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It is well known that at low temperature, a small two-dimensional (2D) electron gas shows peaks
in the linear conductance at a series of sharply defined values of the external gate voltage. Recently
published experimental studies have shown that under a large magnetic field, the value of the gate
voltage required to give a peak oscillates as a function of the magnetic field. We explain these
oscillations using a simplified model of the island. The model depends on the observation that in the
area of each edge state in the island, the electric Geld is almost completely screened. This prompts
us to treat each edge state as a conductor, and to use the Coulomb blockade approach to locate
peaks in the conductance of the island. An unusual feature of the system is that the capacitances
of the diferent regions can be controlled by the magnetic field. This, together with a Coulomb
blockade within the dot, is what causes the oscillations. We compare our theory with the results of
an existing experiment (P. L. McEuen, E. B. Forman, Jari Kinaret, U. Meirav, M. A. Kastner, N.
S. Wingreen, and S. J. Wind [Phys. Rev. B 45, 11419 (1992)j) finding acceptable agreement. A
similarity between this system and a single-electron pumping device is noted.

I. INTRODUCTION

Recently a number of experiments investigating elec-
tron conduction by tunneling onto a quantum dot have
been performed. ' An important feature observed in the
experiments is a periodic peak structure in the linear con-
ductance as a function of the gate voltage. This gate volt-
age is a parameter used to control the electrostatic po-
tential induced in the dot. In principle, there are two al-
ternative approaches to explaining the oscillations. If one
neglects the Coulomb interaction between the electrons,
then oscillations should be attributed to the successive
depopulation of discrete spatially quantized levels. The
alternative picture includes almost complete screening in-
side the dot of the external electric field. In this ap-
proach, conductance oscillations can be explained in
terms of the well-known "Coulomb blockade" theory. '

For a typical size of dot, with diameter d of 0.1—1.0 pm,
the Coulomb blockade model is more realistic. This is be-
cause the charging energy significantly exceeds the spac-
ing between spatially quantized levels if d )) ab, where
ag is the Bohr radius for electrons in GaAs: ag 10 nm.
In this picture, the period LVz in the gate voltage of the
conductance oscillations is determined only by the capac-
itance Cg between the dot and the gate: AVs = e/Cg.

In this paper we are interested in how this result is
modified if a quantizing magnetic field is applied. Charg-
ing of a dot in the quantum-Hall-effect state has been in-
vestigated experimentally. In Ref. 5, a self-consistent
numerical calculation was also performed, the results of
which agree well with experiment.

One feature of the results of this calculation was that
the dot's area was divided into concentric rings of alter-
nating compressible and incompressible electron gas. In
the incompressible regions, the number of filled Landau
levels is an integer, while in the compressible regions, a

level is partially ulled. The calculations also show that in
the compressible regions, the electric fi.eld is almost com-
pletely screened. In this respect the regions behave as
if they were metallic. They are separated by insulating
regions of incompressible electron gas.

Similar conclusions about the formation of insulating
and conducting regions in strong magnetic fields have
been reached in an analytical treatment of edge states
which was based on the self-consistent approximation.
The width of these regions was also estimated analyti-
cally. A similar analytical treatment has been developed
for edge states in a quantum wire and a quantum dot.
The self-consistent field varies slowly on the scale of the
magnetic length A~ = (h/eB) ~, and this allows the
mixing of Landau levels to be neglected. Tunneling be-
tween the levels is weak, and each electron belongs to a
single level. This means that the number of electrons in
each level is a well de6.ned integer. The redistribution of
charge between different conducting regions must occur
in discrete units. In this paper, we study tunneling onto
the dot and the distribution of discrete charge within the
dot in the simplest case, where there are two conducting
regions corresponding to the two different spin states of
the lowest Landau level.

