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Conductivity-peak broadening in the quantum Hall regime
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We argue that hopping conductivity dominates on both sides of o peaks in low-mobility samples
and use a theory of hopping of interacting electrons to estimate a width Av of the peaks. Explicit
expressions for Av as a function of the temperature T, current J, and frequency u are found. It
is shown that Kv grows with T as (T/Tq)", where r is the inverse-localization-length exponent.
The current J is shown to afFect the peak width like the efFective temperature T rr(J) oc J ~ if
T,rr(J) )) T. The broadening of the Ohmic ac-conductivity peaks with frequency ~ is found to be
determined by the efFective temperature T s(ar) h&u/kz.

I. INTRODUCTION

The integer quantum Hall effect in a disordered two-
dimensional electron gas manifests itself the more clearly
the lower the temperature T. The steps connecting ad-
jacent plateaus in the dependence of the Hall conduc-
tance o~„on the filling factor v narrow with decreasing
T and so do the peaks in the longitudinal conductance
0 ~. In a number of experiments a remarkable result
has been obtained: the width Av of the peaks shrinks
as T ~ 0 according to a power law Av (x: T". The
exponent K, 0.4 was found in Refs. 1 and 2 to be uni-
versal; neither the Landau level index nor the electron
mobility are relevant at low temperatures. The mea-
surements have been performed down to temperatures
as low as a few tens of millikelvins, thus giving a de6-
nite indication that extended electron states exist at only
one energy within the broadened Landau level. Other
states should be localized. Although the question as to
the nature of the localization still remains unresolved,
various computer simulations strongly support this
concept yielding the power-law divergence of the local-
ization length ((E) oc ~E~ ~, p 2.3, as the electron
energy E approaches the Landau level center (E = 0).
Recently, the same value of p has been directly measured
by studying how Av scales with the sample size in the
low-T limit.

The conventional explanation of the scaling depen-
dence Lv oc T" is as follows. ' It is assumed that
at a finite temperature there exists a phase-coherence
length Ly the shorter the higher T. One believes that if
Ly « ((E&), E~ being the Fermi energy, the localization
is destroyed and the electron system exhibits metallic be-
havior. Similarly to the theory of weak localization, Ly
is expressed in terms of the diffusion coeKcient V and
the phase-breaking time 7y. Ly (177y) I . The time
w@ is set to be proportional to T " with the exponent
p which depends on the inelastic-scattering mechanism.
These arguments lead to the conclusion that the width of
the conducting energy band vanishes with decreasing T
as T"I2'r, so that K = p/2p (to describe the experimental
data in this way, one has to admit that p 2).

Although such an approach looks very attractive, in-
troducing the phase-breaking time to account for the
temperature-induced delocalization at o e2/h is not
obvious. There is no generally accepted theory for wy
in the quantum Hall regime. Here we suggest an ex-
planation of the scaling behavior Av(T) in terms of the
strong localization (approaching a peak from the region
where o « e /h). We start with the notion that the
only possible mechanism of transport in the strongly lo-
calized electron system is hopping. Consequently, the
temperature-induced conductivity far &om a peak should
be exponentially small. As E~ approaches the level
E = 0, the exponential factor must grow rapidly due
to the divergence of the localization length. Our basic
idea is to de6ne the width of a peak by determining the
position of the Fermi level at which the exponential fac-
tor of the hopping conductivity becomes of the order of
unity.

In the present paper, we realize this program for three
experimentally interesting cases diKering in the origin of
broadening: this may be temperature, current, or fre-
quency. In Sec. II, the width due to the temperature
broadening is shown to have a form

with the exponent r = 1/p, which is in accordance with
the experimental data mentioned above. The character-
istic temperature Ti which results from our considera-
tion is compared with that which is observed experimen-
tally. Good agreement is achieved for single Landau lev-
els which do not overlap with each other. As for anoma-
lously small experimental values of Tz in the case of two
close spin-split o peaks, we relate them to the anoma-
lous behavior of unsplit peaks that has been observed
recently. ' A width of steps in the Hall conductivity
is discussed. Section III is devoted to evaluation of the
width of peaks at very low temperatures as a function
of current J. The following power-law dependence is ob-
tained:
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(1) /a
Av=

/ Ji) (2) (7)

which is in a reasonable agreement with what is observed.
In Sec. IV we consider the Ohmic high-&equency conduc-
tivity o (ur). In the low-temperature limit hw » I"~T,
the conductivity is found to have a very simple form

o-

where c is the lattice dielectric constant. Thus, unlike
the dc case, the hopping ac conductivity decreases as
E~ moves away &om a peak according to a power law.
Equation (3) enables us to estimate the width of a peak
of cr ((u) as

Both Eqs. (3) and (4) agree with recent experimental
results. At the end of Sec. IV, we turn to describing
a magnetic field dependence of the dc photoconductivity
excited by a microwave radiation. A width of peaks of
the photoconductivity is shown to coincide with that of
o (ur) peaks. All the aforesaid results are obtained on
the assumption that the dielectric constant e does not
diverge as the Fermi level approaches the Landau level
center. In Sec. V, another scenario is considered in which
e for the length scale of the order of ( grows with (. It
results in new dependences of o on T, J, and w. We
are not able to choose between these two scenarios on
pure theoretical grounds but we argue that the experi-
mental data now existing do not support the scenario of
diverging e. Section VI contains concluding remarks.

