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We study the transport properties of quantum dots and quantum point contacts in the Coulomb
blockade regime and in the limit where the quantum point contact has nearly fully transmitting
channels. Using a transformation to a multichannel Tomonaga-Luttinger-type model, we find the
scaling behavior of the junction close to pinchoK It is shown that the junction scales to an insulating
junction. We find a crossover between a low-temperature regime with Coulomb blockade to a high-
temperature regime where quantum charge fluctuations are dominant. The crossover temperature
between these regimes is given by T, U[1 —Go/NGH], where U are the bare charging energy,
Go is the nominal conductance, N is the number of channels, and G~ = e /h.

I. INTRODUCTION

Since the work by Landauer our understanding of
transport in mesoscopic systems has been guided by the
relation between the conductance and the transmission
amplitude, expressed in the Landauer formula. The Lan-
dauer formula is, however, not sufhcient to describe the
conductance of mesoscopic systems, such as small capac-
itance junctions and dots where correlation eKects are
important. In recent years, it has become experimentally
achievable to fabricate microstructures small enough to
observe the blocking of the tunneling current due to the
charging energy associated with a single electron, an ef-

fect known as the Coulomb blockade. Small capacitance
quantum dots (QD's) is an example of such systems
where single electron charging eKects are observable,
leading to the so-called Coulomb oscillations in the tun-
neling current through the island. These developments
have made it necessary to understand the role of quan-
tum charge fluctuations which is an inherent feature of
these devices. One source of charge fluctuations is the
electro-magnetic environment of the junction. More
interestingly, charge fluctuations within the mesoscopic
sample itself may lead to a smearing of correlation ef-
fects. The transparency of the sample will determine the
reduction of the charging energies and hence the observed
capacitance of a rnesoscopic sample is, like the conduc-
tance, related to its transmission amplitude.

Experimental evidence for the transmission amplitude
dependence of the observed capacitance has been given
by Kouwenhoven et a/. who observed that the Coulomb
oscillation of the conductance through a quantum dot
confined between two quantum point contacts (QPC's)
vanishes as the conductance of one of the QPC's ap-
proaches the value 2G~. A similar eKect is seen by Fox-
man et al.

Also in tunnel junctions with a large number of trans-
verse channels does the departure from non-Ohmic be-
havior depend strongly on the nominal conductance of

t jon 12 ' 13 There have been both exper jmental12, 13

and theoretical attempts to address the question
of how the Coulomb blockade is modified by charge
transfer fluctuations. Odintsov and later Zwerger and
Scharpf showed theoretically that only at temperatures
T ( exp( —Go/2GIr) do the tunnel junctions exhibit
blocking of the tunnel current. We Bnd similar results
in the case of a few nearly fully transmitting channels.

In this paper, we calculate the conductance of QD de-
vices in the limiting case where the connecting QPC's
have channels with transmission amplitudes close to 1.
This is done by mapping the model Hamiltonian to a
series of coupled one-dimensional Tomonaga-type mod-
els. Inspired by the recent paper by Kane and Fisher,
the model Hamiltonian is considered in two representa-
tions where the junction is viewed as a weak link or a
weak barrier, respectively. In the latter case, we find
an effective action, which involves only the local charge
on the tunnel junction which is then used to calculate
the conductance. It is found that the Coulomb blockade
is strongly modified by the charge transfer fluctuations
through the QPC. A crossover temperature between an
Ohmic regime and a regime with Coulomb blockade is
identified. The crossover temperature goes to zero as the
reflection probability of the QPC goes to zero.

The paper is organized as follows: In Sec. II, we intro-
duce the model, which in Sec. III is transformed to the
bosonized form and an effective action is derived. This
action is used in Sec. IV to calculate the conductance.
In Sec. V we analyze the efFective action by scaling ar-
guments. Section VI deals with the predictions for the
measured conductance and capacitance, and a discussion
of the results is in Sec. VII.

II. THE MODEL HAMILTONIAN

First we briefly discuss the experimental configura-
tions that are being considered. ' Figure 1 shows a
typical geometry of a QD formed by electrostatic con-
finement of a two-dimensional electron gas (2DEG) in
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Conf. 1

QPC 1 QD QPC 2

Gate

FIG. 1. Typical geometry of the quantum dot experiments
discussed in this paper. The dot is connected to leads by two
quantum point contacts. Their widths can be controlled by
the gates as can the potential of the dot. We study the case
where the quantum point contact has a conductance close
to the first quantized value. The number of channels with
transmission close to 1 is Nz and N2, respectively.

a GaAs/Al Gaq As heterostructure. The electrostatic
potential is set up by the gates. Typical size of the QD
is 500 nm, and it contains of the order of one hundred
electrons. The mean &ee path due to impurity scattering
is much larger than the dimensions of the device. The
QD is connected to the 2DEG through QPC's.

