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Electron —LO-phonon scattering rates in a cylindrical quantum wire
with an axial magnetic field: Analytic results
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The interaction of electrons with bulk LO phonons in a cylindrical quantum wire is discussed with
both intersubband and intrasubband relaxation considered. For processes involving the lowest pair of
subbands, a parallel analytic approach leads to good agreement with the numerical calculations. In par-
ticular, the effect of an axial magnetic field is determined for intersubband transitions between these two
subbands. It is found that for a given radius, there is a critical magnetic field beyond which first-order
LO-phonon interactions are forbidden due to energy conservation. Close to the critical fields, fast inter-
subband relaxation is predicted. These effects are a consequence of the Zeeman splitting of the doubly
degenerate states in the presence of the field and the behavior of the one-dimensional density of states.

I. INTRODUCTION

The recent advent of growth techniques which allow
carriers to be confined in two spatial dimensions resulting
in quasi-one-dimensional (Q1D) behavior has led to a
great deal of interest, both experimental' and theoreti-
cal. ' In particular, the realization of the extreme
quantum limit by Plaut et al. is an important step to-
wards the goal of high-mobility devices which depend on
the reduced phase space to suppress elastic scattering at
low temperatures. At higher temperatures the dominant
scattering mechanism is via LO phonons. The interac-
tion of electrons with LO phonons in Q1D systems has
been treated theoretically by a number of people. Lebur-
ton considered the electron —LO-phonon interactions in
rectangular wires as did Campos and Das Sarma. Con-
stantinou and Ridley' investigated intrasubband scatter-
ing in cylindrical wires and this was recently extended by
Leao, Hipolito, and Peeters" to take into account many
subbands. All of these studies have been essentially nu-
merical in nature. Fishman' has presented analytic re-
sults for the electron-phonon —scattering rates in the ex-
treme quantum limit for cylindrical wires by assuming a
constant ground-state radial wave function.

Recently, Gold and Ghazali' have introduced approx-
imate wave functions for the first two subbands of a cylin-
drical wire in order to determine analytically various
physically interesting properties of cylindrical wires, such
as the low-temperature mobility and the plasmon spec-
trum among other things. The advantages of having ana-
lytic expressions which reproduce, to a good approxima-
tion, the exact results is not only in the saving of compu-
tational time which they facilitate, but they also make the
physics rather more transparent. In this paper, the
scattering rates for the interaction of electrons are de-
rived for an arbitrary number of subbands of a cylindrical
quantum wire. For intrasubband scattering within the
ground state and intersubband scattering between the
first excited state and the ground state, analytic expres-
sions for the scattering rates are determined by employ-

ing the approximate wave functions of Gold and Ghazali
and these rates are then compared to the numerical re-
sults. Furthermore, the effect of an applied axial magnet-
ic field on the intersubband rates is readily incorporated
within this analytic scheme.

The paper is organized as follows. Section II develops
the formalism for determining the scattering rates be-
tween any pair of electron levels. Section III applies this
to intrasubband and intersubband relaxation both numer-
ically, by employing the exact wave functions, and
analytically by using the approximate wave functions of
Gold and Ghazali. Section IV contains our conclusions.

II. FORMALISM

We consider a cylindrical wire of length L, (assumed to
be effectively infinite) and radius R. The assumption of a
cylindrical quantum wire is not only convenient from the
mathematical point of view, but also has practical
relevance as Tonucci et al. ' have recently successfully
fabricated cylindrical wires with diameters as small as

0
330 A. Cylindrical wires have also recently been con-
sidered in related areas, with Branis, Li, and Bajaj' in-
vestigating the effect of an applied axial magnetic field on
hydrogenic impurities, and Ihm et al. ' the magnetiza-
tion.