When an electron tunnels onto the dot, it must be
placed in one of the two compressible areas. These are
separated by an insulating region. This allows us (in the
next section) to use the "Coulomb blockade" approach
to treat electron movement between the two spin-split
levels. The main modification to the single dot Coulomb
blockade can be understood by considering a model in-
cluding only three mutual capacitances: the capacitance
C between the two conducting regions, and capacitances
Ci,C2 coupling these regions to the gate (see Fig. I). An
important feature of our model is that the capacitances
Ci and C2 are not constant but depend monotonically
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In a large magnetic field, the constraint that the charge
must be transferred in discrete steps causes some redistri-
bution of the charge density, and a consequent increase in
the energy, making the energy larger than the minimum
corresponding to a continuous distribution (see Fig. 2).
In the limit C )) Cq + C2, this difference in energy can
be written as

FIG. 1. Schematic diagram of the dot, showing conduct-
ing areas and mutual capacitances. For clarity, we do not
show the capacitance between the inner conductor and the
leads.

upon the magnetic field, varying in proportion to the ar-
eas of their respective conductors. The sum Cg = Cq+C~
we take to be constant, because the area of the dot is al-
most independent of the magnetic field (see Sec. II).

In the experimental study, it was found that the value
of the gate voltage at which a conductance peak occurred
did not remain constant, but oscillated as the magnetic
fi.eld was varied. In our model, the capacitances Cq and
C2 depend on the magnetic field. Oscillations in Vg(B)
arise from changes in the discrete distribution of charge
in a circuit including the capacitances Cq, C2, and C.
The dependence of the capacitances on the magnetic field
can be found from the self-consistent approximation. '

This approximation is applicable if the system of con-
ducting and insulating regions is macroscopic, i.e. , all its
characteristic sizes exceed significantly the interelectron
distance. Under this condition, corrections to our sim-

ple approach caused by the correlation effects and by the
finite spatial extent of Landau wave functions are small.

In assuming that the energy of all the electrons in the
system can be written in terms of the capacitances of
the conducting regions, we are ignoring the presence of
the fully filled part of the lower level. This is partially
justified by the fact that electrons in fully filled states
are "fixed" in these states (at low temperature) and can-
not be compressed. They do not take part in the redis-
tribution of charge which occurs when we change from
the continuous charge distribution (which corresponds to
zero magnetic field) to the discrete division of charge be-
tween the two levels. In this paper, we are interested in
the modification to the Coulomb blockade caused by this
redistribution, and so our conclusions are not affected by
electrons in the fully filled region of the level. The Zee-
man splitting energy difference between the two levels
also does not affect the expansion of the energy in terms
of capacitances: this is because the splitting only adds
to the energy a term linear in the charge on one of the
levels. (For the same reason, the mutual capacitance of
two conductors is not affected by a difference in the work
functions of their materials. )

When B = 0, there is no insulating strip and the dis-
tribution of charge density across the dot is continuous.
If the capacitances to the leads Cl, /2 (see Fig. 1) are
neglected, the electrostatic energy is '

[e8N(B, N)]
2C (2)

where ebN(B, N) is the additional charge placed on one
of the Landau levels by the constraint of discreteness.
The exact value of bN depends on the capacitances Cq
and C2, and also on N, which is controlled by the gate
voltage. However, it is clear that the constraint can al-
ways be satisfied by

~

8N ~& 1/2.
At low temperature and low bias voltage, a peak in the

conductance occurs when the state of the system with A
electrons on the dot is degenerate with the state having
N+ 1 electrons: '

U(N + 1) —U(N) = EF,

where EF is the Fermi energy for electrons in the leads.
With U = Up + AU, using Eqs. (1) and (2) we find

EF (2N + 1)e+
e 2Cg

J[bN(B, N + 1)]' —[hN(B, N)]').

n
(b)

er l

Lower level

FIG. 2. Sketch of electron density distribution across the
dot, (a) in zero magnetic field, and (b) in a strong magnetic
field, when only two levels are occupied.

This formula allows us to estimate the amplitude of oscil-
lations of Vg(B). Since

~

8N
~

& 1/2, the maximum devia-
tion of Vg from the value corresponding to the undivided
dot is +e/8C, and so the maximum possible peak-to-peak
amplitude is e/4C.