A brief version of this paper has been published
earlier.

((v) denotes the localization radius of the states on the
Fermi level for a given v, k~ is the Boltzmann con-
stant, and C 6 iI» two dimensions. This tempera-
ture dependence was observed in the middle of the Hall
plateaus. zi'22 Note that Onozs also derived Eq. (6) (with
a difFerent expression for Tp) assuming a finite density
of states at the Fermi level but using unperturbed wave

4Afunctions of isolated impurities g(p) oc e / ", where
A is the magnetic length (see also Refs. 24 and 25). It
is known, however, that tails of wave functions are ac-
tually of a simple exponential form e ~/~ due to mul-
tiple scattering of a tunneling electron. Of course, this
form of the tails is consistent with a number of numeri-
cal calculations. That is why the exponential factor
of o has the same form as without magnetic field.

As mentioned above, the length ((v) diverges as v ap-
proaches a half integer vo..

((v) = (piv —vpi ~, p = 2.3.

Correspondingly, the value of To tends to zero as v —+
vo. Hence, at a given temperature, there should exist a
characteristic value of v at which the exponential factor
in Eq. (6) becomes of the order of unity. It is natural to
assume that it is the difference between this value and vo
that determines the half-width of a resistivity p peak
b, v. In this case, solving equation Tp(v) T with the use
of the relations (7) and (8) immediately yields a power-
law dependence of Av on T:

(9)

with v, = 1/p and

II. TEMPERATURE BROADENING
OF THE CONDUCTIVITY PEAKS

1 eTl=A )

2 8'

g(E) = ——iE —E~i.
vr e4

As a consequence, the temperature dependence of o
1S»8

where

(6)

We start with an expression for the temperature-
induced hopping conductivity o far away from a peak
where the conductivity is exponentially small as com-
pared to e /h. It is known that variable-range hopping
near the Fermi level is dominant in the low-temperature
limit. Therefore, to calculate the temperature depen-
dence of the conductivity in this regime, one should know
how the density of states behaves at E ~ E~. According
to Refs. 18 and 19, interaction between localized electrons
creates the Coulomb gap near the Fermi level, so that the
single-electron density of state g(E) vanishes at E = E+.
A form of the Coulomb gap in the two-dimensional case
is given by

where A is a numerical coeKcient. For p 2.3 we arrive
at the experimental value r 0.4. As for the charac-
teristic temperature T», to our knowledge, it is the first
time an explicit expression for T» is given. Note that T»
is of the order of To in the middle of an adjacent plateau.
Equations (9) and (10) might be interpreted in terms of
the conventional theory 'iz if L~ e /eT.

To compare with what is experimentally observed, we
should define the elementary length (p depending on the
properties of a random potential. Provided the poten-
tial fluctuations are short range, so that their correla-
tion radius is less than or of the order of the magnetic
length A, one may expect that (p for the lowest Lan-
dau levels is A (strictly speaking, (p should depend
on the strength of disorder but only logarithmically2P).
One believes that fluctuations of this kind are realized
in In Gai As/InP heterostructures, the experiment on
which Ref. 1 most clearly confirms the universality of the
exponent r. Extracting Lv from the data for p pre-
sented in Ref. 1 we obtain Ti 600 K for v =

2 (the
N = 0$ Landau level). Substituting then A for (p in
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Eq. (10) we find A 4, which looks reasonable. [This
value of Tq is also in reasonable agreement with values
Tp 500 K observed in low-mobility GaAs/Gaq Al As
(Ref. 21) for v = 2.] It should be noted, however, that
when the peaks corresponding to the spin-split N = 1
level are treated in the same way, Tz 30 K is obtained.
This temperature is much smaller than what one could
expect according to Eq. (10) with (p A and A 4. It
is worth comparing Tq 30 K with the measured value
of To for hopping at v = 3 which was found to be 7.8 K
for similar samples. This value is of the same order of
magnitude as Tq and also much less than what would be
expected from Eq. (7). The fact that both the character-
istic temperatures are so small for the spin-split N = 1
level indicates that the length (p for this level is much
larger than A. Anomalously small temperatures To were
observed also for all minima with large N [Tp 11 K
for v = 6 in In Gaq As/InP, 22 and 10, 5.9, and 2.7
K for v = 8, 10, and 12, respectively, in low-mobility
GaAs/Gaq Al As, nate that the value of Tp 41 K
for v = 3 indicated in Table 1 of Ref. 21 seems to be a
misprint: extracting Tp from the data for ln(crT) vs T
presented in Fig. 2 of the same paper, one would obtain
Tp 7 K]. This also means extremely large values of ( in
the middle of corresponding plateaus. Using Eq. (6) with
C 6weget( 30%for v=8and( 100k for v=12
in GaAs/Gaq Al As. We will return to the problem
of large ( below.

