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We develop a theory of photoluminescence using a time-dependent Hartree-Fock approximation
that is appropriate for the two-dimensional Wigner crystal in a strong magnetic field. The cases
of localized and itinerant holes are both studied. It is found that the photoluminescence spectrum
is a weighted measure of the single-particle density of states of the electron system, which for an
undisturbed electron lattice has the intricate structure of the Hofstadter butterfly. It is shown that
for the case of a localized hole, a strong interaction of the hole with the electron lattice tends to
wipe out this structure. In such cases, a single final state is strongly favored in the recombination
process, producing a single line in the spectrum. For the case of an itinerant hole, which could be
generated in a wide quantum-well system, we find that electron-hole interactions do not significantly
alter the density of states of the Wigner crystal, opening the possibility of observing the Hofstadter
gap spectrum in the electron density of states directly. At experimentally relevant filling fractions,
these gaps are found to be extremely small, due to exchange effects. However, it is found that the
hole, which interacts with the periodic potential of the electron crystal, has a Hofstadter spectrum
with much larger gaps. It is shown that a finite-temperature experiment would allow direct probing
of this gap structure through photoluminescence.

I. INTRODUCTION

The search for a magnetic-field-induced Wigner crystal
(WC) in two-dimensional electronic systems has been a
subject of long-standing interest. It was first pointed out
by Wigner that lowering the density of a quantum elec-
tron system would lead to crystallization, since quantum
fluctuation efI'ects diminish more rapidly than Coulomb
correlation. The relevent comparison is the Coulomb in-
teraction energy V, = e /ea to the zero-point energy
K = 5 /m*a, where a = (7m) ~ is the mean inter-
electron distance and e is the dielectric constant of the
host material. Defining the ratio r, = V, /K = a/a~,
where a~ is the Bohr radius (= h e/m*e ), crystalliza-
tion is expected for r, ) 37 from Monte Carlo simu-
lation results. Wigner crystallization was first experi-
mentally observed in two-dimensional sheets of electrons
trapped on the surface of liquid helium, where the elec-
tron gas is almost classical. The two-dimensional electron
gas (2DEG) in modulation-doped high-mobility GaAs-
Al Gaq As heterostructures has proven to be an ex-
cellent candidate for observing the formation of a WC
in the quantum regime, largely because such high-purity
samples are available that the electrons are not neces-
sarily dominated by disorder effect at the low densities
required to obtain crystalline order. However, in the ab-

sence of a magnetic field, the WC has not been observed
in GaAs 2DEG systems. Application of a strong per-
pendicular magnetic field further enhances the possibil-
ity of forming a WC, since this reduces quantum Huc-
tuations (which tend to melt the crystal at large elec-
tron density), by confining the electron zero-point mo-
tion to cyclotron orbits of radius the magnetic length
l, = (hc/eB) ~ Once l, is .smaller than the mean inter-
electron distance, Coulomb correlations lead the 2DEG
first to form an incompressible liquid phase (fractional
quantum Hall effect ground state) at certain densities
and ultimately to crystallize below some critical filling
factor v (= nhc/eB) = v, « 1 at low enough tempera-
ture. Recent studies of high-mobility heterojunctions in
strong magnetic fields have uncovered a number of in-
triguing properties that in some ways are consistent with
the presence of some crystalline order at the lowest avail-
able temperatures. These include rf data, ' transport
experiments, cyclotron resonance, and photolumines-
cence (PL) experiments. ' It is the last of these that we
will discuss theoretically in this paper.

Photoluminescence experiments on these systems have
been performed in two ways. One set of experiments
uses a low density of Be dopants that are purposely
grown into the sample approximately 250 A. away from
the 2DEG. A pulse of light excites a core electron out
of a Be acceptor, and the photoluminescence spectrum
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from recombination of electrons in the 2DEG with the re-
maining core hole is observed. More recent experiments
have also investigated recombination of electrons with
itinerant holes in the host crystal (GaAs) valence band.
Both experiments show intriguing and complicated re-
sults; among them is the observation of a pair of pho-
toluminescence lines that appear at magnetic fields for
which transport anomalies recently associated with the
WC are found. At the lowest temperatures, the lower of
the two lines has most of the oscillator strength; as the
temperature is raised, the oscillator strength transfers to
the higher of these lines, until the lower line cannot be
distinguished from the background. While it is tempting
to associate the lower line with a crystal phase, and the
upper with a melted phase, the precise interpretation of
the data is hampered by a lack of theoretical understand-
ing of what the PL spectrum should look like when the
ground state of the 2DEG really is a WC.