The carriers are assumed to be confined by an infinite
potential, and from symmetry the solutions to the one-
electron effective-mass equation with parabolic bands is
separable even in the presence of an axial magnetic
field, ' ' and may be written down in cylindrical coordi-
nates (r, P, z) as

„k(r,P,z)=, e' ~e'"'f „(r), r (R1

y 1/2

m =0,+1,+2, +3. . . ,

where V=(mR L, ) is the volume of the wire, g „(r) is
the radial wave function, m is the azimuthal quantum
number, n is the radial quantum number (n =1,2, 3. . .),
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and k is the axial wave vector. For the moment we keep
the form of the radial wave function general. The energy
of the electron E is simply given by

E(m, n, k)=E „(B)+Ek,
where E „(B) is the subband energy, which will be
dependent on the applied axial magnetic field B and is
determined by requiring the radial wave function to van-
ish at r =R. For convenience we label the subbands by
their m and n quantum numbers (m, n), Ek is the energy
in the axial direction which is given by the familiar para-
bolic form

E =g~k~/2m +

with m* the electronic effective mass (=0.067m, for
GaAs). In what follows we assume that electrons scatter
from a state ~mnk ) to another state ~m'n'k') via the in-
teraction with bulk LO phonons. There are theoretical
reasons' ' that such an approximation for the phonons
holds well for the analogous two-dimensional
GaAs/AIAs system, and as such we ignore the effects of
the boundaries on the LO-phonon spectrum.

The Frohlich interaction Hamiltonian is given by '

where H(y) is given by

H(y)=y ~I „„(y)~ z
+1 1

y'+ Q'. + y'+ Q'. —

and the scaled energies are

a=e, a (11)

E,;=
'AcoL

(12)

The scattering rate is evaluated via Fermi's golden rule

e e

I '= g ~M'~ 5[E(m, n, k) —E( m', n', k')+-A'coL] (9)
q

which after transforming the summation over the wave
vector to an integration leads finally to the following gen-
eral result for the emission or absorption rate from state

~

mnk ) to state
~

m'n 'k ' ):
e

I'=2I 0[)V(coL )+ —,
'+ —,'] [a.;+ (1 —hE) j

' f H(y)dy,
0

(10)

H;„,= g C(q ) [ae' t'++a +e
q

with the coupling factor expressed as

C(q)=-
q 2cp V, E c,

(4)

(5)

E „(B) E„(B)—
Ac. =

AcoL

The scaled axial phonon wave vectors are given by

Q, +=Qo(+E;+ [E;—I+DE]'~ ),

(13)

(14)

In the above, cp is the permittivity of free space, c,

(= 10.9) and E, (= 13.1) are the high- and low-frequency
dielectric constants, coL (=36.6 meV) is the LO-phonon
zone-center frequency, V, is the volume of the crystal,
and the values quoted are those appropriate for GaAs.
As we are only concerned with bulk three-dimensional
phonons, their total wave vector q in the cylindrical sys-
tem is simply

q=(q„+q, )', 0~q„( ~, —oo &q &oo (6)

with q„ the radial component of the wave vector and q,
the axial component.

We are now in a position to evaluate the matrix ele-
ments for scattering from an initial combined electronic
and phonon state ~i ) to that of the final state

~f ), viz. ,

e
M'= (i ~H;„, ~f ) =2C(q)[)V(coL )+—,

'+
—,
' ]'

Q, +=Qo( —QE;+[E;+I—EEJ'~ ), (15)

with Qo =(2m *EL R /A')'~, and in Eqs. (14) and (15) the
+ and —subscripts on the wave vectors refer to forward
and backward scattering. Finally, I 0 is given by

1/22' coL
(16)

c,
e 1I 0=2acoL =

47TCpA E, ~

where n is the dimensionless Frohlich coupling con-
stant ' (I o= 8.7 X 10' s ' for GaAs).

Equation (10) represents the general expression for the
scattering rate from state ~mnk ) to state ~m'n'k') by the
emission or absorption of an LO phonon. It agrees with
previous investigations for a cylindrical wire' '" and as is
seen involves two integrations which in general have to
be evaluated numerically. In the following section
specific applications are made.

