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Three-dimensional superconducting networks in a magnetic field
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The phase boundary of a three-dimensional cubic superconducting network made of thin wires is not
only sensitive to the amplitude of the magnetic field but also to its orientation. This sensitivity reflects
the three-dimensional arrangement of the vortex lattice on the network.

I. INTRODUCTION

It has been known for about a decade that the phase
boundary of superconducting networks reAects the
configuration of the magnetic Aux lattice on the net-
work. ' When the magnetic field is such that there is an
integral number of Aux quanta per unit cell, the critical
temperature recovers its zero field value. When the field
varies, the critical line T, (H) exhibits a cusp at every ra-
tional value of the Aux. This corresponds to a commens-
urate arrangement of the vortex lattice. In a mean field
approach of thin networks, the critical temperature
T, (H) is derived from the Ginzburg-Landau equations on
each link, with conservation of the current at the nodes
of the lattice. ' A set of coupled linear equations results,
whose smallest eigenvalues gives T, (H). It turns out
that, when all the links have the same size, the structure
of the equations is that of an isotropic problem of tight-
binding electrons in a magnetic field. The spectrum of
such a problem is known to exhibit a fractal structure,
the famous "Azbel-Hofstadter" butterfly. ' The phase
boundary is given by the lower edge of this spectrum.
This frustration effect has been observed experimentally
in different types of networks ' including quasicrystal-
line or anisotropic.

All these studies dealt with two-dimensional (2D) net-
works and we now consider the case of three-dimensional
(3D) networks. Indeed, we argue in this paper that in
such a case interesting effects appear due to additional
periodicities introduced by the magnetic field, when it is
tilted. In such a case, the vortex lattice has to arrange in
a 3D way and accommodate the geometry of the net-
work.

The spectrum of a 3D tight-binding model in a uniform
magnetic field has been studied. ' ' A tilted magnetic
field is then characterized by three cruxes through the
three elementary plaquettes of the lattice (instead of one
in 2D). Consider a commensurate flux case in which the
three Aux quanta through three elementary plaquettes are
rationals, P, =p, /q„P& =pb/qb, and P, =p, /q, (p; and

q; are integers). Then the spectrum has Q subbands

where g is the least common multiple of q„qb, and q, .
Some of the subbands may overlap or may have finite
gaps between them. By rotation of the field, one expects
a dramatic change in the spectrum since the commen-
surability of the three Auxes changes drastically. This
behavior is contrasted with the 2D case where there is
only one flux P. If P is rational p/q, the spectrum con-
sists of q subbands. All the gaps are open except when q
is even, in which case the two subbands at the center
touch. '

In this paper, we focus on the lower edge of the spec-
trum of 3D tight-binding electrons, which gives directly
the phase boundary of the corresponding superconduct-
ing network. It is expected to vary in a nontrivial way
when the field is varied or tilted. A similar problem has
been studied recently which is the behavior of a cubic su-
perconducting circuit made of 12 identical wires' and up
to 6 X 6 X 6 cubes. ' A rich behavior was obtained versus
field variation or orientation, which confirmed our first
predictions. But these papers only considered a small
number of cubes. One can expect that the translation in-
variance of an infinite 3D cubic network may add in-
teresting new physics because the Aux lattice has now to
accommodate an infinite structure.

II. EQUATIONS
FOR THK TRANSITION TKMPKRATURK

IN A THREE-DIMENSIONAL
SUPKRCONDUCTING NETWORK

The superconducting transition temperature for a net-
work of thin superconducting wires in an external mag-
netic field can be determined by the linearized
Gimzburg-Landau equations. At each node i, the equa-
tion is given by '

exp[i y;J. ]
s;.b,J sin [2;J./g( T) ]

where 6; is the superconducting order parameter at node
i, I.; is the length of the link connecting node i and node
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j, s; is the cross section of the link, g( T) is the coherence
length, and y," is the phase factor due to the external
field;

(2)

and c'. As shown by Halperin, ' one can define a new set
of primitive lattice vectors, where the magnetic field is
parallel to one of the lattice vectors, say c'. Then a vec-
tor can be represented in two ways as

x a+yb+zc =x'a'+y'1'+z'c'

with the vector potential A and the Aux quantum
C&0 =hc /2e.