Now let us look more closely at the starting point of
our theory: the conductivity o on both sides of the
peak was claimed to be due to variable-range hopping
(6). The question is, can activation to the extended
states existing in the middle of the Landau level com-
pete with the variable-range hopping'? We argue that it
cannot. To make sure of this, we first consider a sin-
gle Landau level of the width I' which is much smaller
than the energy distances to the adjacent levels. For
example, such is the N = 0 $ level in the experiments
on In Gaq As/InP (Ref. 22) and GaAs/Gaq Al As
(Refs. 21 and 27) samples. Let us compare the contri-
butions to the conductivity from activation and variable-
range hopping provided the Fermi level is separated from
the center of the Landau level by its width I'. Note that
we consider low-mobility samples that do not display the
fractional quantum Hall efFect. Therefore the character-
istic Coulomb energy O. le /eA is supposed to be small
as compared with I'. In that case, the contribution from
activation is given by incr —I'/T while that from
hopping by lno —[(e2/eA)/T]~~~. It is clear that
hopping dominates not only at T ~ 0, which is usual,
but even at T of the order of the Coulomb energy (at
which temperature Av 1). Now it is easy to under-
stand that if the Fermi level is closer to the Landau band
center the conditions are still more favorable to hopping
because ((v) grows rapidly with decreasing Iv —vpI. It
can then be shown in the same way that hopping with an
energy transfer larger than [TTp(v)] ~2, the typical trans-
fer according to Eq. (6), is also of no importance. Hence,
variable-range hopping near the Fermi level is dominant
everywhere inside the peak of the density of states (and
outside the cr peak). In other words, we conclude that

the width I' [T/(e /eA))" of the energy band correspond-
ing to Iv —v

I
& Av is always much greater than T.

Let us turn to the question about the conductivity
when the Fermi level lies in the gap between the Lan-
dau levels. In wide gaps, some approximately constant
"background" in the density of states is observed.
However, it is an experimental fact that the fraction of
the total density of states corresponding to the gap is
small. ' Therefore the Fermi level may lie in the gap
only if v is very close to an integer. Since the density
of states is small, the average distance between the gap
states is much larger than their localization radius. It fol-
lows that hopping near the Fermi level cannot compete
at high enough T with hopping associated with activa-
tion to the states in the peak of the density of states.
Such an activation-type conduction has been studied in
Refs. 27 and 28. As T goes down, the concentration
of electrons activated to the bottom of the peak of the
density of states decreases rapidly and hopping near the
Fermi level becomes dominating. For v = 2 it happens
at T + 1 K both for In Gay As/InP (Ref. 22) and
GaAs/Gaq Al As. ' Thus the activation-type con-
ductivity does exist in the wide energy gaps but only
at high temperatures and in a narrow range of v around
an integer, for which reason it does not in8uence our es-
timate of Lv.

For the Landau levels with large N, the spin-split lev-
els, or for the levels corresponding to mixed states in
double quantum wells, the o peaks are observed in the
magnetic fields that may not be suFicient to form gaps
in the density of states. So the Landau levels overlap
while the o. peaks may not. In this case, variable-range
hopping near the Fermi level should be the only mech-
anism of conduction at any v and T. This is confirmed
by the fact that the conductivity at v = 3, 4, 6, 8, 10, 12
obeys the law (6) even for the highest temperatures.
However, as pointed out above, rather small values of To
as well as T~ are observed for these narrow gaps, e.g. , for
the gap which separates the centers of the N = 1$ and

1$ levels. Our approach enables us to relate the
anomaly in the values of To and Tq with another striking
phenomenon reported in Ref. 13: if the only one o peak
corresponds to the N = 1 level, i.e., its spin splitting is
not resolved, the width of the peak follows T"~ instead
of T" as for each of the g and $ peaks taken separately.
The same phenomenon was observed also for the unsplit
% = 2 level. According to direct measurements, the
localization length exponent in the latter case is much
greater than 2.3. Indeed, in our picture, the only thing
that may account for the change of the exponent in the
dependence Av(T) is a stronger divergence of the local-
ization length as compared with Eq. (8). For example,
the value of ( for the N = 1 level should behave as