Next we discuss the modeling of this system. If the
confining potential of the QPC is sufficiently smooth
(which is a reasonable approximation because of the elec-
trostatic nature of the confining potential) the single par-
ticle states can be described in the adiabatic picture.
Under this condition the electronic states are quasi-one-
dimensional and the single electron part of the Hamilto-
nian can be approximated as

Hel = ~0 + ~barr &

where

N 2

H, = ) dh @t(h) tl„(h),
n=1

and the barrier is described by

N

IIb „=) dh V„(h)@t (h:)4'„(h:).

Here we have defined the field operators @ (h)
f dy P (y) 4(h, y), where P (y) is the eigenfunction for
the transverse direction. N is the number of channels
included. The transverse eigenstates depend parametri-
cally on x. The adiabatic picture breaks down as the
contact becomes wider and the individual channels start
to mix. Because there are a large number of states in the
dot the electron transport from one QPC to the other
is assumed to be incoherent and we can treat the two
contacts independently. (In the case of an applied strong
magnetic Geld adiabatic channels that connect the two
contacts can exist. s) It is thus assumed that the thermal
energy is larger than the level spacing energy in the dot.

Next we discuss the role of the electron-electron inter-
actions in the quantum dot geometry shown in Fig. 1.
The electron-electron interactions in the tunnel barrier

Conf. 2

FIG. 2. The configurations of the device in Fig. 1 that is
considered in the paper. In both cases G2 & Gq. Configura-
tion 1: contact 2 is in the tunneling regime whereas contact 1
has channels with small re8ection probability. Second con6g-
uration: contact 2 has channels close to pinchoK and contact
1 has a number of fully transmitting channels. See Table I for
a summary of results.

region are neglected because of the low density of elec-
trons there. It is furthermore assumed that a large num-
ber of transverse modes are occupied in the leads as well
as in the dot such that the electron-electron interaction is
well screened and we can view the QD as a capacitor. In
terms of time scales this involves the approximation that
the rearrangement of the charge distribution in the dot
happens on a time scale (typical of order of the inverse
plasma frequency in the dot) much faster than the char-
acteristic time of the tunnel event, r~ = 5/(e /2CD),
where CD is the total capacitance of the dot (dot-to-lead
and dot-to-gates). With these approximations we can
write the interaction energy as simply the electrostatic
energy

IIint = UD(vi + iI2)

where UD = e /CD, and q, is the number of electrons
that have passed through contact number i into the dot,
relative to the equilibrium number of electrons in the
dot. In summary, the assumptions that justified the elec-
trostatic model for the electron-electron interactions are
(i) we must require a large density of states in the dot
and in the leads, that is, the level spacing is small com-
pared to the relevant energy scales for the experiment,
and (ii) interactions in the contacts and in the leads can
be neglected. This requirement is somewhat question-
able in the case of several open and nearly open channels
in the QPC's. However, when the width of the contact
is small compared to the dot size, the traversal time for
the passage through the QPC is much smaller than 7~
and hence the transfer of charge from the leads to the
dot is governed by the correlation energy in the dot. The
electrostatic energy model is thus expected to be valid
also in that case if the width of the point contact is much
smaller than hv~/UD, which is typically the case. In this
connection it is interesting to note that Coulomb oscil-
lation effects have also been observed when the contacts
have fully transmitting channels.

The total model Hamiltonian now reads

0 = a1,i + H2. i + II;„„
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where 0;,~ describes the single electron part of junction
number i. As explained above we neglect simultaneous
tunneling (cotunneling) through both contacts which are
thus treated independently. It was shown by Averin and
Nazarov that the cotunneling contribution to the lin-
ear conductance is proportional to the level spacing in the
dot which we have assumed to be the smallest energy in
our system. Therefore, in our model tunnel events only
couple through the interaction term. Along similar lines
of reasoning we can assume that once an electron has
passed through the constriction the probability of being
scattered back through the contact opening is negligi-
ble. This allows us to treat the adiabatic modes as one-
dimensional channels with scattering taking place solely
at the constrictions.