Here we consider a network of a simple cubic lattice.
In this case L;.=L is independent of i and j, and the
equation is written as

—g t,"e "b,, =A,b.. .
j

x
y' =R y
Z' Z

We now take

and (x ',y', z') is related to (x,y, z) by a matrix R as

(10)

where m3 m]
0

and

Slj

Slj

cos[L/—g(T)] .

(4)

q q
R = —s]m2 q

—$3m2

$]$4 S2 $3S4

where q is the greatest common factor of m ] and m 3 and
integers s; (i = 1 —4) are the solution of

Equation (3) is the same as that obtained from the tight-
binding Hamiltonian for electrons (charge —2e) in an
external magnetic field with the hopping matrix element
t;-. The cross sections of the links may be different for
each direction, so we take t, =t (a=a, b, c) for the
nearest-neighbor sites i and j in the n direction. If all
links have the same cross section, t, =tb =t, =

—,'. Since
the coherence length depends on temperature as
g(0)/g(T)=+I —TlT,o, the transition temperature is
determined by the smallest eigenvalue of the tight-
binding Harniltonian A, ;„as

s]m ] +s3m3 =q

$2m2+$4q = 1
(12)

0

Note that all the matrix elements of both R and its in-
verse R ' are integers and det(R)=1. These properties
guarantee that a', b', and c' are primitive lattice vectors.
Now consider a vector p, a+ebb+/, c which is parallel
to the magnetic field. The new representation of the vec-
tor is

1 — = arccos( —
A, ;„)

Tc g(0)
cO

2

(6)

0 (13)

We consider the commensurate case where the Aux
through each plaquette is a rational number, i.e., the
magnetic flux is given by

pa pb pc

qa qb qc

where P =1/(2') g y,j is the fiux through a plaquette
perpendicular to u axis (a=a, b, c), and p and q are
mutually prime integers. Even if the Aux is irrational, the
smallest eigenvalue will be a continuous function of the
Aux which can be approximated by a rational number, al-
though the minimum energy is not smooth. Let Q be the
least common multiple of q„qb, and q, . Then we can
define an integer p such that

m(, Pb= m2, f — m3

where the integers m ], m 2, and m 3 have no common fac-
tor. Let a, b, and c be the original primitive lattice vec-
tors which correspond to the super conducting links.
Since the choice of primitive lattice vectors is not unique,
we consider a new set of primitive lattice vectors a', b',

i.e., magnetic field is along the c' axis and the Aux in a
plaquette formed by a' and b' is p/Q.

We can take the Landau gauge in the new axes, i.e., the
gauge potential depends only on x '. Since
x ( m 3 /q )x —( m

~ /q )z, we can write the gauge as

m]
z (l)a+12b+l3c),

q
(14)

where l ], l2, and l3 are integers which give

H=VX A=a(p, a+ebb+/, c)

=sr (m&a+mzb+m3c) . (15)

m] m3
l] + l3+m2 =0

q
'

q
(16)

Since m] /q and m3/q are integers and prime each other
by definition, l, and l3 are integers. Inserting Eq. (14)
into Eq. (2) we get for y,"

(The length of links L is set to unity for simplicity. Also
the unit A=c =e= 1 is taken, so the fiux quanta @0=m.)
Thus l2 =q and l, and l3 are the solution of the equation
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Q
I

D1 3
la

q

m, m3
lc+

q
'

2q
for j = (i, + 1,i„,i, ),

) „= 2~~i, P7l 3
la for j=(i„iq+1,i, ), (17)

2~~i
Q

3

m3
la

q

m(
lc

2q
«r j=(i„i,, i, +1),

where i=(i„is,i, ) and j label the neighboring sites. Note that y; depends on i only through the combination
&3la m &lc'

