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We calculate transport properties of both electrons and holes in an idealized silicon quantum wire in
which scattering is dominated by deformation-potential acoustic-phonon scattering. The quantum-wire
electronic states are obtained from an empirical tight-binding calculation while the confined phonon field
is treated in a continuum model. Scattering rates within and between quantum-wire subbands are deter-
mined from Fermi’s golden rule. The method for calculating scattering rates is quite general; we can in-
clude any number of electronic and phonon subbands in our theory. To determine transport properties,

we use a Monte Carlo approach.

I. INTRODUCTION

The recent observation of efficient luminescence in
porous silicon has stimulated a great deal of theoretical
and experimental interest in the electronic and optical
properties of Si wires.!”® The hope is that silicon will
finally become a suitable material for optical applications.
To achieve this, techniques for fabricating silicon wires
reliably and uniformly will be needed. This will stimulate
interest not only in the optical properties of porous sil-
icon, but also the transport properties. For instance, to
determine the properties of a Si light-emitting diode, one
would need to know about the transport properties in ad-
dition to the optical properties. In addition, the multival-
ley nature of the band structure of the quantum wires re-
ported® suggests that an intervalley transferred electron
effect, leading to a negative differential mobility similar to
that seen in GaAs,” might be possible in the quantum
wires.

In this paper, we study the transport properties of an
ideal Si quantum-wire structure within the Boltzmann
equation framework. While such ideal wires do not
currently exist, it is hoped that by studying ideal wires,
insight will be gained into more general wire structures.
To determine the energy bands, we utilize the empirical
tight-binding method described in Ref. 3. In comparison
with GaAs wires,® transport in silicon wires is easier to
model since silicon is a nonpolar material and the dom-
inant scattering mechanism (in the absence of impurities)
is deformation-potential phonon scattering. While in ac-
tual bulk silicon, the phonon scattering can be quite com-
plicated involving both acoustic intravalley and acoustic
and optical intervalley scattering (of both f and g type),9
in our ideal model we consider scattering only with a
“generic” acoustic phonon. We develop a procedure for
calculating the acoustic deformation-potential scattering
rates both within and between quantum-wire subband
states, within the framework of Fermi’s golden rule. In
calculating the scattering rates, we incorporate tight-
binding subbands and wave functions determined from

0163-1829/93/48(15)/11067(10)/$06.00 48

the tight-binding band-structure calculation. Unlike
GaAs wires, where the wires are not free standing, the
phonon modes in the Si wires are quantized. We allow
for quantum confined phonons within a continuum model.
This method of calculating scattering rates treats all ini-
tial and final subband states on an equal footing and au-
tomatically takes subband mixing, level crossings, and
Bloch form factors into account.

Once the scattering rates are obtained, the transport
properties can be determined by solving the Boltzmann
transport equation. To solve the Boltzmann equation, we
adopt the Monte Carlo method.!%!! The Monte Carlo
method has the advantage of being able to handle many
different scattering mechanisms as well as incorporating
realistic band structures.'?

In Sec. IT we discuss the theory used in calculating the
transport properties of the silicon wires and in Sec. III we
present our results.

II. THEORY

To determine the transport properties of silicon quan-
tum wires, several steps need to be taken. First, the wire
geometry and band structure must be determined so that
the electronic states are known. For the states in GaAs,
oftentimes a simple envelope approximation works for
determining the states and wave functions. This is not
the case in Si since the lowest-lying conduction state is in
the X valley and is not direct. After the electronic states
are known, the scattering rates need to be determined.
Finally, the scattering rates and electronic states are then
used as input into the Boltzmann transport equation, and
the transport properties of the system are determined.

A. Wire geometry and band structure

In our ideal wire geometry, we consider an infinitely
long silicon wire oriented along (001) with a square cross
section whose faces, of length L, are parallel to the four
equivalent (110) planes. In addition, all the silicon dan-
gling bonds at the surface are assumed to be passivated
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by hydrogen derived from the HF acid used in fabrica-
tion. The quantum-wire crystal structure is shown in
Fig. 1. The basic unit (shown in the upper portion of Fig.
1), from which we construct the quantum wire, contains
four silicon atoms and has a height a and width a/ V72,
where a is the lattice constant (@ =5.43 A for Si). The
quantum-wire unit cell (a cross-sectional slab) consists of
N X N such basic unit cells and there are an infinite num-
ber of these slabs stacked on top of each other along the
[001] wire axis. The width of the wire is L =Na /V2.
The quantum-wire Brillouin zone is one dimensional
since the crystal structure is only periodic along the [100]
wire axis. Note that the Brillouin-zone boundary in the
[100] direction for the quantum wire occurs at 7/a as op-
posed to 27 /a for bulk silicon. This is associated with a
doubling of the repeat distance in the wire, illustrated in
Fig. 1.