The conductance of the device discussed above will be
calculated in two simplifying limits, see Fig. 2. For the
first configuration it is assumed that G2 &( Gl, GH such
that we can assume that the dot is in equilibrium with
lead l. (Here G, is the nominal conductance of QPC
number i.) The conductance of the device can therefore
be calculated with the usual tunneling theory to second
order in the tunneling matrix elements. With these as-
sumptions we get the standard expression for tunneling
current,

G2 d(dI= [(cu —eV)n)s (cu —eV)c 270

—(~ + eV)nB((u + eV)]P(cu),

channel, which are then coupled through the charging
energy term. Quantization of the one-dimensional states
in a box of size L gives

N

Ho = ) ).e~kc„i,c~x&

Hbarr
n=l kk'

(io)

where we have modeled the barriers by b-function poten-
tials: V (x) = V h(x), since the detailed shape of the
potential is not important for the low-energy behavior.
The one-dimensional nature allows us to transform the
problem to a coupled set of Tomonaga- or Luttinger-type
models. ' The basic approximation in this model is the
linearization of the electron energies,

.„„=n~„(IkI —k~„).

In the Luttinger model it is furthermore assumed that the
dispersion curve does not terminate at k = 0, kD, where
kD is the bandwidth, but continues to Woo. The thus un-

physical states introduced do not alter the results as long
as e8'ects of the finite bandwidth are unimportant. In the
present case we are interested in the transport properties
at low energies compared to the bandwidths, and for sim-
plicity we therefore adopt the Luttinger model.

Here the basic steps are briefly reviewed. The boson-
ization starts with defining the density operators,

where nB is the Bose function, eU is the voltage difFerence
across contact number 2, and P(w) is a spectral function
defined by

p-(k) = Ek c.k, c-(~ +~)*
t

p»i( k) = Qk& c~(i,&~i, ),cnk'i&
(12)

P((u) = dt e* 'P(t), where k ) 0. The density operators obey the commuta-
tion relations,

where

p(&I —(j(H .+» s,')&~ —'IH'+~ tv+')'I&
1

kL
lp-~( —k) p- ~(k')) = [p-2(k') p- .(—k)] =

2
~- ~»

Texp
I

—i dt'q, (t')
I

[p 2( ") p '~(k )) = O.

The function P is in general a complicated many-body
object. However, under the assumption that the charg-
ing energy is small compared with the bandwidths of the
channels connecting the dot to the lead, we can formu-
late the problem in terms of a Tomonaga-Luttinger-type
model. This will be done in the subsequent section.

The second confi. guration considered is the case where
G2 is close to pinchoK and contact 1 has a number of
transmitting channels. For this configuration we cannot
use perturbation theory in the tunneling term but instead
we will calculate the conductance using perturbation the-
ory in the scattering barrier.

III. BOSONIZATION AND EFFECTIVE ACTION

A. Boson form of the electron Hamiltonian

Physically, the cl and c2 operators correspond to parti-
cles moving to the left and to the right, i.e. , the electrons
have been separated into two sections corresponding to
positive and negative k's. If we write the unperturbed
part of the Hamiltonian as

N 2

Ho ——) ) ) e.kc'„;c.k, ,
n=l i=1 k

we have the commutation relations,

[Ho, p„i(k)] = kp„, (k),
[Ho, p„2(k)] = —kp„2(k).

In the standard way IIo can now be written in terms of
the density operators,

Ho =
~ ) .«- ) .[p-~(k)p-~( —k) + p-2( —k)p-. (k)]

k)0

As explained in Sec. II, the QPC may be regarded
as a a series of one-dimensional problems, one for each
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where we have introduced the Fourier transforms: p(k) =
J dx e'" p(x), and the field operator P and its conjugated
momentum P given by

1 I
S»(x)+&2(x) = ~*& ~i(x) -~2(x) =—

(17)

These fields obey the commutation rule [P(x), P(x')] =
i8(x —x'). The momentum P is the difference between
left and right movers and thus equivalent to the current
operator.

We must furthermore And the bare charge diBerence
in the boson language of the Luttinger model. Again
modeling the interface between dot and lead as an abrupt
barrier, we write the number of excess electrons, qi, in
the dot as

C~1,2 exp + ) k
[Pnl, 2 ( ) Pnl, 2 (—k)]

k)0

where the prefactor is fixed so that the commutation re-
lations (21) are fulfilled for n = n' and i = i'. How-
ever, for di8'erent mode numbers and for the two difer-
ent species of electrons, anticommutations relations must
also be maintained, and it is necessary to include an ex-
tra phase factor in the bosonized form of the C's. Each
C; should have an extra factor: exp(i8, ) defined as
(Jordan-Wigner transformation)

'41 7r ) ~jl ) en2 7r~l + jr ) ~j2)

&i = ) . "x O(x) [~-i (x) + ~-2(x)]
n=a

for contact 1. The expression (18) is valid to leading
order in k/k~ for the Tomonaga model.