[if two spin levels overlap strongly, the values of v corre-
sponding to the extended states are close to an integer in
contrast ta a half integer in Eq. (8)]. The length (p must
be proportional to the constant of spin-orbit interaction,
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so that Eq. (11) may be valid only for ((v) & A~v —3~

By analogy with the derivation of Eqs. (9) and (10), the
assumption (11) yields the width of the unsplit level

Av = (T/Ti) ~ ~, kriT,' e /s(o. (12)

where the energy E is reckoned from the middle of the
gap. At E = 0 we get ( (o(I'/Eg) ~ )) A. Conse-
quently, if the two 0. peaks are resolved and the hopping
conductivity in the middle between them is observed, the
value of To should be strongly reduced in comparison
with that for large gaps in the density of states:

e' (E,l"ke&o- &oEI') (14)

This equation gives also the characteristic temperature
at which the two peaks merge. We would like to draw
attention to the extremely strong dependence of To on
the ratio Eg/I'. Indeed, a very high sensitivity of proper-
ties of o peaks to the electron mobility as well as to
the angle between the normal to the plane in which elec-
trons move and the direction of the magnetic Beld has
been observed for the N = 1 level. To conclude this dis-
cussion, we have to say that we have no clear idea about
the mechanism of doubling of the localization-length ex-
ponent due to spin-orbit interaction. What we do here
with respect to close spin levels is a phenomenological
description of the experimental data from the point of
view of the approach based on the concept of hopping.

As mentioned above, the localization lengths for min-
ima with large v (obtained from the experimental data
for To) are also extreinely large. In our opinion, this ef-
fect can be related only to overlap of neighboring Landau
levels broadened by a disorder. Numerical calculations
show that the value of ( between. two lowest lying Landau
levels (spin has not been taken into account) indeed very
strongly increases with overlap. For example, according
to Ref. 30, ( 10k even when a half-width of the N = 0
level I' is only — of the cyclotron energy hw . Another
argument for the growth of ( follows from a conventional
understanding of the limit ~ ~ 0. It is an accepted
notion that the localization length at the Fermi level (~

We think that, even if a 0 peak is not spin split, there
exist two different energy levels corresponding to delocal-
ized states. The levels are separated by a Zeeman energy
Eg. The reason why two peaks may not be observable is
that the hopping conductivity between these two levels
is not small. As the Fermi level approaches closely any
of the levels, ((v) must diverge with the usual exponent

Therefore, when ~v —3~ becomes E~/I' && 1, one
should expect a crossover from the dependence (11) to
that which is similar to (8) but with much larger "ele-
mentary length" (o(I'/E~)~ resulting from matching in
the crossover point. The divergence of ((v) should take
place at v = 3 + hv, where 8v Eg/I . Thus our conjec-
ture is that the localization length behaves as follows:

r' y

gt E « I',' ~E2 —-'E2~

is exponentially large at E~w )) 1 in the limit of small
magnetic field:si ln(~ E~7/h, where r is the free path
time at zero Beld. According to Ref. 32, a total number
m+ 1 of times delocalized states cross the Fermi level as
the magnetic field changes from oo to 0 is equal to E~w/h
(spin is neglected here). This number is finite because no
delocalized states should remain under the Fermi level at
zero field. The function (~(v) exhibits local minima at
v = v; when E~ is in the middle between two conse-
quent energy levels corresponding to delocalized states.
Let us consider a sequence of m, lengths (, = (~(v, ) in
these minima. It is natural to think that (~(v;) grows
with increasing v; because eventually it should become
exponentially large. Each of the lengths (; being sub-
stituted for ((v) in Eq. (7) gives a characteristic tem-
perature T, e /s(, . According to our approach, as T
lowers with respect to T, , the ith minimum in the depen-
dence o (v) becomes much deeper than e /h, i.e. , a new
peak of o appears. Thus the sequence ((,) determines
evolution of the phase diagram disorder magnetic Beld
with changing T (in the integer quantum Hall regime in
low-mobility samples). Two phase diagrams have been
suggested recently. ' In one of them, all boundaries
between phases with different quantized 0. „exist at an
arbitrary small magnetic Beld. In the other one, the
boundaries disappear with decreasing magnetic field. It
is suggested in Ref. 34 that the diagram turns into the
diagram at T « T, where the characteristic tempera-
ture T, is exponentially small, lnT E~r/h. I—n our
picture, only those phases survive at finite temperature
for which T, is larger than T. Thus there is a wide tem-
perature range T, & T, & T & e /sA in which the
number of phases increases with lowering T.