To address this problem, we have developed a theory
of photoluminescence using a time-dependent Hartree-
Fock approximation (TDHFA) that is appropriate for
the two-dimensional Wigner crystal in a strong mag-
netic field. The cases of localized and itinerant holes
are both studied. We will show that, within the Hartree-
Fock approximation, the photoluminescence spectrum is
a weighted measure of the single-particle density of states
of the electron system, which for an undisturbed electron
lattice has a very interesting structure: for rational filling
fractions v = p/q there are q subbands, and in Hartree-
Fock, p of these are filled. (That the density of states
breaks up into q bands in the simultaneous presence of
a periodic potential and magnetic field was pointed out
by Hofstadter, and this is often referred to as the Hofs-
tadter spectrum. ) We therefore expect that for any filling
fraction Ji/q, one should expect to see p lines in the PL
for the ideal case of a perfect electron lattice. An obser-
vation of this behavior in photoluminescence experiments
would yield direct confirmation of the presence of a WC
in the system. Unfortunately, we will find that for the
case of a localized hole, a strong interaction of the hole
with the electron lattice tends to wipe out this structure.
In the case of an unscreened hole (e.g. , a valence-band
hole in a narrow quantum well), this arises because the
potential localizes an electron in the vicinity of the hole
in the initial state, which dominates the photolumines-
cence spectrum. For the case of a screened hole, as in a
core hole of a neutral acceptor atom, the initial state of
the Wigner crystal is relatively undisturbed. However,
the only final state which is significantly coupled to via
photoluminescence is one in which a vacancy is bound
to the charged acceptor ion in the final configuration.
In both cases, a single final state is strongly favored in
the recombination-process, producing a single line in the
spectrum. As a function of temperature, we find that this
line shifts upward in energy within a very narrow range of
the melting temperature. For a system of Wigner crystal
domains with a distribution of sizes and. melting tem-
peratures, this would appear as a shifting of oscillator
strength from a low-energy photoluminescence line to a
high-energy one over a range of temperatures. Such be-
havior is in qualitative agreement with experiment.

For the case of an itinerant hole, which couM be
generated in a wide-quantum-well system, we find that
electron-hole interactions do not significantly alter the
density of states of the Wigner crystal. One thus sees,
in principle, p lines in the photoluminescence spectrum.
Unfortunately, because of the exchange interaction, the
gaps between these lines at the relevant small filling frac-
tions may be extremely small, making experimental ob-
servation of this efFect difIicult. We find an interesting
possible way out of this difIiculty, by considering itinerant
holes at finite temperature. For the itinerant case, the
hole moves in a periodic potential (of the electron crys-
tal) and a magnetic field, generating a density of states
with several bands. Because there is no exchange inter-
action between the electrons and the hole, we find gaps in
the density of states for the latter which are much larger
than those of the former. Finite temperature allows a sig-
nificant probability of occupying some of the higher hole
bands in the initial state, leading to several new lines in
the photoluminescence spectrum. Once again, observa-
tion of this effect would constitute direct confirmation
of crystalline order in the 2DEG. We believe that, with
improved sample quality, itinerant hole PL experiments
should ofFer the best opportunity to observe this inter-
esting behavior.

This paper is organized in the following way. In Sec. II
we show how one can use the TDHFA to compute the
photoluminescence spectrum of this system for both lo-
calized and itinerant holes. We present and discuss our
numerical results in Sec. III. Finally, we summarize our
results and make some concluding remarks in Sec. IV.
A brief account of some of these results has appeared
previously.

II. THEORY

In this section we first present a general expression for
the Hartree-Fock Hamiltonian of the 2DEG in a strong
magnetic field. We then derive our theory for photolu-
minescence from a WC in this system within TDHFA for
both localized and itinerant holes.

A. Model Hamiltonian

It is well known that noninteracting two-dimensional
electrons in a perpendicular magnetic field (B = —Bz)
have an energy spectrum of discrete Landau levels: E~ ——

(N + z)hw„N = 0, 1, 2, . . ., where w = eB/m*c is the,
cyclotron resonance frequency. Working in the I andau
gauge (A = Bxy), and with—periodic boundary con-
ditions in the y-direction, the single-particle eigenstates
are given by

(r~NX) = exp(iXy/I )Qg(x —X).
Ly

Here I = (hc/eB) ~ is the magnetic length and Piv is
the one-dimensional harmonic-oscillator eigenstate with
oscillation centers X. The allowed values of X are sepa-
rated by 2ml /I„. The degeneracy of each Landau level
is given by g = S/2vrl, with S the area of the 2DEG.