The barrier term splits into two terms when the elec-
trons are divided into the left and right mover sections:
a forward and backward scattering part,

N

sat,.„=) —") p„„;y ) —") (c„'„,c a, , +H.c.).
n=1 ki n=l kk'

where we have defined the number operators N; cor-
responding to the operators C, . Fortunately, we can
show that this complication can be disregarded. First we
observe that the ¹scommute with the remaining part
of the Hamiltonian. If we then consider, e.g. , the parti-
tion function and expand it in orders of the perturbation
it can be shown that the operators can always be rear-
ranged so that the phase factors disappear. Therefore,
they can be omitted.

The backscattering term can now be written in terms
of the boson operator by the use of Eq. (22), and we

finally arrive at the fully bosonized form of the model
Hamiltonian,

(19)

1 ).c.k;,
k

(20)

where Nl, is the number of states in our normalization
volume: Nl, = P& 1. We have therefore introduced an
upper cuto8' kD, that is given by the bandwidth: kD ——

27r&L, /I. The new local operators obey the usual anti-
commutation relations,

Following Schotte and Schotte we note that [p(k), Ct] =
C~, which suggests that we can write

The forward scattering term can be absorbed as a phase
shift and is not important. The backscattering term can-
not be expressed as a bilinear form and in order to deal
with this term, we must use the boson representation of
the Fermi operators. We will use a formulation due to
Schotte and Schotte for the x-ray edge problem. The
bosonization technique was later generalized. The rea-
son for using the first is that in the present problem we
need only the boson form of the local electron operators
at x = 0. Now define the fermion operators

1V1

+ ) exp (2i ~erg (0)) + H.c.
=1

(24)

B. Effective action involving only the local Belds

The model Hamiltonian has now been transformed into
a series of coupled I uttinger liquids. The next step in
our calculation is to integrate out all degrees of freedom
except those associated with the P (0)'s. This can be
done because the nonquadratic terms involve only P (0).
Consider now an imaginary time Feynman path-integral

where a = 1/2vrkii defines the inverse upper cutoff for
k. Here we have only performed the bosonization for
the degrees of freedom (denoted by Pi ) corresponding
to charge transfer through contact 1, which is relevant
for the calculation of the conductance in the G2 (& G~
case discussed in Sec. IV A, whereas in the calculation
in Sec. IV B both contacts are dealt with in the boson
representation.

The exponential in Eq. (24) is a displacement opera-
tor which displaces the variable conjugated to ~a/ (0)
[which is P(0)) by 2. The factor of 2 appears because
the backscattering term turns a forward moving particle
into a backward moving particle, giving a total current
change of 2.
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form of the bosonized model above. After the integra-
tion, which is done in Appendix A, the part of the action
corresponding to Ho reads

N,

S'0 = ) —) l~ll@*-(i~)I' (25)

where i is 1 or 2 and P denotes P(x = 0). The w sum
is for each n restricted to energies smaller than a cutoff:

= harv~ /a; see Appendix A for a discussion.
The effective action for the local fields, P, correspond-

ing to the Hamiltonian in Eq. (24) then takes the form

N1 2

UD 1S=S»+ —) )

Wq ——Vz /v& can be related to the reflection prob-
abilities and thus also to the nominal conductance (see
Sec. VI), Wq~ = Rz~. Insertion of Eq. (28) into Eq. (6)
leads to a low temperature conductance given by

2/Ng|."(T) = &,

(29)

The result in Eq. (29) shows that the perturbation the-
ory is inadequate when the second term in the parenthe-
ses becomes of order 1. The consequence of the increase
in the correction term as, e.g. , the temperature is low-
ered, will be discussed in Sec. VI.

'. V„+)
+nn=l

d7 cos(2~7l Qy~), (26) B. The conductance for Gq ~ NqG~

which completes the bosonization part. In the follow-
ing the action above is used to derive the temperature
dependent conductance.

IV. THE CONDUCTANCE OF THE QD DEVICE

We shall here calculate the conductance using pertur-
bation theory in the weak and strong coupling limits, i.e. ,
for a weak tunneling matrix element and weak scatter-
ing barrier, respectively. Contact number 1 is assumed
to be strongly coupled to the lead, whereas contact 2 is
considered in both of the two limits.