We concentrated above on o and did not consider
the Hall conductivity o &. The width of steps in the
dependence of 0 „on v is observed to be of the same
order as that of o peaks. This fact seems quite natural
from the point of view of the present approach. Following
the aforesaid procedure, one should evaluate a correction
40. „ to a quantized value of 0» in the range of v where
0 is exponentially small. Naturally, the correction in
this range should be exponentially small as well. The
width of a step in o „can then be found by equating the
exponent of Lo. „ to unity. We are not going to discuss
here a very interesting problem of a ratio Ao „/o (or
the problem of a ratio 0 „/o in a weak magnetic field
which is similar in many respects) when both of these
values are exponentially small (some conflicting results
can be found in Refs. 35 and 24 and references therein).
We would like only to emphasize that the exponential
factors of Lo „and o. in any model of variable-range
hopping become of the order of unity simultaneously,
which means similar scaling behavior of Lv for 0 „and

III. CURRENT INDUCED BROADENING
OF THE CONDUCTIVITY PEAKS

The suggested approach permits us to elucidate yet
another interesting phenomenon observed at very low
temperatures. It was found in Refs. 36 and 4 that the
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Similarly to the case of Ohmic conductivity the width of
the o peak is found from the equation f~o(() E~.
Solving this equation for ( we get ( (e/sZII) ~, which
yields

(16)

where

(17)

p, = I/2p = r/2 and B is a numerical coefficient. Com-
paring Eq. (16) with Eqs. (9) and (10) one can notice
that the field F~ leads to the same broadening of the
peak as if there was the temperature

k& qB sr (18)

This relation is remarkably universal: it contains only one
parameter of the sample, its dielectric constant c. The
sensitivity of Av to E'II may be viewed as due to heating
in the critical region of the metal-insulator transition. In
this connection note the unusual square-root dependence
of T ~ on fII. The increase in Av with f~ was clearly
observed in Refs. 36 and 4, however, no treatment in
terms of power dependences was presented. Our analysis
of the lowest-temperature data of both the experiments
shows that they can indeed be described by introducing

T,g oc f~1/2

Another efFect we wish to mention in this section is a
saturation of Av with decreasing J in small samples. It
is experimentally established that a o. peak stops
narrowing as T lowers down to a characteristic temper-
ature T2 which depends on the sample size L. To evalu-
ate T2, we follow Refs. 4 and 14 and equate L and the
locahzation length at Av = (T2/Ti)". As a result, T2
turns out to be e /eL, and the correspo'nding width
Av ((0/L)". It has been shown above that ((v) may
be governed by the Hall electric Geld, too. Therefore one
should expect the saturation with decreasing F~ at the

wid. th Av of the 0. peaks grows with increasing cur-
rent J, i.e., with the increase of the Hall electric field

Let us show that the dependence Av(E~) can be
understood in terms of the theory of hopping in a strong
electric field. ' This theory is based on the fact that
there exists a quasi-Fermi-level inclined by the electric
field F. Zero-temperature hopping with phonon emission
then becomes possible and, even though there are no ab-
sorption processes, the local Fermi distribution with an
effective temperature eE( is formed. ' On this ac-
count, the exponent of the current-voltage characteris-
tics at T = 0 may be obtained from that of the Ohmic
conductivity by replacing T -+ eF(/2. In the quantum
Hall regime, if the Ohmic transport obeys the law (6),
the zero-temperature conductivity should behave with
increasing electric field as

o g
—( HP/ H) &/2 2k' Tp

same value of Lv if T « T2. We find that the character-
istic Hall field in which this occurs is (E~)2 e/sL

To conclude this section, we would like to suggest a
method of measuring ( which is based on observation
of the non-Ohmic phenomena far away from a peak of
0 ~. Suppose both the current dependence of o. at
low enough temperature and its temperature dependence
under the Ohmic conditions are measured at the same v.
If they agree with Eqs. (6) and (15), the value of ((v)
may be obtained as a ratio 2k~T0(v)/ego(v).

IV. BROADENING
OF THE ac-CONDUCTIVITY PEAKS

WITH FREQUENCY

0'(M) = i2s(Ld, @Cd (( kgb T. (19)

This expression is valid also for the conductivity 0 (w)
in the quantum Hall regime if o (cu) )) cr (tu = 0),
where the dc conductivity is given by Eq. (6). The last
inequality and the condition h~ && k~ T are met simulta-

In this section we address ourselves to evaluation of the
Ohmic zero-temperature conductivity in the quantum
Hall regime at a finite frequency u. Low-temperature
experiments ' have demonstrated a violation of a
strict quantization of o „(u) in the microwave range,
w/2vr 30—60 GHz, and its complete destruction at
~/2~ ) 150 0Hz. Recently, broadening of narrow cr

peaks has been observed. at a few tens of millikelvins as
the &equency changed in the range 0.2—15 GHz. Sim-
ilarly to the phenomenon of temperature-induced broad-
ening, the width Lv of the peaks has been found to ex-
hibit a power-law behavior Av oc u" with the exponent

0.4. It has been noticed that the value Lv at a
given u is of the same order as if the measurements were
performed at a temperature hw/k~. Such a correspon-
dence with respect to widths of plateaus of o „has been
reported also in Ref. 40.