Now we perform Fourier transformation of Eq. (1). Write

b, ; = g exp[ik. r, ]5(k) .
k

(18)

Substituting Eq. (18) into Eq. (3), we can easily show that A(k) couples only with
b(k +2m( p/Q)(m& /q)l„k, k+ 2m(p/Q)( m, /q)l, ), b(k„+2~(p/Q)(m~/q)lz, k, k, +2'(p/Q)(m, /q)l2), and
~(k +2'(p /Q )( m

& /q )l, , k», k, +2m (p /Q )( m
& /q )l s ). Then Eq. (3) is written

K(k)'P(k) =A.%'(k),

where

(19)

y)(k)
q»(k)

qg(k)

p„(k)=&(k„—2m(p /Q )(m& /q )n, k», k, +2m (p /Q )(m
& /q )n ),

(20)

(21)

and K(k) is a Q X Q matrix with the elements

M, (n) for m =n+l, (modQ),

M,*(n —
1& ) for m = n —I

&
(modQ ),

Mb(n) for m =n+l2(modQ),
(K)„= Mb*(n —l2) for m =n —l2(modQ),

M, (n) for m =n+l~(modQ),

M,*(n 1~) for m =n——l~(modQ),
0 otherwise

(22)

with

~m3 l,
M, (n)= —t, exp i k 2n —n+—

Q q 2

Mb(n)= —tsexp[ik ],
I m, l3

M, (n)= —t, exp i k, +2m~ n+—
Q q 2

(23)

It is seen from (19) that the spectrum consists of Q
magnetic subbands. These subbands may or may not
overlap. The structure of the matrix elements (22) shows
that Eq. (19) can be regarded as a one-dimensional tight-
binding equation with long-range hoppings. Thus the

original problem of 3D tight-binding electrons in a mag-
netic field is reduced to a 1D problem. Equation (19) is
the generalization of that studied previously for the cases
p, /q, =0 (Ref. 10) and p, /q, =pb lqb =p, /q, .""
Kunszt and Zee' have studied the case that l3 or l, can
be taken zero. In the case p, /q, =pb/qb =p, /q„we get
Q=q„p =p„m& =mz=m& =1, q =1, l& =1, and l& =0,
i.e., K has nonzero component only for (n, n+ 1).

III. NUMERICAL RESULT

The smallest eigenvalue of Eq. (19), A, ;„, is obtained
numerically by scanning momentum k in the Brillouin
zone. We plot [arccos( —

A, ;„)],which is proportional
to 1 —T, /T, o [see Eq. (6)], as a function of P for
(P„Pb,P, ) = ( P, P, P) in Fig. 1 for the isotropic case (all
the cross sections of the links are the same). The aniso-
tropic networks corresponding to t, =0.3t, =0.3th are
also considered with the magnetic field

(P„Pb,P, )=(P,P, P) in Fig. 2. In Figs. 3 and 4 one or
two components of the flux are fixed and the transition
temperature is plotted as a function of the other com-
ponents, (—,', P, P) and ( —,', P, —,'). In these calculations we

take P=n /100 in Fig. 1 and P=n /60 in Figs. 2 —4 with
integer n. As seen in Figs. 1 —4, the overall structure is
not changed by the anisotropy. Since the lattice is bipar-
tite, 1, ;„ for (P„P&,P, ) is the same as that for
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FIG. 1. Transition temperature of the 3D superconducting
network as a function of external magnetic field. The lattice is
isotropic and the field direction is fixed to (111).

FIG. 3. Transition temperature of the 3D superconducting
network as a function of P=Pb=P, with P, =

—,
' for isotropic

(solid line) and anisotropic (dashed line) cases.