N2

l=eq, = — ' )7r n=l
(30)

Next we consider the situation where junction number
2 has a nominal conductance close to a quantized value
and again do perturbation theory in the barrier. Con-
tact 1 has a number, given by Nl, of fully transmitting
channels. The conductance to linear order in the voltage
across junction 2 can be calculated from the Kubo for-
mula. For the case where G2 N2GH it is appropriate
to use the boson representation for the q2 degrees of free-
dom as well. In the boson language the current operator
is given by

A. The conductance for Gq (( GH

The frequency dependent conductance is then given by
the usual Kubo formula,

For the case where the nominal conductance of contact
2 is small the expression for current through the QD is
given by Eq. (6). The spectral function P(w) must be
calculated with respect to the action in Eq. (26) (setting
q2

——0). To zeroth order in V we obtain

1
t (~) = —Imli((u+ i8),

where II is the current-current correlation function. If we
denote 42 = P 'z P2, the Matsubara current-currentN2

correlation function becomes

de (e ' ' —1)[1+n~(cu)]lPl l t =exp
(Ng e 1 + [~~/NgU]2 )

(27)

Comparing with the theory of a single junction, we
see that the characteristic of a QD biased so that one
QPC is in the tunneling regime, while the second has N
fully transmitting channels, equivalent to a single junc-
tion seeing an environment impedance of Z = h/(Nqe ).
The low energy behavior of Pl l (w) is given by Pl l (w)
(tu/U~) ~ ' . At low energies the higher order terms in
V become relevant and we have calculated P to second
order in V . Details are offered in Appendix B. The low
energy behavior is of the form

NI

P(~) = P~ l(~)
I

1 —K(~/U~) ' ) Wg, (28)

C (d
11(i~) = (IC'2(i~) I').

S = S2o+ —) H(i(u) IC2(ice)l

N2).V2„
+nn=l

dw c os (2~mP2~ ),

where

The expectation value should be taken with respect to an
action where both contacts are treated in the boson rep-
resentation. Since contact 1 is assumed to have Nl chan-
nels with negligible refiection, these can be integrated out
and we are left with an effective action involving the P2
fields,

where v is a constant of order 1 and where the constants

1
II(i~) = l~l~ (34)
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First we find the zeroth order expression for the con-
ductance. In this case the action can be written in terms
of 42 alone. We obtain

S( ) = —) lC2(i~)l D '(ice),

The correction to the conductance is seen to diverge at
small energies in agreement with the renormalization-
group arguments presented in the following section. How-
ever, the divergence is slower than for the case studied
in Sec. IV A where only one junction had channels with
transmission probability of order 1.

where

D (iw) =
l

H(i(u) + fee[ 5

N2)
'

and the current-current correlation function follows as

e
II(i~) = D(i~).

27r

Inserting this into Eq. (32), we find for the conductance
for V„= 0,

eG( )((u) = N2 —Re
6 N2

Nq +in m /U~

The low frequency result is a constant nonzero conduc-
tance,

2
G(P)( )

e 2 1

6%, +N, (a9)

h ~2+ (UN2/7r)
(40)

For small frequencies the conductance goes to zero as
(w/U~) in agreement with the findings in Ref. 26, where
this result was found for a single channel model regard-
less of the value of the tunneling matrix element, and
with perturbation theory to second order in the tunnel-
ing matrix element. Zwerger and Scharpf found that
the conductance decreases quadratically with tempera-
ture for this model. The result in Eq. (40) shows that a
model which ignores the discharging effects cannot have
a finite dc conductance even in this extreme case where
some channels are perfectly transmitting.

To next leading order in V, the calculation is some-
what more complicated and again details are given in
Appendix B. We find for the low temperature and zero
frequency result,

—2/(Ni+N2) N2

G(I T) —G(') = ——
l l )U~)

corresponding to a series coupling of the two @PC's. This
does not, however, mean that the conductance is finite at
zero temperature because the next leading term in V2

gives a divergent correction at low frequencies.
As was discussed above, the present calculation is

equivalent to a single junction connected to an en-
vironment with impedance given by 1/N1GH. Some
calculations ' ' where higher order tunneling events
were considered have ignored the discharge of the tunnel
junction capacitor after a tunnel event. This corresponds
to an infinitely large impedance or Nq ——0, in which case
we have for the frequency dependent conductance,