In order to derive the theory of photoluminescence
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from a strong-magnetic-field-induced two-dimensional
WC, we now consider a system with an interacting 2DEG
(within TDHFA) and a layer with a low density of holes
(either localized or itinerant) separated by distance d,
in the presence of a strong perpendicular magnetic field.
Since the magnetic Geld is very strong, i.e. , he@ )) e /ea,
and the electronic filling factor v = nhc/eB « 1 in the
WC regime, we can assume that only the lowest Landau

'R = 'Rp + 'R, + 'R h, (2)

where

level is occupied by electrons. The general many-body
Hamiltonian can be expressed in terms of single-electron
eigenstates (only % = 0 eigenstates are included) as fol-
lows:

1
Ao = ) h~ a—xax + ) Eh, c, c, ,

"-=2S)-
q X1X2X3X4

V.(q)(Xil exp(iq r)lX4)(X~I exp( iq' r)IXs)axt ax ax, ax„

+ h. = —) ) ) Vh(q)(Xilexp(iq. r)lXz)(tl exp( —iq r) j)atx ax, ctc, .
q X1X2 ij

Here 'Rp is the single-particle zero-point energy which
is constant. Q„ is the electron-electron interaction, in
which V, (q) = 2vre2/eq is the two-dimensional Fourier
transform of the Coulomb interaction. 'R, h is the
electron-hole interaction, in which V h(q) is the Fourier
transform of the interaction between one electron and
one hole (for both screened and unscreened hole). In the
case of an itinerant hole, the interaction between elec-
tron and hole is assumed to be weak enough so that it
can be ignored when we calculate the electronic density
of states. For a system with a small number of holes, it
is a good approximation to also ignore hole-hole interac-
tions, which are extremely small in comparison with A, h.
In our current consideration, we also do not include the
efI'ect of impurities and any external potential. In prac-
tice, we may also drop 'Rp because it is just a constant.
The inatrix elements in Eq. (3) are given by

(,
(Xi l exp(iq r) lX2) = exp —q (Xi + X2)—

( 2

(4)~X1,X2+q„/

Shown in Fig. 1 is the electron density profile of a two-
dimensional Wigner crystal in a strong magnetic field.
Here we assume that the two-dimensional WC is a trian-
gular lattice (which classically is the lowest energy crystal
structure at zero temperature). Figure 1(a) illustrates
a perfect electronic WC, and Fig. 1(b) is for a WC with
one localized hole, at the origin, separated from the plane
of the electron gas by a distance d ( 250 A.). We can
see that the WC deforms around the hole due to the
electron-hole interaction. (We will explain below how
these figures are derived. ) In order to take into account
this eKect, while still taking advantage of the periodicity
of the WC, we divide the WC system into hexagon unit
cells. Each supercell contains a finite number of electrons
and one hole (in the center, for localized hole case). The
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FIG. 1. The density profile for a strong-magnetic-Beld-
induced Wigner crystal at v = 2/7. (a) For perfect WC with
no electron-hole interaction; (b) WC with 12 electrons and
one localized hole per supercell in the presence of unscreened
electron-hole interaction, where 6 is the superlattice constant.
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finite size of our unit cells will not be significant for large
enough supercells.

The density plots illustrated in Fig. 1 were derived us-
ing the TDHFA. We briefly review the salient points of
the procedure; details may be found in Ref. 15. We first
define the density operator

( G'l.'l
er(D) = f d rexp( —r'D r)x(r) =gp(D)exp 4)

(5)

where

t9 0
G(X X ) = — (T-, ( ),(o))8'1 O'T

b&—,z, b(7-) —(T ['8 —p, N. , az, ](v.)

xa~t (0)). (»)
The commutators may be computed explicitly, and the
result is simplified using a Hartree-Fock decomposition.
After Fourier transforming with respect to time, the
equation of motion for G(G, w ) can be written as

(iid + P,,)G(G, i~d ) —) B(G, G')G(C', i~d ) = b~ p,

1

gx, x,

One may easily show that

(p(C = 0))
(K,)

g

Here % is the electron number operator.
The Hartree-Fock Hamiltonian for the 2DEG (with an

electron-hole interaction appropriate for a localized hole)
in the lowest Landau level can be written as