(n, +p„nb+/I„n, +p, ) with any integers n„ni„and n, .
The transition temperature has a sharp cusplike local
maximum at P =

—,
' in each case. For the other values of P

the peaky structure of the transition temperature as a
function of P is not very visible but we can see small
anomalies at P= —,', —,', —,', and —,'. In these cases the frus-

tration is caused by only one value P. Thus it is not
surprising that the dependence of 1 —T, /T, o on P is simi-
lar to that obtained in the two-dimensional case. ' A
new feature appears when the magnetic field is tilted
along a direction characterized by three different cruxes.
In Fig. 5 we plot [arccos( —

A, ;„)] for the isotropic case
with (p„pI„Q,)=(n /10, n/20, n /30)~~( 6, —', , —', ) as a func-
tion of n. This choice of the field direction is the same as
calculated by Yi and Hu for a finite size lattice. ' As dis-
cussed before, Yi and Hu have studied the transition tem-
perature of several cubes of superconducting links,
whereas we calculate that for the infinite lattice. Here we
can see several cusplike minima corresponding to P =1
(a=a, b, c) The comp. licated structure is due to the fact'
that the three components of the Aux cause the frustra-
tion in a complicated way. If we look in more detail, we
see small cusps corresponding to P =

—,', —,', etc. In actual
calculations it is difficult to rotate the magnetic field with
fixed amplitude, since we can calculate only the case that
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FIG. 4. Transition temperature of the 3D superconducting
network as a function of external magnetic field for isotropic
(solid line) and anisotropic (dashed line) cases. The a and c
components of the field are fixed as It, =p, =

i and pb is

changed.

0 &

I
i

I
r

I
&

I
s

I
a

I
s

I
&

I
~

I
V

0.8

o.6

0.4
E

I

0.2
C
V
V

o.o

E

0
V
V

0.4

0.2

s s ~ ~ I s ~ ~ s

0 00

10 20 30 40 50 60

FIG. 5. Transition temperature of the 3D superconducting
network as a function of external- magnetic field. The direction
of the field direction is fixed to (,'Q

pp 3Q) and the magnitude of
the field is changed.

1.00.50.0

FIG. 2. The same as Fig. 1 but the lattice is anisotropic.



48 THREE-DIMENSIONAL SUPERCONDUCTING NETWORKS IN A. . . 1123

&O

0 s s

V

0.8

0.6

0.4
2

I

0.20
O
O

0.0

10 20 30 40 50 60

FIG. 6. Transition temperature of the 3D superconducting
network as a function of external magnetic field. The direction
of the field is fixed to ( —,'2 2Q 3Q) and the magnitude of the field is

changed.

every component of the Aux is a rational number with
small denominator. Instead of rotating magnetic field for
fixed amplitude, we calculate the transition temperature
for a slightly different direction of the field,

(P„Pb,P, ) = (n /12, n /20, n /30) as shown in Fig. 6.
Drastic differences are seen between Figs. 5 and 6.
Therefore we can conclude that if we rotate the magnetic
field, the transition temperature of the superconducting
network has cusplike maximum whenever one com-

ponent of the Aux divided by the Aux quantum is an in-
teger or a rational number with a small denominator. As
a result the transition temperature depends in a compli-
cated way on the direction of the magnetic field.

IV. CONCLUSION

We have shown that the critical temperature of the 3D
superconducting network in a uniform magnetic field can
be calculated by solving the eigenvalue problem which is
a generalization of the 2D Hofstadter problem. When
the magnetic field is fixed in the (l, l, l) direction and the
magnitude is changed, the critical temperature has a
similar dependence on the magnitude of the field as in the
2D network case. However, if the direction of the mag-
netic field is tilted, T, depends drastically on the direc-
tion and magnitude of the field. This is because in 3D
networks there are three components of the Aux and T,
has a cusplike maximum when one component of the Aux
is an integer or a rational number with a small denomina-
tor.

It is known that the transition temperature for the
Josephson junction networks has the same properties if
the mean field approximation is adopted. Since the
mean field approximation is thought to be a better ap-
proximation in 3D than in 2D, we expect that the sensi-
tive dependence of the transition temperature on the
magnitude and direction of the magnetic field is also ob-
served in the 3D Josephson junction networks.
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