~- = —):l~ I&2-(i~)l'+
a/3

pl~ cos[2~1r$2 (~)],

(42)

where

1
g = 1—

Ng +Kg

The effective action thus reduces to the model con-
sidered by Kane and Fisher. These authors study a
one channel Luttinger model with a single barrier. In
the Luttinger model the coupling constant g is related
to the interaction, being larger than 1 for attractive ac-
tions and smaller than 1 for repulsive interactions. The
renormalization group has been considered by several
authors. ' ' The barrier parameter can be shown to
obey the scaling equation,

" = (1 —g)V2„. (44)

Since g ( 1 we can see that V will crow under scaling
and the barrier is always a relevant perturbation. The
scaling equation is valid only to lowest order in V2 . How-
ever, Fisher and Zwerger argued that it is true to all
orders since higher order terms generate only local terms
whereas the "friction term" is nonlocal in time and sim-
ilar arguments can here be applied to the cross terms
with different V 's. This conclusion can be supported by

V. RENORMALIZATION-GROUP ANALYSIS

The effective action cannot be solved in gen-
eral. However, some conclusions can be drawn from
renormalization-group arguments. We will consider the
scaling behavior of the effective action in the limit of
small barriers and use arguments similar to those em-
ployed by Fisher and Zwerger, which can be carried
over directly. The strategy is to integrate out the high
energies and then rescale so that the Hamiltonian keeps
its form.

The two configurations studied in Sec. IV correspond
to different physical situations: The junction with chan-
nels close to pinchoff sees either a closed (Sec. IV A) or
an opened (Sec. IV B) second contact. Here we consider
the scaling behavior of contact 2 having a small reflec-
tion probability, while contact 1 has Nq open channels.
These may be easily integrated out. Further, in order to
perform the perturbative renormalization-group analysis
of the channels with transmission close to 1, we should
take all the N2 —1 other barriers to zero and integrate
out the corresponding channels. This will lead to an ef-
fective action for the channel in question. The algebra
is thus straightforward and we just quote the result. We
get an effective low-energy action given by
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comparing with the opposite representation where the
junction is viewed as a tunnel junction. In this case the
tunnel matrix element can be seen always to be irrele-
vant to lowest order since the second order result for the
conductance vanishes as T —+ G. The tunneling conduc-
tance follows the power law: G ~ T ~ ' or decreases
exponentially for %g ——0.

found. Odintsov and Zwerger and Scharpf found that
for a single junction with a large nominal conductance
the Coulomb blockade behavior exist for temperatures
less than U~ exp (—Go/2GH).

We can interpret the crossover temperature in Eq. (47)
as the renormalized charging energy, because it is the
charging energy that would be determined from the ex-
perimental characteristics. The effective capacitance is

by this definition given by
VI. CROSSOVER TO COULOMB BLOCKADE

BEHAVIOR: RENORMALIZED
CAPACITANCE OF THE QD

T )
—(Nq+N2)/2 (48)

The scaling equations derived above give the tempera-
ture dependence of the renormalized barriers. The scal-
ing procedure has to be stopped when the high energy
cutoff hits kT From . the scaling equation (44), we get
the renormalized barriers

Recent experiments on conductance through a quan-
tum dot have shown that the Coulomb oscillations van-
ish as the conductance of one of the point contacts is
increased. Similar effect has been observed by Foxman
et al. in an applied magnetic field. The present theory
explains these experimental observations.

/' kT ) — /2(N +iN )2
W2„(kT) W2„(U~)

I (45) VII. DISCUSSION

in agreement with the perturbation theory results in
Sec. IV. The coeKcients W2 can be related to the nom-
inal conductance of the contact. For a b-function poten-
tial model used here, we have that

N2

G2 ——G~ 1+W2„' W2„——V2„/v~„,

and for small refiection probability, R, we have TV
R . The perturbative renormalization-group approach
breaks down when R(kT) becomes of order of I. At this
point it is more appropriate to represent the junction as
a weak link instead of as a weak barrier. The crossover
temperature between these regimes is given by

(N, +N, )/2
~(N, +N )/2

&2GH ) (47)

For energies less than T we represent the contact as a
tunnel junction with the usual results for the conduc-
tance. However, the energy scale that enters the temper-
ature dependence (or voltage dependence) of the conduc-
tances is given by T and may thus be strongly renormal-
ized. These findings are summarized in Table I.

It is interesting to note that in the case of a large num-
ber of channels a similar crossover temperature has been

We have established an analogy between tunnel junc-
tions in the Coulomb blockade regime and a Luttinger-
type model. The formalism introduced here allows us to
calculate the behavior for an arbitrary number of con-
necting channels. In particular, we have studied the
case when a QD is strongly coupled to the leads through
QPC's with nearly perfectly transmitted modes. For that
situation it was found that there is a high temperature
regime where the conductance decreases with a weaker
power law than in the low temperatures regime where
Coulomb blockade behavior is found. We have found the
crossover temperature between the two regimes.