(7)

In the above, X(coL) is the Bose-Einstein distribution, e
and a refer to the emission or absorption of a phonon,
and the 5 function conserves the axial momentum. The
scattering integral I „,„,(y) is given by

y =f x
I

— 'l(yx)~ ' '(x)g „(x)dx, (8)
0

where x =r/R andy =q,R.

III. APPLICATIONS

Case (i) Zero m. agnetic field. We first consider
scattering in the absence of a magnetic field which has
been dealt with previously in the extreme quantum limit
by Constantinou and Ridley' and more generally for
many-subband relaxation by Leao, Hipolito, and
Peeters. " The radial solutions to the effective-mass
Schrodinger equation are Bessel functions (the definitions
of all the special functions employed in this paper may be
found in Ref. 22), viz. ,



11 130 M. MASALE AND N. C. CONSTANTINOU 48

1t „(x)= . J (j „x)1

m +1 Jrnn

4

Jmn

R
$2

E „(0)=
2m

with the corresponding subband energy
2

(17)

(18)

2.4

1.6
lP(x)

0.8

itjoi(x):&3(1 x )

6AEoi(0):
2m

itj+i i(x ):&12(x x )

(19)

(20)

(21)

In Eq. (18) j „ is the nth zero of J (z), (jo, =2.405 and

jii =3.832). The integration involved in Eq. (8) has, to
our knowledge, no analytic form, and by implication the
integrals of (8) and (11) need to be evaluated numerically.
This has been carried out in a recent investigation. "
Here, we derive an analytic expression for the intrasub-
band rate involving transitions within the lowest subband
(0,1), and the intersubband scattering rate between the
first excited state and (0,1). These transitions are impor-
tant in the analogous Q2D system and significant experi-
mental investigations have been carried out in 2D to in-
vestigate intrasubband relaxation by Tsen et a/. and in-
tersubband relaxation by Tatham, Ryan, and Foxon
and Grahn et a/. More recently, Mayer et a/. have
investigated energy relaxation in quantum wires and
Oowaki et a/. have reported enhanced intersubband re-
laxation in a one-dimensional constriction. As such, reli-
able analytic results for scattering rates are both useful
and instructive, and it should be emphasized that early
investigations on the electron-phonon interactions in
quasi-two-dimensional systems, such as the investigations
by Price and Ridley, also endeavored to develop cor-
responding analytic approximations to the rates.

We make use of the radial wave functions for the
ground state and first excited state employed recently by
Gold and Ghazali, '

0 0.2 0.4 0.6 0.8-

7.5

0.5

0 0.2 0.4 0.6 0.8
x

FICx. 1. (a) The (0,1) radial wave function go, (x) and (b) the
(1,1) wave function g„(x). The solid curves depict the Bessel
functions given by Eq. (17), the dot-dashed curves are their ap-
proximations given by Eqs. (19) and (21), and the dotted curves
represent the conAuent hypergeometric functions given by Eq.
(31) with R =150A and B=15 T.

are just those that are favored by the Frohlich interac-
tion. Furthermore, the figures illustrate that for intrasub-
band scattering the favored phonons are those traveling
along the axis of the wire, while for intersubband scatter-
ing between (+1,1) and (0,1) it is o6'-axial phonons that
are favored; in fact they are emitted predominantly at
right angles to the wire axis when the subband separation
is close to A'col (q, &&q„).

Substitution of Eqs. (23) and (24) and making use of the
infinite integrals evaluated analytically in the Appendix
leads to the following expression for the emission and ab-
sorption rates:

16kE„(0)=
2m *R I"(e; ) = 11521 o[X(roL )+ 1]

8'3(Q, +)+ ~3(Q, )

Q(E; —1)

J3(y)
loioi(y) =24

3'
(23)

J4(y)
I+ilol(y)= 8 (24)

Figure 1 compares these approximate wave functions
with the exact wave functions given by Eqs. (17) and (18).
In these figures the exact wave functions for a radius of
150 A and applied magnetic field of 15 T are also depict-
ed (see the discussion below).