+HF —9) W(G)(p(G)) + nhVh(G)e ' p(G)
G

where

B(Gi, G2) = [W(Gi —Gz)(p(Gi —G2))
l 4+ V. (G —G) ' ' ''"1

i(&1 X &2) l (2 (14)

We can directly diagonalize matrix B and obtain its
eigenvectors V~(G) and eigenvalues id', after which the
Green's function can be written as

.U, (G)V,*(C = 0)
G(C, iid ) =

ZCd~ + Pe Cd .
3). W, (G, j)

2M~ + P~ —Cc) .
2

where nh is the density of holes. W(C) is the effective
Hartree-Fock interaction

2

W(G) = — e 'l (1 —b~ o)
~l Gl

The density of states for electrons is then given by

D(E) = ——Im[G(G = O, E+ ib)] i

t'g
7r

' (S)
1 t W(G=0, j) f 1
vr™(

- E —cu,'+ib ) (2vrl2)

G'('y4—

)
where Ie(x) is the modified Bessel function of the first
kind.

Finally, the density operator can be expressed as

(p(G)) = G(G ~ = o )

= ) V~(G)V,*(G = 0) fFD(id,
' —P,,).

B. Green's function, electron density,
and density of states

We define single-electron Green's function

G(Xi, X2', 7 ) = —(T a&, (r)a~ (0)).

It is convenient to define the Fourier transform

G(G ) = —) ('/2)+ (~'+~')
g X1X2

x6x„x,+api. G(X» X» r).

(10)

Here fFD(x) = [1+exp(Px)] is the Fermi-Dirac distri-
bution. Since (p(G = 0)) = v, we can self-consistently
calculate chemical potential p, the density of states and
the electron density in G space. The density plots in
Fig. 1 were obtained by iteratively solving Eqs. (13),(15),
and (17).

C. Photoluminescence theory for localized hole

We now present in detail our theory for photolumi-
nescence from the WC in a strong magnetic field. The
photoluminescence intensity is given, for a single local-
ized hole state, by

We will use this form of the Fourier transform throughout
this work. The TDHFA is derived by writing the equation
of motion for the Green's function,

P(~) = —) ) e "l" ((m, 0)L)n, h)('

xb'(~d —E„+E ),
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where Z = P e "~",~n, h) is a many-body electron
state with energy E and N electrons when there is a core
hole present, ~m, o) is a many-body electron state with
N —1 electrons and energy E~, w is the luminescence
frequency, and L = f d rg(r)gh(r) is the luininescence
operator, with Q(x) the electron annihilation operator
and gh(x) the hole annihilation operator. As written,
the initial state is actually higher in energy than the final
state, and we find it convenient to rework the problem in
terms of absorption rather than emission. To accomplish
this, we add a term H' = —Epcpcp to the Hamiltonian,
where cp creates a localized hole, and take the limit Ep ~
oo. It is not dificult to show

P'(cu —Ep)
x.-+~ np(Ep)

where P' is the absorption spectrum of the new Hamilto-
nian and np is the average occupation of the hole state,
which just becomes one in the limit Ep ~ oo. The ab-
sorption spectrum is identical to Eq. (18), except one
needs to add the energy Ep to all the quantities E in
the expression. After standard manipulations, one can

I

show that

P'((u) = — „ Im B(~+ iS).p 1

] ~or/k~ T (2o)

The function R(u+i8) is a response function, which con-
tinued to imaginary frequency has the form

7Z(i(u„) =— (T.L, (~)L,t(0))e"- dr (21)

'R;, (X„X2,. ~) = (T ax,—(T)c,(r)c, (0)ax (0)). (22)

We write down the equation of motion for 'R,
~ (Xi, X2, r)

in terms of its commutator with the Hamiltonian:

To compute this quantity, we consider (for the case of
a localized hole state) instead of a single hole, a periodic
(hexagonal) lattice of them, with a unit cell that contains
as many electrons as can be handled numerically. We al-
low neither interactions between the holes nor tunneling
between the hole sites, so that in the limit of large unit
(super)cells, one should expect the result to be the same
as for the isolated hole case.

The quantity of interest arising out of Eq. (21) is

7Z,, (Xi, X2, r) —= — (T ax, (r)c;(r)c,. (0)ax (0))

= —([ax, c, , c ax ])h(r) —(T ['R ir —p(N, —Nh), ax, c,](r)c ax ), . (23)

where 'R s = R —Ep P,. c,c, and N, and Nh, are corre-
sponding electron and. hole number operator. Here

&T = &.a —p(N. —Nh. )

= 'Rp + 'R, + R,,h
—Ep ) c,c, —p(N, —Nh, )

=H, +H, +H„ (24)

where

Hi ——(2hcu —p) ) atxax+ (Eh —Ep+ p, ) ) ctc, ,
x

We can thus write Eq. (23) as

(25)

R,~ (xi, X2, r) = Tp —Ti —T2 —Ts 1
7

(26)

where Tp is the first term on the right-hand side of
Eq. (23) and the T s represent the commutator terms
with each of the H, 's.