The model calculation for junctions with only a few
channels explains the observed vanishing of the charging
energy as the transmission probability approaches 1. We
have argued that the observed decreasing charging energy
can be understood in terms of a renormalized capacitance
due to the smearing of the charge on the dot by quantum
charge fIuctuations through the contacts. The effective
capacitance, defined by the crossover temperature where
the Coulomb blockade effect sets in, leads to a relation-
ship between the transmission probability of the junction
and the charging energy as measured from the tempera-
ture dependence. We believe that it should be possible
to experimentally verify the predicted dependence of the
number of channels and the predicted dependence of the
crossover temperature on the nominal conductance.

It should be noted that it is the capacitance as mea-

TABLE I. Summary of the findings for the temperature dependence of conductance of the QD
device shown in Fig. 1 for the case when one or both of the junctions have channels with transmission
probability close to unity.

T /Uri
T)T
T(T

G2 «G~ and G& —N&G~
p2/Ny

1
a - a. (T/f/ )""

G G(T, ) exp ( T/T )—G2 ~ XgG~ and Gg ——NgG~
&2/(NI+N&)

2

G —G. - a, (T/f/ )
'«"—+")-

G —G(T, ) (T/T, )
/
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sured from the transport properties that we have calcu-
lated. The capacitance that enters in the period of the
Coulomb oscillations is given by the bare capacitances.
The period is determined solely by the electrostatic en-
ergy degeneracy of the state with %D electrons on the
dot and the state with ND + 1 electrons.

We also studied the situation when one contact has
a number of fully transmitting channels and the second
contact is in the tunneling regime. Within the present
model, it was shown to be equivalent to a single junc-
tion in the Coulomb blockade regime coupled to an envi-
ronment with impedance 6/e divided by the number of
transmitting channels.
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APPENDIX A: INTEGRATING OUT THE
NONLOCAL DEGREES OF FREEDOM

The integration over the P(z g 0) degrees of freedom
used in Sec. III is here discussed in more detail. The
first step is done by introducing an auxiliary degree of
freedom through the functional b functions,

b[P„(z = 0, ~) —0„(r)] = JV 'D[A„/27r]exp i d7 A„(~)[P„(z= 0, r) —0„(~)] (A1)

Here JV is a normalization constant. This allows us to
replace the P (z = 0) appearing in the action with 0, if
we also include a functional integral over the 0 's. The
action corresponding to Ho plus that coming from the b

function is then

The integral in the exponent gives for large imaginary
times —2 in(wi)r), and hence we recover the correct
result for the correlation function with wD defined as
4)D —KvF G.

N p
Sp = —) dr

n=i
N p

+i ) d7 A~[$~(z = 0, 7 ) —0~(r)],

&.'+ v~-(~*4-)'
I

((' 1

vF )

(A2)

which after integration over P(z) and A becomes

~p = —).):I~ll~-(i~)l' (A3)

where i~ is the Matsubara frequencies.
Note that the Fermi velocities have dropped out due

to the infinite bandwidth approximation. However, we
need to reintroduce the energy scale given by the Fermi
velocity through the cutoff energy in the above action.
How this should be done can be seen, e.g. , by considering
the correlation function

APPENDIX B: PERTURBATION THEORY
IN THE SCATTERING BARRIERS

Here we show in some detail how the perturbative re-
sults quoted in Sec. IV are reached. The object is to
calculate the function P defined in Eq. (7) to second or-
der in V, and likewise for the current-current correlation
function II defined in Eq. (32). In the former case the
relevant action is given by (26) (with q2 ——0) whereas for
the calculation of the current-current correlation function
we should use the action in Eq. (33). The former action
is identical to the latter if we put %~ ——0 in the function
H and identify P2 with P and K2 with Ki. We will work
with (33) below.

If we add the following term to the action:

~s[@2 (] ) ([@2(i~)] ~(i~) + c'c')

and consider the functional defined by

R(c) = —) (t(cc,cc c)(c)(ccccc )(0c))
Q I

qual

(A4)
Z[(] = &[&2 ] I

e»(—~[4&2 )] —~s[c' &))

where the average is taken with respect to the unper-
turbed electronic part of the Hamiltonian. Using the
original Hamiltonian, we get at T = 0 then the functions P and II can be written as

(B2)

B(r) =
(2vrvpr)' '

whereas the bosonized form yields

(A5) ~(-) = [.(-)]/ [],
Pu)2 1 d Z[(]
2vr Z[0] d((ice)d(*(i(u)

~

(B3)

(B4)

B(r) = 1

(
;2~~/(~) —'2~~@(0)

4a2
1 (( d(d

exp
l

[cos(~r) —1]
l
.