In a spirit of the approach presented in this paper, it is
natural to think that the broadening with increasing fre-
quency is related to the ac-hopping conductivity. In con-
trast to the dc case, the hopping conductivity at a finite
frequency is determined by sparsely distributed pairs of
localized states, typical separation between two sites of a
pair being much shorter than that between pairs. There
exist two di8'erent mechanisms of absorption of quanta
hw depending on a ratio hen/k~T At hu && k~.T, a dis-
sipation is associated with relaxation losses whereas in
the high-frequency limit, hen )) k~T, it is due to reso-
nant phononless transitions of electrons from one site of
a pair to another. Both these mechanisms are strongly
afFected by electron-electron interaction if the Coulomb
energy on a length scale equal to a typical arm of a pair
is larger than hu. As shown in Ref. 41, the conductiv-
ity is enhanced by the interaction, so that a (cu) oc w as
~ ~ 0 rather than u as it follows from a one-electron
consideration. " However, explicit expressions presented
in Ref. 41 refer only to three dimensions. Relaxation
losses of two-dimensional electrons at H = 0 were con-
sidered by Efros. The following formula was obtained:
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neously only in the region of plateau far enough from the
conductivity peak. Presented at the end of this section is
a calculation of 0 (w) in the opposite limit hw )) k~T
It yields

(r (~) = ss(u), hu) && k~T (20)

Av=
~

' ~, T,~( )od&&T,
/T. g((u) )

)
(21)

where k~T g ——Dh~, D 1 being a constant. The
characteristic frequency uri [Eq. (4)] is equal then to
(A/D)(e /hs(o). Thus, when broadening of a peak is
considered, the value bod/k~ indeed plays the role of an
efFective temperature as it was observed in Ref. 15. Con-
sequently, the width of a conductivity peak at a Gnite fre-
quency exceeds the width of the peak in dc measurements
only if hu is greater than k~T. However, away from a
peak, the regime of relaxation losses may be observable
as well. We would like to stress that both Eqs. (19)
and (20) then make it possible to measure directly the
value of ( as a function of v, that is, to realize a kind
of "localization-length spectroscopy" (this possibility for
H = 0 was first noted in Ref. 42). Yet another way of us-
ing high-frequency measurements away from peaks is to
treat 0 (w) together with the temperature dependence
of 0 at the same v. At hu &) k~T, for example, com-
bining Eqs. (20) and (7) we get a measurable quantity

O (u)) C 2I = kg)TO ———e,
6

(22)

which should not depend on v. An experimental obser-
vation of this invariance would verify our approach as
based on the Coulomb gap theory.

Now let us turn to derivation of Eq. (20). The ac
conductivity in an electric field fo cos ut is equal to
2Q(od)/Eo, Q(cu) being the energy dissipated per unit
time and unit area. A general expression for Q(cu) at hw

much smaller than the energy spacing on a scale of the
localization length has a form

Q(~) = fd*pfdBP'(0, p)q(~, o, p),

where

(23)

2' t' 1 I(p) i
q(~, n, p) = —h(u

~

—estop
h, (2 h& j

xb(her —[(hA) + 4I (p)] ) ) (24)

is the contribution to Q from a pair with a distance be-

This expression difFers froin Eq. (19) only by a factor
of 2. It is interesting to note also that taking electron-
electron interaction into account led to disappearance of
the electron charge in both of them. Another observation
is that, in both cases, o (u) diverges together with ( as
Ep -+ 0. Therefore Eq. (20) for the zero-temperature
conductivity enables us to estimate the width of a peak
in a (od) by making use of the condition that the con-
ductivity near the peak is of the order of e /h. With the
help of Eq. (8) this gives

tween sites equal to p and a difFerence between energies
of localized states which form the pair (leaving a quan-
tum overlapping of the states out of account) equal to
M, and F(A, p) is the probability density to find a pair
with given 0 and p within unit area. In Eq. (24), I(p)
stands for the overlap integral of two states of the pair
and the expression in parentheses is the matrix element
of transition within the pair. Due to the Coulomb gap
efFects, the distribution function E does not depend on
0 in the range hO « e2/sp and is equal to42

2 ' 2

(25)

Representing the overlap integral in the form I(p)
(e /e'() exp( —p/() and performing integration with a log-
arithmic accuracy with respect to a large parameter
e /hods( we obtain Eq. (20). The main contribution
to the integral (23) is given by pairs with ~p

—p
p being equal to (in(e /hue(). However, in. contrast to
the three-dimensional case, no logarithmic factor arises
in the final formula (2), so that the dependence cr (w)
is pure linear as w ~ 0.