In the limit Ep + oo, the first term can be written as
I

Tp = [(ax,ax, )~V —(c,'c*)~x.x, ]~(~)

= lim [(ax,ax )
—np8x, x, ]b,,b(r)

flo +1

= —(ax ax, )8;,8(~).
Its Fourier transformation is

T (G, 7-) = —) e l' l '+ 'l6x x, ~ i~Tp
~x,x,

(27)

= —(~(G))4~(r). (28)

Since H~ essentially provides a constant energy shift to
the system, the second term can be easily calculated:

Ti = (T~[Hi ax. c']( ), x, )

= ( 2 h~ + Eh —Ep) 7Z;, (Xi, X2, ~). (»)
so that

T, (G, r) = ( 2 h~~ + Eh —Ep)'R, , (G, r). (30)

In order to calculate the third term (contribution of
electron-electron interaction), we first compute the com-
mutator and then apply a Hartree-Fock decomposition
technique to get

T2 (X, X'; r ) = (T [H2, ax c,] (r) ct ax, )

= —) ) V (q) (Xi
/
exp(iq r) [X4)(X2[ exp( —iq r) [Xs)

X1X2XSX4

x ((atx ax, )bxx, R;, (Xs, X'; 7 ) —(atx ax, )Sxx,R,, (X4, X'; r) j (31)
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Substituting

(ax, ax, ) = ) (p(G))e"' ' " '~x,x —G„2 (32)

and Eq. (4), after some lengthy algebra, we obtain the final expression

T2(X, X'; r) = ) W(G)(p(G))e' ( ~'-/ l7Z;,.(X —G„l„X';7). (33)

Its Fourier transform can be written as

T2(G, r) = ) W(G')(p(G'))e ' " l'/'7Z, , (G —G', ~).

Now we turn to the fourth term (contribution from electron-hole interaction). We apply the same Hartree-Fock
decomposition technique and obtain

Ts = (T [IIs, axc;](7.)c,ax, )

= —) ) Velg)lA'o~~explog r)~~Ao)I(ax ax, )e *e' 'RolA, X')
q XqXq

+ aoX ) 6aabxx+ (1 —, ao)&x, xe ' ' ' (ax, ax)e ' ' ' &'oQo &')I
G

(35)

where N is the total number of supercells. In deriving the above equation, we assume there is no overlap between
hole states (i.e. , single-hole approximation), so

(z( exp( —iq . r)
(j) = exp( —zq R;)b,, (36)

where R; is the hole (or supercell) superlattice vector. We then substitute Eqs. (32) and (4) into Eq. (35) and take
no ——1, and after a very involved calculation, we get

T, (X,X'; r) = ) V.,(q) e "'/4-*~-""-/'

x ) (p(G))8& Ge' "' 7Z,~(X, X') + nh ) bz Ge*~ 7Z;~. (X —q„l„X')
2vrl2

C

)((G)) —l+R, cela(X —G„l,)+Gz(aX —Gpl, /2)+[X(q ++)l2XI]

in which the last term can be dropped as we take the limit S —+ oo. Its Fourier transformation can be written as

Ts(G, 7 ) = ) Vh( —G')(p(G'))e ' 'Rg~(G, 7) + nh, ) Vgh(G')e ' ' " 7Z~ (G —G') 7 ).
C Cl ~l

(38)

So finally, in the G space, equation of motion for 7Z.,~ is

0
7Z;, (G, 7) = —To —T, —T2 —Ts

t97

When transformed into real frequency space, it becomes

—(~+i/i)B;, (G, ~) = (p(G))b;, + (E, —,'n~. —E„)a,, (G,~)-
—) W(G')(p(G'))e '( " l'/ B, (G —G', cu)

~l

, ) v.„(—G')( (G')).—
' './'z, , (G, )

C Ql

) V (G&)
—G" l, /4 —i(&xG')l, /2~

Gl

It is apparent that the solution to this satisfies

(4O)
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R,, (G, (u) = R(G, ~)b,, (41)

This result may be expressed in the form

) [(~ + i b + Ep —(up) 8G G„—B(C,G')]R(G', ~)

= -(p(G)) (42)

where

~ =-h .+E.+ ) ( (G))V'(-G)
2 2~l2

C

(43)

and B is exactly given by Eq. (14). Finally, it is not
dificult to show that

should not affect our qualitative conclusions. We can
de6ne single-particle Green's function for the itinerant
hole:

where

(48)

GI) (1 g )
—Gd —G l, /2+i(C xG'}l, /2

cl Gl,
x (p(G)).