4a2 ( o
(A6)

where we have defined g = UD(e' —1)/imam and used

We write the part of the action that couples the differ-
ent channels as
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exp ——) H (i(u)
I

C'2 (i~)
I

where A is a normalization constant. The functional Z[(]
is then expressed as

= JV 17[A] exp ——) H (iw) IA(iw) Iz

(
Z[(] = A' V[A] exp ——) H-'IAI' Z[g+ iA],

E

x exp ——) [4z (iu) A(iw) + c.c] (B5)
where

(B6)

F[(+ iA] =
N2 t'

+[42n] exp ( ~0[$2 ]) exp ——) ) (P,„(ice)[((i~) + iA(i~)] + c.c.)
7l,:1

(B7)

Here we have defined So as the diagonal parts of the
total action S.

The functional F is easy to obtain to lowest order in
the scattering term. After integration over the P fields,
we simply get

(o) —i i - 1 i. (~ +'A )M+'A)

(B8)

where Az ——Q f 17[$2 ] exp( —S [P2 ]). Inserting this

into the expression for Z and performing the A integra-
tion, we obtain

/1
Z [(] = JVz exp —) D(iw)l((iw)l

I,P

By the use of Eq. (B7), we now get the result for the
conductance to zeroth order which is also obtained in
Sec. IV.

The next leading order expression is found by expand-
ing F to second order in V2

s~'&[~+i] = (
N2 ( . N2

'DI4'~ 1) ~xP ( ~oft'~ I) &xV ——) ) .Id'~ (& + i ) + L' t: I

n=i

p
d7' cos(2i~ir[g~(w) —P~(r')]). (B10)

performing the integration over the p fields and inserting the resulting functional into Eq. (B6) leads to the second
order result for the generating functional,

Z ' [(] = Z '&[(] ) dr
m=1

dr' ) n (r —r') x exp ) ((i~)f (ice) + c.c.
p ~ +%2Hi(u

I~I[I~I+ ~2H(i~)l
(B11)

where f = exp( —i'm) —exp( —iud'), and

(v,~-(r —r') =
I

'
I

exp ——).If (i~) I'/I~
I(2a ) ~ P

This function is by definition given by the function B(r) defined in Eq. (A4), and we have that

(B12)

n (~)=W2 GCd M
e~ —1

(B13)

We can now compute the current-current correlation function following Eq. (B7) and subsequently obtain the
conductance to second order in W from analytic continuation of Iil2i(iw). After some algebra, we obtain
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(z) e () ( N, + (7r(u/UD)

q (Ny + Nz)2+ (sr~/UD)2p

where

dE e * 'B(t)

x [(E —~)n~ (E —~) —(E + (u) nay (E + w) ],
(B14)

2
B(t) = exp I— (e *"—1)[1 + n~ (e) ]

e(l + [ere/UD(Nq + Nz)] )) ' (B15)

To proceed further, we approximate the integral in the exponent above in Eq. (B15) by replacing the Lorentzian
function with an exponential cutofF in which case we obtain

( tt(2&+N)Ui"" '
~(t) =

I
1+

7r )
(B16)

at zero temperature. From this we can now show that at low temperatures and frequencies we get the correction to
the conductance quoted in Eq. (41).

The result for the function P can also be found from Eq. (Bll). To second order we have

N1 P
do. 'n (o' —o')I (rr —cr') [h(r, o, o') —1]P( )(r),

where

~ 2vr . 1 —cos(w [cr —cr'])

L,PN . I~l(1+ I~I~/[N~UD]))
'

2 de (1 —e &l~ ~'I) [1 + n~(e)] l
(Ng ~ e e(1+ [7re/NgUD] ) )

'

= I1+ j
f 27r cos(cu[r —u]) —cos((v[7 —o']) + cos(w[o']) —cos(m[0.]))= '"
'(PN l~ (1+ I~)vr/[UDNg])

and where P( ) were defined in Eq. (27). It is now straightforward to see that for large times wU~ )) 1 we get that

P(')(~) - ) W, ~

P(o)(~) (~U~)'"',
m=1

(B18)

from which we can find the approximative form of P(cu) for small energies.
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