With the above approximate wave functions, the in-
tegrations of Eq. (8) are given in closed form by

0.5

~~ 0.2S

0
0 2 4 6 8 10

A comparison of the scattering integrals of Eqs. (23) and
(24) and their exact counterparts evaluated numerically
from Eq. (8) is illustrated in Fig. 2. The agreement be-
tween the approximate and exact expressions is very good
especially for small radial wave vectors (y =q„R ) which

FIG. 2. The scattering integrals as a function of reduced ra-
dial phonon wave vector y ( =q, R ) with the solid curves
representing the exact results and the dot-dashed curves their
approximations.
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1 '(E;)=11521ON(coL )
W3(Q, + )+ Ws(Q, )

Q(E;+ 1)
(26)

where W3(Q) is given by (see the Appendix)

W3(Q) = 1 1 Q'+ Q' I,(Q) J-, (Q)96 640
(27)

I

3

22where I„(z) and IC„(z) are modified Bessel functions.
Figure 3(a) illustrates the room-temperature (T=300 K)
emission rate as a function of reduced axial energy calcu-
lated with the exact result of Eq. (10) and the approxi-
mate analytic result given by Eq. (25) for scattering
within the first subband (0,1). The comparison is seen to
be excellent for all the energies of interest. The singulari-
t at c.; =1 is due to the singular nature of the 1D densityya c.;—
of states. Of course, in real systems this singularity is
smoothed out due to, for instance, geometrical fluctua-
tions. Nevertheless, strong relaxation is predicted near
this threshold energy. Figure 3(b) compares the analo-

gous room-temperature absorption rates, and again we
find excellent agreement between the two approaches. In
both 3(a) and 3(b) the corresponding bulk rates are illus-21

trated for comparison.
We now consider intersubband scattering from the first

excited subband (1,1) to the ground state (0,1). We as-
sume that the electron is initially at the bottom of the
subband (E; =0) and that the temperature is low (N =0).
The emission rate obtained by employing the Gold and
Ghazali wave functions is given by the following expres-
sion:

W4(Q, +I'=(96) I o (28)

where W~(Q) is (see the Appendix)

W (Q)= —— + —I4(Q)&4(Q)
1 1 Q Q

Q
6 8 240 3840

(29)

Figure 4 depicts the intersubband emission rate as a func-
tion of the wire radius R. Again, the agreement between
the above analytic expression and the numerical result is
very good except close to the critical radius. This critical
radius beyond which first-order intersubband transitions
are forbidden is given by

E„(0)—Eo, (0)=ficol (30)

and will be different for the exact and approximate results
due to the slight differences in the subband separation. If
the exact subband separation is employed in Eq. (28), the
agreement with the numerical result is very good
throughout the entire range of radii as is shown in the di-
agram.

Case (ii) Appli. ed axial magnetic geld The. effective-
mass equation with an axial magnetic field B is exactly
solvable in terms of the conAuent hypergeometric func-
tion M(a, b, g), and the details are discussed in the work
of Constantinou, Masale, and Tilley' and are not repeat-
ed here for brevity. The solution is given by

0.32

0.24

fm„(x)=A~„exp —~
g

~ M(a „,b, g), (31)

where g is dimensionless and is related to the cyclotron
radius R, via

0.16
R=503

0.08

2R 2

2R,

The b parameter is

(32)

and

sinh '(Qe; )I'=I N(co )
QE,

are shown as the dot-dashed curves.

FIG. 3. The room-temperature intrasubband emission rates
(a) and absorption rates (b) as a function of the electron's initial
axial energy for two different radii. The full curves are the ex-
act results and the dashed curves their analytic approximations.
For a comparison the corresponding bulk rates (Ref. 21)

sinh '[Q(e i
—1)]1'=I [N(co )+1]

I

lOQ 120,
0

40 60 80

z(A)
FIG. 4. The intersubband scattering rate as a function of

wire radius (z-=0). The full curve is the exact result and thel

dot-dashed curve the analytic approximation. Better agreement
is obtained if the same energy separation is used (dashed curve).
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b= mi+1 (33)

and the parameter a „ is related to the subband energy
via

E „(B)=%co, —a „+ +—+
2 2 2

(34)