We solve the eigenvalue problem

Gh (Xi, X2) = (T—cx, (r) cx (0)). (47)

We can also use TDHFA to derive the equation of motion
for itinerant hole Green's function. In the momentum
space, Gh(G, cu ) satisfies

('~-+»)Gh. (G ~ ) —)

C ) Bh(G, G')Vh(G', j) = ~,"Vh(G,j), (50)
and the PL spectrum may now be computed using
Eqs. (19) and (20).

We see that the form of R is essentially that of electron
Green's function as in Eq. (13). By inverting Eq. (42),
we have

so that

Gh(G, ur„) = ) &~(G j)&~(G = o j)
Z(d~ + Ph

R(G, (u) = —) [((u+ x8+ Ep —Lop)SG G
~l

—B(G G')I '(p(G'))
.V~ (G)V,

' (G') (p (G') )
~ + i8 —~p —~.jG' 2

W (C,j)fFD(cu' —p,).
Lo + 18 —Mp —Ld .

2 2

(45)

(46)

Here we have already dropped Eo because it cancels out
when we calculate the G.nal photoluminescence power us-
ing Eqs. (19) and (20). We can see that R has poles at
precisely the same energies as the poles in the electron
Green's function for the system in the presence of the
external interaction U, g due to the hole, up to the con-
stant energy shift coo. ' Thus, the photoluminescence
spectrum is indeed a weighted measure of the single-
particle density of states of the electron system with a
localized hole.

D. Photoluminescence theory for itinerant hole

The case of the itinerant hole is treated similarly to
the case outlined above, except that there is an impor-
tant simplification: since the hole density is low at all
points in space, it is safe to ignore any deformation of
the electron lattice due to the hole. Since the itinerant
hole is moving (in a layer a distance d away from the
electron layer) in the periodic potential of the electron
lattice, there will be many hole states forming several
bands similar to the density of states of the electronic
Wigner crystal. For simplicity, we work in the lowest
Landau level of the hole, although in real systems the
relatively heavy hole mass would allow some (possibly
significant) Landau level mixing. Ignoring this, however,

Wh, (G, j)
6'

Z&~ + Ph —(d .
(51)

and the density of states (DOS) for the itinerant holes is

Dh(E) = ——ImGl, (G = 0)
ir (S)
1 Wh(G=O j) ( 1

7r E + i g —cu". l 2vrl2 l

2 /
(52)

The number of bands for the hole density of states should
be the same as that for electron but the band gaps should
be quantitatively different, since the hole-hole interac-
tions do not play a significant role in the low hole density.

Consider erst a single itinerant hole at energy level u". ,

from which we calculate the photoluminescence power.
Since the hole and the electron have opposite charge (but
difFerent efFective mass), their lowest Landau level wave
functions are just complex conjugates of each other, i.e. ,

Px" (r) = Px(r). So the luminescence operator can be
written as

I = d r@(r)@h(r)

d rex, (r)gx, (r)ax, cx, (53)

G„(G,r) = W, (G, j).-f""-~~, (55)

Then the electron-hole recombination process is given ap-
proximately by

—(T~L(r)L"(0)) = —) G(Xi, X2, T)Gh(Xi, X2, T).
X1Xg

(54)

Here, the single-hole Green's function may be written as
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Since there are many hole states close in energy on the
scale of temperature for the itinerant hole, we need to
take a thermal average over the difFerent hole states that
the electrons may decay into. So the final photolumines-
cence power in itenerant hole case is given by

P(Z) = I,)—) I E + Z8 —Mp —M.
Q ij i 2

Wh(G, j)e
X ) W„(G =O, j)e-~"" (57)

Here ~p ——zu, + 2u" + L, where ~" is hole cyclotron
frequency which is much smaller than that for electron
due to the heavier-hole efFective mass, and L is the
conduction-band —valence-band gap.

so that the photoluminescense power for single hole at
energy level w". can be written as