It is possible to estimate the number of oscillations of
Vg(B) in the interval of magnetic field between the point



11 122 A. K. EVANS, L. I. GLAZMAN, AND B. I. SHKLOVSKII 48

where the inner conductor has its maximum extent and
the point where it is completely removed. As the mag-
netic Geld is increased and the inner conductor becomes
smaller, electrons are transferred, one by one, from it to
the other conductor. With the transfer of each charge,
there is a buildup and release of the charge ebN on the
capacitance C. If the number of electrons initially on the
inner conductor (that is, on the upper level) is Ko, there
will be No oscillations in this interval. Since initially the
upper level occupies approximately the same area as the
(fully filled) lower level, 1VO will be about half the total
number of electrons in the dot: No %j2 In .Ref. 5,
it is estimated that N 40, so there will be around 20
oscillations.

These oscillations are studied quantitatively in the
next section. There we predict that the maximum ampli-
tude of oscillations will occur when the areas of the two
conducting regions are approximately equal.

In the same section we present a "phase diagram" for
the system, which lays out the way in which the ground
state depends upon the two parameters of gate voltage
and magnetic field. A similarity is noted between the
diagram for our system and one for a reversible single
electron pump which has been constructed by Pothier et
at io

In Sec. III, we make numerical estimates of the mutual
capacitances, basing them on the self-consistent analyti-
cal theory of Ref. 8. We use these estimates to compare
our theory with the results of experiment.

cn] = p+ s —p.

For the upper level,

en2 ——q+ r.

Here nq and n2 are integers which represent the numbers
of electrons on the two levels. There are also two con-
straints which require the voltages across the capacitors
between leads and gate to sum to Vg. These are

V =g

and

Cl,

Using these four equations, we can eliminate the four
polarization charges to And the energy of the system as a
function of nq and n2. For most of the calculations in this
paper, we will neglect the lead-dot capacitance CL, . This
is because including CL, yields results which differ very
little from the results we give, while making the equa-
tions much more complex. We will estimate corrections
due to a nonzero value of CL, at the end of this section.
The assumption CL, ——0 implies that the charge 8 = 0.
Applying the constraints then gives

K e e (Cin2 + niC2)

2' 2Cg(CiC2 + CCg)
'

II. CONDUCTANCE PEAK STRUCTURE
DERIVED FROM THE ELECTROSTATIC

MODEL

The charge discreteness requirement for the lower level
gives

Gate

Vg

C C
2

C„

FIG. 3. Equivalent circuit for the dot in a quantizing mag-
netic field. Capacitances of the four tunnel junctions and po-
larization charges on these capacitors are shown; 1 is the outer
conducting area, 2 is the inner conducting area.

A circuit equivalent to the device of Fig. 1 is shown in
Fig. 3. In terms of the polarization charges p, q, r, and
8, the electrostatic energy is

p2q2p282
v = + + + —&,(p+ q).

where Cg ——C] + C2 and N = n-i + n2 .
The case of zero magnetic Geld, where we can consider

the whole dot as a single conducting region, corresponds
to the limit C —+ oo. Equation (10) then reduces to (1).
According to (3), peaks in the conductance occur at a
series of discrete values of Vg, given by

EF (2X+ 1)e

and separated by intervals of AVz ——e/C~.
Estimating Cq and C2 in the presence of a magnetic

Geld, we assume that the distance between the gate and
the two-dimensional electron gas forming the dot is much
smaller than the size of the dot. The capacitances Cq and
C2 are then proportional to the areas of their respective
conductors. It was shown in Ref. 8 that the width of
the depleted region between the dot and the confining
gate is determined mostly by the conGning potential and
is independent of the magnetic Geld. It was also shown
that the width of the incompressible area separating two
conducting regions is small in comparison to the width of
the conducting regions. Therefore the sum of the capac-
itances Cg = Cj + C2 can be regarded as independent of
B and proportional to the area of the dot, even though
both Cq and C2 depend on B.

The first two terms in (10) are independent of the way
charge is distributed between the two conductors: that
is, they depend only on N. The third term therefore
determines the charge distribution inside the dot. The
equilibrium value of nj can be found by minimizing this
third term with respect to variations in n~, holding N
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fixed. The result is

(12)

(14)

C»Nnl—
Cg

Since charge is quantized, n» will increase in steps:

f, 11 (Ci& 1)
ni ——Int

~
ni+ —

~

=Int
~

+ — ~. (13)

Here Int denotes an integer part of a number.
We now use the condition (3) for a peak in the low-

temperature conductance. An electron moving onto the
island may go to the inner or to the outer conductor.
In the first case n» is constant, and in the second n2 is
constant. First consider addition to the outer conductor.
Equations (3) and (10) with n2 held constant give

Ep (2N + 1)e eC2
e 2Cg 2Cg(CgC+ CiC2)

eC2(n', —n2)
+C,C+C.C.