To obtain the electronic properties of free-standing sil-
icon quantum wires, we use a second-neighbor empirical
tight-binding model which includes seven atomic orbitals
per silicon site with symmetries s,x,y,z,d;,d,, and s*,
where d,=(x?—y?)/V'2 and d,=(3z>—r?)/V’6. Bulk
silicon has T; point-group symmetry and the d-like orbit-
als decompose into two d? orbitals which transform ac-
cording to the E representation, plus three d> orbitals
which transform according to the 7, representation.
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FIG. 1. Crystal structure of an idealized silicon quantum
wire. The base unit, shown in the upper portion of the figure,
contains four silicon atoms. The quantum-wire unit cell is a
cross-sectional slab consisting of N XN such basic units. The
faces, of width L, are parallel to the four equivalent (110) planes
and the wire axis is oriented along [001].
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Since the d? orbitals have the same symmetry as the p or-
bitals, their role is already taken up by the p orbitals, and
they can be excluded for simplicity. The s* orbital, as
originally introduced by Vogel, Hjalmarson, and Dow,!3
is added to improve the description of higher conduction
bands.

We retain second-neighbor interactions, because in a
nearest-neighbor model, the transverse effective mass at
the X point is infinite. Since the quantum-confinement
energies for X-like conduction-band states are governed
by the X-valley transverse mass, it is essential to include
the second-neighbor interactions.

Hamiltonian matrix elements between silicon atomic
orbitals are obtained by fitting tight-binding bands for
bulk silicon to corresponding results from an empirical
pseudopotential calculation in bulk silicon.!* In the ener-
gy range of interest, our model closely matches the pseu-
dopotential results throughout the entire Brillouin zone.>

We neglect reconstruction of the hydrogen passivated
surfaces. The surface hydrogen contains a single s orbital
and all Hamiltonian and optical matrix elements between
silicon orbitals and hydrogen s states are scaled according
to the 1/d? rule.!® Since the radius of hydrogen is much
less than the silicon radius, we take d to be half the Si-Si
bond length.

Using the tight-binding Hamiltonian matrix elements
between localized atomic orbitals, we compute the sub-
band structure E, (k) and the tight-binding wave func-
tions for the idealized quantum wire using the slab
method. The tight-binding wave functions are expressed
as Bloch sums

eikLa
Pu(r)= 3 Zj (k)—F==¢r—Ry—LaZ), (1)
Ry L,a v ‘/N

where N is the number of slabs, R, denotes atomic sites
within a cross-sectional slab, L labels the slab, and «a la-
bels the orbital. The tight-binding expansion coefficients
are Zg o(k) and ¢o(r—Ry—LaZ) is localized atomic or-

bital of symmetry type a centered at position R, within
slab L. A reduction in the size of the tight-binding Ham-
iltonian matrix is obtained by exploiting mirror symme-
try about the perpendicular mirror planes (110) and
(110). We consider symmetrized tight-binding wave
functions labeled by (+,+), (—,+), (+,—), and (—, —)
where the two indices label the parity about (110) and
(110), respectively. In this basis, the Hamiltonian is
block diagonal with four blocks corresponding to the four
symmetry types.