[i.e., a „ is the nth zero of M(a, b, g) at x = I]. The nor-
malization factor 3 „ is given by

1

2f xf „(x)dx
0

(35)

The cyclotron radius R, and the cyclotron frequency co,
are defined in the usual manner,

R — co
eB

eB
(36)

In Figs. 1(a) and 1(b), the radial wave function given by
(31) is depicted for the (0,1) and (1,1) subbands for a wire
radius of 100 A and an in-plane magnetic field of 15 T.
The difference between this wave function and that ob-
tained using the Bessel functions or the approximate re-
sults due to Gold and Ghazali are not too great due pri-
marily to the small wire radius. As we have seen in the
previous discussion, intersubband events from the first
excited state to the ground state occur for radii less than
about 125 A. The energy of the subbands can be deter-
mined from finding the zeros of the confluent hyper-

0

geometric function, but for radii of order 150 A or less
and magnetic fields up to 20 T perturbation theory as
developed by Dingle is more than adequate, with the
subband energies given to an excellent approximation by
(see Dingle's paper for the details of the derivation)

E „(B)=E „(0)+—2mkco,

al (diamagnetic) effect on the ground state for the system
considered in Fig. 5, and as such we do not consider in-

trasubband relaxation within this band in the presence of
a magnetic field. The degeneracy of the m&0 states is
lifted by the presence of the magnetic field and we obtain
the Zeeman split states. In particular, the first excited
state is ( —1, 1) which decreases in energy for the
magnetic-field strengths shown. It so happens that for
this wire radius, the zero-field splitting is greater than
A'coL and as such there will be a critical magnetic field

beyond which first-order processes are forbidden. This
field is given by the relation

E „(B)—Eo, (B)=A'col (38)

E„(B)—E,o (B)=A'coL (39)

which for a wire of radius 120 A is close to 1 T. This
critical field can be further reduced by a decrease in the
wire radius. There is yet another critical field which
occurs when the cyclotron energy equals the phonon en-

ergy

E„(B)—E ii(B)=ficoL (40)

but this field is large and is not considered further. Fig-
ure 6(a) illustrates the intersubband scattering rate be-

and for a wire of 100 A this field is around 16 T. For a
wire radius of 120 A, on the other hand, the zero-field
splitting between the ground state and the first excited
state is less than %col, and as such first-order intersub-
band transitions between (

—1, 1) and (0,1) are not al-
lowed (for the fields of interest) and hence we consider
first-order intersubband transitions between (1,1) and
(1,0). This transition is allowed provided the magnetic
field is greater than a critical value given by

R+ ~4Aci)~
R,

2(m —1)
~ 2

Jmn

m =0,+1,+2, +3. . . . (37)

In what follows the slight difference between the approxi-
mate and exact subband energies in the presence of the
magnetic field is ignored and Eq. (37) is employed togeth-
er with Eq. (28). The energy spectrum of a 100-A quan-
tum wire as a function of applied axial magnetic field is il-
lustrated in Fig. 5. The magnetic field has only a margin-

I0
0 5 2'0 15 20

m= —2

80

g 40

m= —l

m=0

10
B(T)

I

15 20

FICs. 5. The subband energies as a function of axial magnetic
field.

0
I

10 15 20
B(T)

FIG. 6. The intersubband scattering rate as a function of axi-
al field for (a) ( —1, 1) to (0,1) transitions and (b) (1,1) to (0, 1)
transitions (c;=0 for both curves).
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tween ( —1, 1) and (0, 1) for a 100-A wire and Fig. 6(b) the
intersubband rate between (1,1) and (0,1) for a wire radius
of 120 A as a function of axial field (for both diagrams
s;=0). The divergences in both curves at the critical
fields are again due to the divergent nature of the 1D den-
sity of states.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper we have investigated in detail scattering
rates for electrons in cylindrical wires interacting with
bulk LO phonons both with and without an applied mag-
netic field. Analytic results were obtained by employing
the approximate wave functions of Gold and Gazali and
these were demonstrated to lead to an excellent agree-
ment with the purely numerical calculations. In the pres-
ence of an axial magnetic field, interesting behavior was
demonstrated for the first-order intersubband relaxation,
due to the Zeeman splitting of the first excited subband.
In particular, we identified two critical fields depending
on whether the zero-Geld splitting was greater or less
than the LO-phonon energy. The former depends on the
decrease in energy of the m = —1 subband with increas-
ing magnetic field. The latter, on the other hand, de-
pends on the increase in energy of the m =1 subband
with increasing axial field. This particular critical field,