As can be seen from Eqs. (12) and (13), (n2 —n2)
oscillates around zero as C» changes, with peak-to-peak
amplitude l. According to (14), this causes oscillations in
V~, with amplitude eC2/(CgC+ CiC2). The dependence
on C2 of the last two terms in Eq. (14) is shown in Fig.
4(a). Because of the symmetry between the inner and
outer conductors in this approximation, a similar calcu-
lation for addition to the inner conductor gives a diagram
almost identical to Fig. 4(a). This second diagram is a
reHection of the first about the vertical line through the
center, Ci ——C2 ——Cs/2. Note that the lower bound for
the oscillations in Fig. 4 is the same for both cases. We
can plot both sets of lines on a single diagram: this is
Fig. 4(b).

For each value of the capacitance C», only the lower of
the two lines on this diagram has physical significance.
To see this, consider what happens as we start at a value
of Vg well below the lines and increase Vg slowly. At first,
N has some well defined value, say N», which minimizes
the energy. When the lower of the two lines on the dia-
gram is reached, there is a degeneracy between the state
of the system in which N = N» and the state in which
N = N» + 1. This is what causes a peak in the con-
ductance. Above the line, the N = N» + 1 state is the
state of lowest energy. When the second line is reached,
there is no change, because the line represents a degen-
eracy between two states which are not the equilibrium
states of the system: the N = N» state and a second
N = N» + 1 state obtained by adding an electron to a
different conductor from the first.

We can therefore remove the upper of the two degen-
eracy lines at each point, to obtain a plot of the value of
Ug at which a conductance peak occurs, against the ca-
pacitance C2. This is Fig. 4(c). On all these diagrams,
the horizontal axis corresponds to the value of Ug given
by the first two terms of (14), or equivalently, the value
given by Eq. (11).

As the magnetic field increases and capacitance C2 is
increased at the expense of C», the position of the con-
ductance peak oscillates. This is the effect we discussed
qualitatively in the Introduction.

The zigzag line in Fig. 4(c) divides the (B, Vg) plane
into two regions. In the region below the line, the equi-
librium state of the system has total charge N, and in
the region above, the total charge is N + 1. On the line,
there is a degeneracy between two states having differ-
ent values of ¹ This is the cause of the peak in the
conductance.

The line in Fig. 4(c) is not the only locus of degener-
acy between equilibrium states of the system: there are
also lines of degeneracy between states with the same
N, caused by redistribution of discrete charge within the
dot. These lines do not give rise to peaks in the dc con-
ductance through the dot. Figure 5 is a diagram show-
ing all the degeneracy lines in part of the plane. This
"phase diagram" of the system bears a striking similar-
ity to the stability diagram of a reversible single-electron
pump which has been constructed by Pothier et al. The
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FIG. 4. Construction of the form of oscillations in V~ vs
C2. Conductance C2 is a monotonous function of magnetic
field B, see text. (a) Gate voltage Vs(C2) determined by
the degeneracy condition for bringing an electron into the
outer conductor, U(ni, n2) = U(ni + 1, nq), see Eq. (14).
(b) The result of combining (a) with Vg(C2) corresponding
to the degeneracy condition for bringing an electron into the
inner conductor (dashed line), U(ni, n2) = U(ni, n2 + 1). (c)
The "physical" part of Vs(C2) corresponding to the observable
conductance peaks. The monotonous part of Vg(C&) given by
the third term in (14) is omitted.



11 124 A. K. EVANS, L. I. GLAZMAN, AND B. I. SHKLOVSKII

0,6 1,5

0,7 1,6 2, 5 3,4 4,3 5,2 6,1 7,0

2,4 3,3 4,2 5, 1 6,0

~('~r—

~I $/ g( L(

interact electrostatically. In the opposite limit, C/Cg —+

oo, the system becomes equivalent to a single quantum
dot, as we mentioned in the Introduction.