2

P, ((u). oc Ip—) Im [G(G, ~ —~,")Wh(G, j)] . (56)

of an unscreened hole (e.g. , a valence-band hole in a nar-
row quantum well). We can see, as shown in Fig. 3(b),
that there is a single photoluminescence peak which is
shifted down in energy from the perfect Wigner crystal
case. This structure is best interpreted in terms of the
density of states as illustrated in Fig. 3(a), for a peri-
odic electron system with 12 electrons and one localized
hole per unit cell. Because of the attractive electron-hole
interaction, the WC is deformed in the vicinity of the
hole, as shown in Fig. 1(b). The two filled subbands in
the density of states break up into three bands, with the
lowest-energy peak much smaller in weight but shifted
down in energy. The lowest-energy peak corresponds to
a bound state of the electrons with the hole, and because
this is the only state with a significant overlap with the
hole, it dominates the photoluminescence spectrum. To
show this, we present in Fig. 4 the electron density profile
which corresponds to each energy subband in the DOS.
As shown in Fig. 4(a), the lowest-energy peak contains
a single electron, localized in the center of the unit cell
right above the hole. Since the photoluminescence power

III. NUMERICAL RESULTS

From the theoretical analysis in the preceding section,
we observe that the photoluminescence power just de-
pends on the ground-state electron density (p(G)), which
we can iteratively calculate by directly diagonalizing the
matrix B. We can then determine the electron DOS
and calculate the photoluminescence power for the lo-
calized hole case. For the itinerant hole situation, we
can also calculate the hole DOS by directly diagonalizing
the matrix Bh, and then calculate the thermal averaged
photoluminescence power. In this section, we present
our numerical results for the electron ground-state den-
sity profile, electron density of states (including DOS for
itinerant hole), and the photoluminescence spectra at dif-
ferent temperatures for a magnetic-Beld-induced Wigner
crystal.

As shown in Sec. II, the photoluminescence spectrum
is essentially a weighted measure of the density of states
of the electron system. As noted earlier, the DOS for a
perfect WC is a Hofstadter butterfly. For fractional fill-
ing factor v = p/q, the DOS has q subbands, and at zero
temperature, the lowest p bands are filled. We should
expect to observe this structure, i.e. , p lines for v = p/q,
in the photoluminescence spectrum of an ideal Wigner
crystal if we turn ofI' the electron-hole interaction. Pre-
sented in Fig. 2 are (a) the density of states and (b) the
photoluminescence spectrum for an undisturbed Wigner
crystal at v = 2/7 (Ref. 21) with no electron-hole interac-
tion. We can clearly see that the DOS has seven bands,
with only the lowest two occupied at low temperature.
As expected, the photoluminescence has two peaks with
a splitting identical to that of the DOS. An observation
of this behavior in experiments would directly confirm
the presence of a Wigner crystal in the system.

Unfortunately, the PL spectrum in Fig. 2 is not ex-
perimentally observable for the case of a localized hole,
because of the strong interaction of the hole with the elec-
tron lattice. We present in Fig. 3 the results for the case

(u) v=2/7
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FIG. 2. Electron density of states and PL spectrum for
perfect WC with no electron-hole interaction for v = 2/7.
(a) Electron DOS below chemical potential at zero tempera-
ture (inset: DOS above chemical potential), where K, = —cu„
(b) PL spectrum at different temperatures: T = 0.0045T,u

(solid), T = 0.45T~, ~& (dotted), T = 0.9T~~~& (dashed), and
T = 1.12T,u (inset: dash-dotted).
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is proportional to the overlap between electron and hole
wave functions, this localized electron will certainly over-
whelm the PL spectrum. We find that the other peaks
in the DOS correspond to sets of electron states that are
successively further away from the hole, for increasing en-
ergy, as shown in Figs. 4(b) and 4(c). The contribution of
these states to the PL is nearly two orders of magnitude
smaller than that of the localized electron in the center.

It should be noted that, in most localized hole
experiments, the dopant atom is a neutral acceptor in
its initial state. The interaction of the core hole with
the electron gas is then quite weak, leading to a negligi-
ble deformation of the WC in its initial state, as shown
in Fig. 5(a). However, the final state of the dopant is
charged, which introduces a strong perturbation in the fi-
nal state of the WC. Our Hartree-Fock approach does not
handle this situation well, as it tends to give qualitatively
unrealistic energies when there are strong electron-hole
interactions in the final state. It is easy to see, however,
that the PL spectrum is still dominated by a single final

1.0
o. v=, ce

0.5 ~OOo

0.0— Qo

—0.5 o

state, one in which a vacancy is bound to the charged
ion, as shown in Fig. 5(b). The PL spectrum should be
thus qualitatively the same as described for the case of a
strong initial interaction i.e. , a single peak will dominate
the PL spectrum. We calculate the PL peak energy sim-
ply by finding the difI'erence between the Hartree-Fock
energies of the initial and final states. The temperature
dependence of this PL energy is presented in Fig. 5(c).