0
which for R =120 A is around 1 T, is particularly amen-
able to experimental investigation due to the small field.
In both cases it is predicted that intersubband relaxation
is considerably enhanced close to the critical field. It is
therefore demonstrated that the application of an axial
external field to a one-dimensional system can lead the
adjustment of the energy-level separations in order to
achieve fast intersubband carrier relaxation. As far as we
are aware, this is the first time that the application of
magnetic fields in order to enhance the electron —LO-
phonon interaction in 1D has been discussed.

In our analysis of the scattering rates calculated here
we have made some implicit theoretical assumptions that
need to be justified over and above those already men-
tioned in the previous sections. Our main aim was to de-
velop an analytic approach to the description of the
electron —LO-phonon interaction in cylindrical wires.
This is a one-particle theory and we have ignored the
effects of electron-electron interactions. The inclusion of
these effects has been considered recently for cylindrical
wires. The main effect is the renormalization of the in-
teraction Hamiltonian by the dielectric function (obtain-
able by, e.g., the random-phase approximation). For car-
rier concentrations of less than 10 cm ' this is negligi-
ble; larger concentrations and the rates are reduced
without an appreciable change in the trends. In particu-
lar, the prediction of the divergence in the intersubband
rates at the critical fields will still hold. This leads natu-
rally to the question of the use of first-order perturbation
theory when the interaction strength diverges. The
relevant parameter here is a (=0.078 for GaAs), the
Frohlich coupling parameter [Eq. (16)]. If the rate is a
few I 0, then first-order perturbation theory should still
be valid larger, and it is questionable. Luckily, whenever
the scattering rates diverge they do so over a very narrow

APPENDIX

In the evaluation of the infinite integral of Eq. (10) us-
ing the approximate overlap integrals of Eqs. (23) and
(24) we are led to the evaluation of integrals of the form

J„'(y)
W„(Q)=J, dy .' y'(y'+Q') (Al)

In principle, these may be found in Gradshteyn and
Ryzhik, ' but, as has been pointed out by Fishman, '

these are incorrectly stated. The easiest way to evaluate
the above is via the use of partial fractions, viz. ,

3+y(y+Q) Q y y y y+Q
(A2)

and hence 8'„(Q) may now be evaluated by employing
the following standard integrals which may be found in
Gradshteyn and Ryzhik

&„'(y)

0 y

2n —A, + 1

2

A, +1 2n+A, +1
2

'
2

(A3)

and

y&„'(y)I dy =I„(Q)K„(Q),
p y2+Q2

(A4)

where in (A4) I„(z ) and K„(z ) are modified Bessel func-
tions. The integrals required in the text are therefore

1 1 Q2 QW3(Q) = —— +
Q6 6 96 640

—I3(Q)IC3(Q) . , (A5)

Q6 8 240 3840
(A6)

range and one may then be confident that the results ob-
tained by the straightforward approach adopted here are
valid, except very close to the singularity.

Finally, the Gold and Ghazali wave functions also fa-
cilitate analytic results for acoustic-phonon interactions
in cylindrical wires, both deformation potential and
piezoelectric scattering, which will be the subject of
further investigation.

Recently, Telang and Bandyopadhyay and Shik and
Challis have reported the effect of a magnetic field on
ihe acoustic-phonon scattering rates in quantum wires.
These rates are significantly reduced when a field is ap-
plied.
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