperature
(T < 0.2 K) the experimental escape rate becomes inde-
pendent of temperature and its density and field depen-
dence are consistent with the tunneling mechanism. The
parameters characterizing the typical experimental ar-
rangement are the potential difference between the elec-
trodes, V, and the distances from the helium surface to
the lower and upper electrodes, h and d, respectively. In
terms of these, the external electric field, F,, and pa-
rameter & can be written as

v

d
= - 29
BL 4”ren“d—%h/e d+h/e’ (29)
d—h/e |4
6= d+hje  2mens(d+hje) (30)

There are a number of uncertainties in determining the
various parameters in (29) and (30): As noted in Ref. 4, a
small deviation of the helium level from the middle posi-
tion between the electrodes (more precisely from h = ed)
leads to an additional electric field, which noticeably af-
fects the rates. In addition there is some uncertainty in
the external electric field due to accumulation of elec-
trons on the electrodes when the SE’s are created. This
means that the resulting electric field can be slightly dif-
ferent from the field calculated from formula (29). In our
calculations we use h = ed (no image charges on elec-
trodes), and the fields £, = 32.9, 28.8, 18.5, 14.4 V/cm
for the experimental voltages V = 7.55, 6.5, 4.5, 3.5 V,
respectively [the first two values of E,| are higher than
from the formula (29) by about 7%, while the last two
are the same as those obtained from (29)].

The escape rates of Ref. 4 are reproduced in Fig. 2
(T'=0.4 K), as a function of density and potential differ-
ence V' > 0 between the top and bottom plates. The only
data attributed to tunneling lie to the left of the sharp
jumps at n = n, (marked by vertical arrows) and above
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the flat portions at W ~ 3 x 107% sec™!. Andrei et al.
argue that the data at n > n. were affected by the res-
onance ionization of helium atoms (in the film covering
the experimental cell) induced by the escaping electrons.
The saturation of the rates at W ~ 3 x 10% sec™?! is vir-
tually independent of the pulling field or electron density
and its origin is not understood in detail (see a more
detailed discussion of this issue in Ref. 4).

Our results together with the experimental data* are
shown in Fig. 2. In the region of the data relevant to
tunneling (defined above) the agreement between theory
and experiment is good. As one can see from the Fig. 2
the results of the calculations of W in the frozen (solid
lines) and adiabatic (dashed lines) approximations prac-
tically coincide under the conditions of the experiment.*
As already explained above, in the presence of pulling
fields, § > 1, the values of z in the integral (2) are small,
z < z2 < a, and hence §U,  (z/a)* < c(z/a)?.

As was already pointed out, dynamical effects on tun-
neling rates become important in the presence of pressing
fields, § < 1. However, for the densities used in Ref. 4 the
rates in this case would be too small to be observable with
existing experimental techniques. In Fig. 3 we show our
calculations of tunneling rates as functions of the param-
eter § for three different densities. The rates calculated in
the adiabatic approximation are significantly faster than
that in the frozen approximation, indicating that in order

10 100 1000 10*

1

Tunneling rate (1/sec)

1077107%107%107*107%0.01 0.1

n

0 0.4 08 1.2 1.6

2 2.4x10°
Density

FIG. 2. Experimental data from Ref. 4 (symbols) and
our calculations of tunneling rates W(n,) in the frozen (solid
lines) and adiabatic (dashed lines) approximations, for a series
of top plate voltages (the bottom plate is grounded V = V).
Calculations for the two top lines were made for the pulling
fields which are slightly higher than obtained from the for-
mula (29) (see text). Vertical arrows indicate the critical
density n. above which the data were affected by the reso-
nance ionization of helium atoms by escaping electrons. The
dot-dashed line represents our calculations for the Iye poten-
tial at V; = 3.5 V.
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FIG. 3. Theoretical dependence of tunneling rates on the
parameter ¢ in the frozen (solid lines) and adiabatic (dashed
lines) approximations, for a series of densities. Curves 1, 2,
and 3 correspond to the densities n, = 5 x 10°, 1.6 x 10°,
9 x 10® cm™2, respectively.

to observe dynamical effects on tunneling rates one re-
quires densities higher than n, > 9 x 108 cm™2. Since the
possible electron densities on the surface of bulk helium
are limited by the stability condition, n, < 2 x 10° cm~2,
the most promising candidate for these studies would be
electrons on helium films, in which case densities of an

order of 10'1cm~2 can be achieved.

V. CONCLUSIONS

Making use of the harmonic lattice model we have cal-
culated the tunneling rate from the system of electrons
on liquid helium in the two extreme (“frozen” and “adia-
batic”) quasistatic limits. In the case of pulling or weak
pressing external fields both these approximations lead
to practically identical results since in these limits only
the behavior at small z is important, where the defor-
mation correction to the effective potential is negligible.
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Such conditions are realized in the experiments of An-
drei et al.* and our quasistatic calculations are in a good
agreement with their data.

Our calculations show that dynamical effects on tun-
neling rates may be important in the limit of intermediate
pressing fields in which case frozen and adiabatic approx-
imations lead to significantly different results. We find
also that in order to make the tunneling rates observable
in this case densities higher then n, > 9 x 10® cm ™2 must
be used. The most promising candidate for these studies
would be electrons on helium films, for which densities of
an order of 10''cm~2 could be achieved.

Finally, we would like to note that despite the use of
a lattice model our results should also be valid for the
electron liquid with I' 2 50; this is because the effective
potential is mainly determined by the short-range cor-
relations which are virtually identical in the crystal and
strongly correlated liquid. This is consistent with the
experimental results of Andrei et al. which show no in-
fluence of a liquid-crystal transition on the escape rate.

Note added: We recently became aware of work by Sav-
ille and co-workers!® who have measured tunneling rates
with qualitatively similar density dependence as in Ref. 4.
They also analyze their data by comparing with unpub-
lished calculations of adiabatic and frozen potentials.z®
In the adiabatic case, calculated by a numerical Monte
Carlo method, their results lead to faster rates than ours,
implying a considerably larger deformation contribution
to the potential. Although the reason for this discrep-
ancy is not understood in detail, we note that in a small
system, such as considered numerically, a broken sixfold
symmetry due to finite size effects can easily lead to a
substantial asymmetry in the displacement field around
the impurity. In turn, this would result in a correspond-
ing increase in the magnitude of the deformation contri-
bution. A careful analysis of the finite size dependence
of the numerically evaluated potential would be useful in
clarifying this issue.
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