Our calculated PL spectrum for a localized hole as the
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this as finite size domains of the WC with a distribu-
tion of melting temperatures, accounting for the contin-
uous transfer of oscillator strength between the two lines.
That two such lines are visible in real experiments, rather
than a broad continuum PL spectrum, seems consistent
with an electrostatic environment for the recombining
electrons that is fairly uniform through the sample, indi-
cating that there may be some (substantial) order in the
system.

The difhculty of observing local crystalline order di-
rectly in PL for the highly localized hole is clearly related
to the fact that a single electron dominates the electron-
hole recombination. This problem can be alleviated in
principle if the hole is not so strongly localized. We thus
consider an itinerant hole in the valence band, a geom-
etry which is only very recently being examined in the
WC regime. As explained above, electron-hole interac-
tions do not significantly alter the density of states of
the Wigner crystal in this case. Typical PL spectrum
for this system are shown in Fig. 6(c), for filling fraction
v = 2/11. As shown in Fig. 6(a), the electron density of
states has 11 bands with 9 bands above the chemical po-
tential empty, but the splitting between the lowest 2 filled
subbands is too small to resolve numerically. This is
apparently due to exchange effects. Thus, for the lowest
temperatures, one only sees a single peak in the photolu-
minescence. However, an interesting effect occurs when
the temperature is raised slightly (although not nearly
enough to melt the crystal): one then finds that struc-
ture is introduced in the PL peak. This turns out to be
due to the density of states for the hole. The hole also
moves in the periodic potential of the electron lattice and
the strong magnetic field, and so should be expected to
have 11 bands as well, as seen in Fig. 6(b). Since there
is no exchange interaction between the hole and the elec-
trons, the hole DOS is qualitatively diKerent from that
of the electrons. Specifically, the gap between the lowest
two bands of the hole is much larger than that of the
electrons, but much smaller than the band gap between
occupied and unoccupied electron states of the WC. So
if we increase the temperature moderately so as to allow
some non-negligible probability for the hole to occupy
the higher bands, but the electrons remain in the low-
est two bands, each hole subband that has a significant
probability of occupation will add a new line to the PL
spectrum. Once again, observation of this eKect would
constitute direct confirmation of crystalline order in the
2DEG. We believe that, with increasing sample quality,
this eKect should be observable in wider-well geometries.

IV. CONCLUSION

In summary, we have developed a theory of photolumi-
nescence for the WC in a strong magnetic field using the
time-dependent Hartree-Fock approximation. We find
that the PL spectrum is a weighted measure of the DOS
of the electron system. One can use PL to unambiguously
demonstrate the presence of a WC, by observing a gap
structure associated with the unique energy spectrum of
an electron in a periodic potential and a magnetic field.
We show that electron-hole interactions arising from a
localized hole (both screened and unscreened) tend to
remove the Hofstadter structure from the PL spectrum.
Instead, the PL is dominated by a single peak, arising
from a single electron localized in the vicinity of an un-
screened hole. Similarly, for the screened hole, a vacancy
bound to the charged acceptor ion is the only final state
significantly contibuting to the PL, resulting again in a
single line. The behavior of the PL spectrum for the
WC in the case of a localized hole at finite temperature
was also investigated. We found an upward shift in PL
energy as we approach melting point of the WC which
qualitatively agrees with the experiment. We also argued
that in an itinerant hole experiment, the gap structure
will be observed by raising the temperature because the
hole itself has a Hofstadter density of states, due to the
periodic potential provided by the electron WC and the
magnetic Geld. We believe that, with improved sample
quality, itinerant hole PL experiments should oKer the
best opportunity to observe this type of structure, which
is a direct consequence of the presence of a WC.

Finally, it is important to note that any real sample
inevitably has disorder, so that one should expect these
systems to form domains separated by grain boundaries
(provided the disorder is not strong enough to completely
eliminate local crystalline order). The effects of this dis-
order most likely would be to fill in the gaps in the density
of states that are associated with the Hofstadter butter-
Hy. Clearly, one needs a very high-quality sample to see
direct indications of crystal order in the PL.
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