The rest of this section deals with the dc photoconduc-
tivity 0~h under microwave illumination with a frequency
w » k~T/h The last .inequality means that absorption
is described by Eq. (20). A theory of the hopping pho-
toconductivity due to a long-wave excitation in a three-
dimensional system of localized electrons was developed
in Ref. 43. It is based on the fact that, having absorbed a
quantum hw within a pair of close states, an electron has
a much greater probability to recombine with a "gem-
inate" hole rather than with any other. Thus typically
an electron experiences a nonradiative transition directly
back to the initial state and so does not contribute to the
photoconductivity. A basic idea of Ref. 43 is that there
exist very rare pairs each situated at the beginnings of
two chains of localized states ("electron and hole wires" )
so as to allow geminate electrons and holes to leave each
other with much greater probability than in typical pairs.
It is these rare pairs that give the main contribution
to the photoconductivity (calculation of their statistical
weight is the main subject of Ref. 43). Extending this ap-
proach to the case of the quantum Hall eKect, we obtain
with logarithmic accuracy

0&h oc exp
2 li12 ( Ep h, (d ) (26)

This is just the same expression as found in Ref. 43: when
hw is much less than a width of the Coulomb gap, the
leading term in the exponent of o&h does not depend
on dimensionality [such a universality is inherent in the
Coulomb gap theory and manifests itself also in a similar
form of the temperature dependence (6) for two and three
dimensions ' ]. The value of a~h as a function of v
at a given w exhibits peaks due to changing p (x
Equating the exponent in Eq. (26) to unity, we find that
the width Lv of the peaks is of the order of that for the
ac conductivity at the same frequency u. As for minima
of o~h, they are much deeper than those of 0 (w).
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V. DOES THE DIELECTRIC CONSTANT GROW
NEAR THE PEAKS OF o~~

(27)

At p )) (((/A) ', when electric field lines completely
leave the plane, V(p) crosses over to e2/sp. The log-
arithmic interaction leads to the "hard" Coulomb gap
and the Arrhenius-like temperature dependence of the
hopping conductivity:

0. = Ooe (28)

where

(29)

In the same way as before, the width Av of a peak can
then be found &om the equation To(v)l: T. It yields

b, v = (T/Ti) ~&'+-~& (30)

Until now we-assumed the dielectric constant e to
be independent of the Fermi level position. This re-
quires a special study because the localization length
( diverges as Ey approaches the Landau level center
and the insulator-metal-insulator transition takes place
at E~ ——0. In the three-dimensional case, in the vicinity
of the metal-insulator transition, the dielectric function
s'(k) is believed to exhibit a strong wave-vector depen-
dence on scales k & (. As a result, the value of s(k)
at ( & k is supposed to be, in the insulator phase, as
large as ((/(o) '. The exponent ns may lie in the range
0 & o;3 & 2. Analogously, one may well think that the
dielectric function s(k) in the quantum Hall regime, de-
fined according to the expression V(k) = 2vre /ks(k) for
a two-dimensional Fourier component of the interaction
energy between two electrons, behaves like s(kA) ' at
A & k &(, 0 & n2 & l, andsoisoftheorderof
e'((/A) ' at k (, s being the lattice dielectric con-
stant. However, unlike the three-dimensional case, s(k)
of two-dimensional electrons should decay with decreas-
ing k at k » (. Explicitly, it should change with k
as yak(((/A) ' for ( (( k (( (((/A) ', where g is a
numerical coeKcient. This means that, similarly to the
case of a thin film with a large dielectric constant, the
interaction energy in the range ( « p « (((/A) ' decays
according to a logarithmic law rather than proportionally
to p

tioris in the critical region (/A ~ oo are necessary to solve
this problem definitely. Nevertheless, in our opinion,
there exists strong experimental evidence that o.2 & 0.2,
which probably means that actually o.2 ——0. First, ac-
cording to the experimental data for To at v = 3 in
In~ Gai As/InP samples, the localization length ( in the
middle of a minimum separating two o peaks, N = lt
and N = 11,, is very large. Using Eq. (7) with C 6 and
the value of To 7.8 K (Ref. 22) we estimate the ratio
(/A at 80. It follows that, if the scenario with large
s(k ( ) would be realized, there should be observed
a large range of temperature within which the depen-
dence (28) is valid. However, at v = 3, as well as in
other minima where the value Te is very small, Eq. (6)
describes well the whole range of T corresponding to hop-
ping conductivity. ' The second experimental indica-
tion that n2 (( 1 is related to a saturation of Lv with
decreasing T observed in small samples. ' The tempera-
ture of saturation T2 (see discussion at the end of Sec. III)
can be found by equating the sample size L and the lo-
calization length at Av given by Eq. (30), which yields
T2 (e2/sL)(A/L) '. We would like to emphasize that a
ratio L/A at which the measurements ' were performed
is in the range 10 —10 . Therefore the value of T2 at
large L would be strongly reduced as compared to e2/sL
and would decay with L faster than 1/L. However, the
experimental value of T2 3e /eL, which m'eans that n2
cannot be greater than 0.2. Besides, T2 decreases with
increasing L even slower than 1/L, which is completely
inconsistent with the large s(k) scenario. There is yet an-
other piece of evidence against this scenario. It is related
to the current dependence of Av. If z(k ( i) diverges
with (, dependence T,rr Ix (ZH) with b = 2+ ' would