If the capacitance CL, between the leads and the outer
conductor is included in the model, the equations become
much more cumbersome, but exactly the procedure fol-
lowed above can be used to analyze the problem. One
important effect of including CI. is that the expression
for the energy (10) is no longer symmetric with respect to
the exchange of the two conductors. As before, there are
two expressions for Vg, analogous to (14); but now the
equation for tunneling onto the inner conductor is not
simply the result of exchanging Cq, nq with C2,n2 in the
equation for tunneling onto the outer conductor. Hence
Fig. 4(c) becomes asymmetric: in fact the amplitude is
decreased for smaller values of C2 (or equivalently, of B).
The expression for the amplitude is

FIG. 5. "Phase diagram" for the system. Each hexagon
represents the area in the (B,Vg) plane in which a certain
state of the system is the ground state. States are labeled by
the numbers of electrons on the two conducting rings: n2, ni.
The total charge N = nq + n2 is the same for all hexagons
in the same horizontal row, and divers by 1 between adjacent
rows.

resemblance is not a coincidence. The circuit used to
pump electrons is very similar to our model of the is-
land, with two "grains, " each having a discrete charge.
The two grains are coupled to each other and to leads by
tunnel junctions, as are our two conducting areas. The
parameters V~ and B are replaced by two independent
gate voltages for the two grains. However in the pump,
each grain is coupled to only one of the leads, while each
conductor in our dot is coupled to both leads. Unfortu-
nately the Coulomb island of the present paper could not
be used to pump electrons in the same style, because of
this difference in the way grains and leads are coupled.

The peak-to-peak amplitude of the oscillations varies
as B is changed. Oscillations in Vg(B) are suppressed at
small Ci and C2, and most pronounced when Ci C2.
Because the number of oscillations Ko is large (proba-
bly around 20 see the Introduction), it is reasonable to
determine the B dependence of peak-to-peak amplitude.
To do this we must determine the points of intersection
of the two sets of lines in Fig. 4(b). The result, for large
K, is

eCgC2

Cg(CgC + CtC2)

If Cq and C2 vary so that Cg = C~+ C2 is constant, then
the maximum amplitude of oscillations will be e/(4C +
Cg) and will occur when Cq ——C2, that is, when the areas
of the two conducting regions in our model are equal.

The construction we have used, which gives a phase
diagram of hexagonal cells, can be used for any value
of the ratio C/Cg. In the limit C/Cg —+ 0, the vertical
sides of the hexagons shrink to zero length and cells in
the phase diagram become four-sided. This corresponds
to a system of two separate quantum dots which do not

eCgC2

(C C + C1C2 + CLC2 + CCL) 4C1C2CL

Since CL, is smaller than the other capacitances in the
system (see the next section), it is reasonable to expand
this expression to first order in Cl. . The result is

eCtC2 e[4C~C2 —Cg(C2 + C)]
Cg(CgC+ CgC2) C'(CgC+ CgC2)'

Since 4C&C2 ( CgC (See Sec. III), the effect of Cl, g 0
is to decrease the amplitude. This effect is most pro-
nounced at smaller C2. that is, at smaller values of B.
Another change to the phase diagram is that the lines
which are vertical in Fig. 5 become inclined.

We will now show that (10) is equivalent to the elec-
trostatic energy of Eqs. (1) and (2) in the Introduc-
tion. To do this, we introduce the difference between
the discrete charge en' on one of the Landau levels
and the corresponding continuous charge en~ [see (13)j:
ed% = e(nq —n~) = e(n2 —n2). From (10), we find

Ne 2 e2C
2 g

This formula agrees with Eqs. (1) and (2) when C )) Cg.
When 8N = 0, it reduces to (1). Therefore (18) can be
viewed as the first term of a power series expansion in
b%, a small parameter which expresses the deviation of
the system from the minimum energy corresponding to a
continuous charge distribution.