take place instead of Eq. (16). At n2 ——0 the exponent
6 = 1/2, whereas at n2 ——1 it is equal to 2/3. According
to our analysis of the experimental data, the value of
h is close to 1/2, which means that n2 is small.

In spite of the lack of evidence in support of the large
s(k) scenario, we think that another verification of non-
divergency of s(k) would be useful. We suggest studying
a temperature dependence of the variable-range hopping
conductivity near peaks to discriminate between Eqs. (6)
and (28). Moreover, such measurements could verify our
approach as using the Coulomb gap concept. Provided
the temperature behavior is described by Eq. (6), one
could try to fit the dependence To on ~v —vo~ by the
power law To ot: ~v —vo~P. Our prediction is that the
exponent P is equal to v where K determines the tem-
perature dependence of the width of 0 peaks.

where Ti (e l:/sA). To get the experimental value of
the exponent v in that case, one should assume that p
2.3/(1+ n2), which is possible for the localization-length
exponent in the many-electron problem but contradicts
the results of numerical computation for the one-electron
exponent p. Equations (28) and (29) are valid in a range
of temperature (A/()~'To (( T (( Trj. At T To(A/()
a crossover &om Eq. (28) to Eq. (6) takes place.

We cannot answer the question of whether the value of
o.2 is equal to zero or is finite; both scenarios are possible
from the theoretical point of view. Numerical calcula-

VI. CONCLUSIONS

Before concluding remarks we would like to point out
two difBcult problems which arise within our approach
to estimation of Av. The first of them is related to the
prefactor cro in Eq. (6). As a rnatter of fact, our theory
can work literally only if

e' (Tl
~o = f I

—/, — (»)h (To) '

where f(x) is a dimensionless function (strictly speak-
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ing, it might depend on IV'). Experimental datazi zz for a
number of minima of o do not contradict this law. Plot-
ted as ln(o T) vs T ~ they show straight lines, which
enables one to use the function f of a form f = f (To/T)
for fitting the data. We found that the values of f for
different minima lie within a range 0.2—0.6, the values
for minima with small To being close to 0.5. However,
Eq. (31) offers a theoretical problem: it contains only the
ratio of k~T to the Coulomb energy on the length scale
of the order of ( besides to the universal constants. It is
clear that such a prefactor cannot be derived within the
&amework of a conventional theory of phonon-assistant
hopping (in the limit of weak electron-phonon coupling).
Probably, to get Eq. (31), one should use as a starting
point an idea of hopping due to only electron-electron
scattering at Gnite temperatures suggested in Ref. 47.

The second problem refers to the fractional quan-
tum Hall regime. Recently, a remarkable observation of
the scaling behavior Lv cx T" in this regime has been
reported. ' According to Ref. 48, the exponent ~ 0.4
is the same as for the integer quantum Hall effect. To-
gether with an experimental observation of the variable-
range-hopping law (6) for fractional gaps, 4s this gives
an indication that our results may be applicable to the
fractional regime, too. If that is the case, the charac-
teristic temperatures Tq and To contain the fractional
charges and so should be much smaller than those for
the integer effect. The experimental values of Tq and
To are actually very small. ' Note that one could use
the invariant I [Eq. (22)] to compare effective charges of
hopping excitations for different plateaus. The theoret-
ical problem is to understand the nature of localization
in the fractional quantum Hall regime (Ref. 34 and refer-
ences therein) and, correspondingly, to determine which

excitations hop.
In conclusion, this paper emphasizes an important role

which the hopping conductivity plays in the quantum
Hall effect. A new approach to calculating the width Av
of o peaks is formulated. It is based on considering the
hopping conductivity far away from a peak where the
hopping length typically exceeds the localization radius
and finding the distance in v &om the middle of the peak
at which these two lengths become of the same order of
magnitude. Dependences of Lv on temperature, current,
and frequency are found. They seem to be in good agree-
ment with existing experimental data. It is shown that
the hopping conductivity away from peaks measured as a
function of T, J, and w can give direct information about
the most important value in the quantum Hall effect the
localization length ( as a function of v. We argue that
the length ( in the middle of a plateau directly deter-
mines the temperature at which the plateau disappears
and two peaks surrounding it merge. The point is that
the peaks may be observed as distinct only if the hopping
conductivity between them is small enough.
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