III. ESTIMATES OF CAPACITANCES
AND COMPARISON WITH EXPERIMENT

To compare the results of the previous sections to ex-
perimental data available in Ref. 5, we need to know the
values of the capacitances Cq, C~, C, CL, . Finding accu-
rate estimates of these values is difFicult for several rea-
sons. First, the correspondence between our model and
the real device is approximate: for example, the capaci-
tance C varies somewhat with the magnetic field, as we
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el (4d )
ln

2w2 ga) (20)

We estimate a with the help of a result from Ref. 8.
There, an equation is derived for a in terms of b, the
width of the neighboring compressible strip, and ab, the
Bohr radius in the semiconductor. A modification is
required to change the energy separation between lev-
els from the Landau level separation hw to the Zee-
man splitting energy. This gives an additional factor
(m/m, g) ~ = 0.26 for GaAs, where m and m, s are the
true mass and the efFective mass of an electron in the
semiconductor. An exchange interaction between elec-
trons may modify the Zeeman splitting energy, forcing
us to introduce an effective g factor g ~. ' The result

mention later in this section. Also we have neglected any
change in the sizes of the conducting areas which may oc-
cur as electrons are transferred between them. Second,
although the positions of the gates in the device are pre-
cisely known, the shape and size of the 2D electron gas
confined by the gates are not. Third, finding each capaci-
tance, even when the dimensions are known, requires the
solution of a nontrivial 3D electrostatics problem.

With these difficulties in mind, we will settle for very
approximate estimates of the capacitances, which will
serve only to show that the results of our calculations
are of the same order of magnitude as the results of ex-
periment.

All the conductors are embedded in Al Gai As or
GaAs. Each of these semiconductors has a dielectric con-
stant e of approximately 12. We neglect the difFerence.

It is easy to find an estimate of Cg, the total gate
capacitance. The Coulomb island can be regarded as a
rectangle of area 350 x700 nm, which is 100 nm away
from a broad plane which forms the gate. Since the size
of the island is much larger than its distance from the
gate, we can treat Cg as a parallel-plate capacitor, and
find Cg 190~ nm.

Next we estimate C, the mutual capacitance of the two
conducting rings. Using the fact that the incompressible
strip is narrow compared to the typical radius of the con-
ducting areas, we can determine the charge distribution
in the vicinity of this strip from an auxiliary problem.
We substitute two straight conducting strips, separated
by an insulating strip, for the two compressible regions.
This makes the problem two-dimensional. We assume
that the width a of the insulating strip is much smaller
than the length of the system. If the electrodes were
semi-infinite half-planes, the charge distribution induced
on them by a potential difFerence V would be

V
o-(z) =

27r2 [z2 (a/2)2]1/2 '

where x is the distance from the middle of the insulat-
ing strip. The total charge on the strips in the interval
a/2 (~ z ~( zq depends logarithmically on zq if zq )) a.
Because of this weak logarithmic dependence, we can es-
timate C by cutting ofF the charge distribution in our
auxiliary system at a length equal to the separation d
between gate and dot. In this approximation, for d )) a,
the capacitance is

is

(geg 6agm )a=
7T me@

In experiment, effective g factors have been observed
in the range 2 —15. For the island, ab 10 nm, and we
estimate 6 100 nm, so a 7 —19 nm. With the length
l 1500 nm, (20) gives C 230 —310' nm.

Estimating the value of Cl„ the capacitance between
lead@, and the outer conductor is difficult. However, the
distance from dot to leads is at least ten times larger
than the distance between the two conductors forming
the capacitance C. We can see from Eq. (20) that the
capacitance between two conducting planes depends log-
arithmically on this separation. The length of the ca-
pacitor [l in (20)] is also smaller for CL, than for C. We
therefore expect that the value of CI. will be less than
half that of C.

To compare the results of our model with the exper-
imental results of Ref. 5 we calculate the ratio between
the maximum amplitude of oscillations of a single peak,
8Vg and AVg &

the separation in Vg of successive peaks.
Measurements in Ref. 5 give the values bvg = 0.1 mV
and Lvg ——1.2 mV. An experimental value for the ratio
is therefore 0.08. We will assume that this is the maxi-
mum value. It corresponds to the tenth oscillation after
the start of the depopulation of the upper level, and in
Ref. 5 the number of electrons on the dot is estimated to
be around 40. In any case, our result for the amplitude
varies little except at the extreme values of Ci and C.

The separation between successive peaks in the con-
ductance is independent of the magnetic field in our cal-
culations: AVg = e/C~. The maximum amplitude of
oscillations is h Vg = e/(4C+ Cg). With the capacitances
estimated in the previous section, the ratio is

bV, C,
DV, 4C+ C,

This yields a value for the ratio of between 0.13 and 0.17.
Including the maximum value of CL, estimated earlier,
and using the expression (16) for the amplitude of oscil-
lations bvg, gives the slightly smaller values of 0.10 to
0.13 for the ratio. Since the effect is relatively small, the
inaccuracies in our calculation of the value of Cl, are not
very important.

Our result is surprisingly close to the experimental
value. The estimates we made of the capacitances are so
rough that this agreement must be partly due to chance.
However, this result does show that our theory predicts
an amplitude which is of the correct order of magnitude.
The unreliable way we take the filled portion of the lower
Landau level into account (see the Introduction) proba-
bly also contributes to the error, and there is the pos-
sibility that C may vary with the magnetic field. This
may also be the reason for the increase in V~(B) as R
increases, which occurs in the experimental results, but
is not explained by our calculations.
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IV. CONCLUSION

We have constructed a simple model of charging ef-
fects in a quantum dot in a large magnetic field. The
model can be solved analytically, and provides an intu-
itive understanding of the way charge distributes itself
within the dot. Our work is complementary to the nu-
merical approach of Ref. 5: it accounts simply for most
important features of the case where there is only one oc-
cupied Landau level, while the computational approach
reproduces experimental results more exactly and is eas-
ily applied to the dot in smaller magnetic fields, when
the number of occupied levels is greater.

The validity of our model depends on observations
about edge states made in the computational study and
also in an analytical treatment of the subject. ' In par-
ticular, we assume that the electric field in areas where
a Landau level is partially filled is screened almost com-
pletely, so that we can treat such areas as conductors.
Also we assume that there is a large number of electrons
on each level, so that the self-consistent approximation
applies. The validity of the Coulomb blockade approach
depends upon the assumption that electron transitions
between two levels are inhibited sufficiently for the num-
ber of electrons in each level to be a well-defined integer.
This is ensured for our two spin-split levels by the con-
servation of the electron spin quantum number.

The equations we use can be partly justified by con-
sidering a power series expansion of the energy about the
minimum corresponding to a continuous charge distribu-
tion, which leads to an equation of the form (18), but
does not give the coeKcients in the series. We have used
the mutual capacitances of the various conducting areas
to supply the coefficients. This is more dificult to justify
because it does not take into account electrons which are
in the fully filled part of the lower level, and not in any
of the compressible states which form our conductors.
However, electrons in the fully filled states are prevented
from moving in response to an electric field. This means
that they do not take part in the redistribution of the
charge density on the dot which occurs as charge hops in
discrete steps from conductor to conductor. Since it is
the energy change in this redistribution which causes the

effects we have studied, the fully filled states will at most
add an uninteresting constant to the interaction energy,
and can be ignored.

The main feature which our model explains is the os-
cillations in Vg(B), the gate voltage required to give a
peak in the dc conductance, as a function of the mag-
netic field. These oscillations are a result of an "internal
Coulomb blockade" between the two conducting regions
in the dot, whose areas are dependent on the magnetic
field. We predict that the amplitude of oscillations will be
greatest when the two conductors have equal areas, and
give an equation (15) for the amplitude as a function of
the mutual capacitances of the different conducting ar-
eas in the dot. By estimating these capacitances from
the geometry of the system, we are able to compare our
results with the experimental results of Ref. 5, and find
reasonable agreement.

With CI, ——0, as the conductance peaks oscillate, a
maximum of V~(B) for one peak occurs at the same value
of B as a minimum for the next. This is why the vertical
lines in Fig. 5 are vertical. This agrees with the results of
the numerical calculation in Ref. 5, where the Coulomb
interaction between dot and leads was not taken into ac-
count. As we mention in Sec. II, when Cg is introduced,
the vertical lines in Fig. 5 become inclined, and the cor-
respondence is removed. A mismatch of this type was
observed in the experimental results of Ref. 5, and we
attribute this to the effect of the dot-lead interaction.

The theory given here applies only to the case where
a single, spin-split Landau level is occupied, but it might
be extended to more complex states of the system. There
are also cases where nominally distinct Landau levels may
merge because of thermally activated electron transport,
reducing the effective number of separate levels.
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