B. Scattering rates and phonon states

Since silicon is nonpolar, the dominant scattering
mechanism at room temperature and low fields is
deformation-potential phonon scattering. In bulk silicon,
phonon scattering can either be intervalley or intravalley.
Intravalley scattering is usually acoustic. Intervalley
scattering can be either acoustic or optic depending on
whether the scattering is f or g type, and depending on
the value for the deformation potential constant. Inter-
valley scattering in bulk Si can occur via acoustic-phonon
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scattering; however, due to the large change in wave vec-
tor, this type of scattering involves a finite energy for the
acoustic phonon, the lowest energy being about 10 meV.’
In this paper, in keeping with the simplicity of the model,
we consider scattering only by acoustic phonons. How-
ever, for electric fields which are sufficiently high to
create a significant number of carriers above the optic-
phonon frequency (63 meV) deformation-potential
scattering by optical phonons can also be important and
must be included. Impurity scattering for heavily doped
material can also be important and limit the mobility, but
we will assume that the samples are clean enough so that
the mobility is not dominated by impurity scattering. Fi-
nally, at high carrier densities, carrier-carrier scattering
can become important. For intraband scattering in one-
dimension, this is not very important since carrier-carrier
scattering is a small g interaction which favors forward
scattering. It can, however, become important for inter-
band scattering. We will assume that the densities are
low enough so that carrier-carrier scattering is not an im-
portant effect. Thus our calculation is applicable to car-
rier densities below ~10'®/cm?® and at room tempera-
ture. Above these densities, carrier-carrier as well as im-
purity scattering can become more important. As can be
seen, not only is the geometry and electronic structure of
the wire treated in an ideal model, but also the scattering.
In “real” wires, surface roughness and deviations from
the ideal cross section must also be taken into account.
These will further limit the mobility of such wires. Our
calculation thus represents a “best case” scenario.
The electron-phonon interaction energy is given by

H,,=¢V-u(r) (2)

where €, is the isotropic deformation potential for bulk
silicon and u; is the jth component of the ion displace-
ment. For electrons, €,=9.5 eV and for holes €,=5.0
ev. 16

In GaAs wires, the wire is created by confining elec-
trons in a quasi-one-dimensional potential due to the
AlGaAs/GaAs interface and the phonons can be treated
as bulklike. In the free-standing silicon wires considered
here, the phonons are quantum confined. For quantum-
confined phonons in free-standing silicon wires, we adopt
a continuum model in which the phonon Hamiltonian in
a silicon wire of size L is given by

Hp‘—‘]}"ﬁw,,rqa;;'qaulq . (3)
I'q

The phonons are assumed to be in thermal equilibrium
(we neglect hot-phonon effects) and the dispersion rela-
tion is

opg=c,V'a’+ai+ai “

where ¢,=Iw/L and qp=I!'w/L are the Ith and I'th
quantized phonon wave vectors along the [100] and [010]
confinement directions, ¢, =9.04 X 10° cm/sec is the lon-
gitudinal sound speed in bulk silicon, and ¢ is the phonon
wave vector along the [001] wire axis. Following stan-
dard convention, a;., and a;, are phonon creation and
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destruction operators. Since the /=1['=0 phonon branch
is of the form w=c,q, we refer to phonons in this branch
as acoustic phonons. Phonons in higher-lying phonon
branches are referred to as excited quantum-confined
phonons. This is illustrated in Fig. 2 where we plot the
phonon energies as a function of wave vector for the
lowest phonon modes in a 7.7- A wire.

The number of longitudinal acoustic phonon modes N,
is equal to the number of silicon atoms in the wire. Thus

AL,
Py

, (5)

c

where A is the cross-sectional area of the wire, L, is the
length of the wire along the growth direction, and
v.=a} /8 is the volume of the Wigner-Seitz cell associat-
ed with a silicon atom. In a continuum model, the num-
ber of phonon modes is infinite. To correct for this, we
introduce a Debye cutoff for the quantum-confined
phonon-dispersion relation. The Debye cutoff energy
fiwp, is defined by requiring that the total number of pho-
non modes (obtained by integrating over the phonon den-
sity of states) be given by N,. Thus

28 [E —fiwy g JdE (6)

#iw
N[ pean =3

defines the Debye cutoff energy.
The ion displacements for the continuum phonon field
can be expressed in terms of plane waves

172
Qy
un)=3 |—2 L -
irg | 2PVouwq | Vq*+qt+q?
X(ayy +‘11J5'q o' (7

where Q;.,=(q;,9,q) is the total phonon wave vector.
Substitution of the phonon displacement field into the

deformation-potential  electron-phonon  Hamiltonian
yields
H,(r)=i€ Vigt+at+q*
% 2p V(l)” q ] ! !
iQygr
X (all’q +(1”'q )e (8)
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F{G. 2. Quantum confined phonon-dispersion relations for a
7.7-A quantum wire. The phonon modes are labeled by the
phonon quantum numbers (/,!’).
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In second quantized form the electron-phonon interac-
tion is given by

ﬁepzf ¢T(r)Hep(r)¢(r)dr s (9)

where 1/1T(r) is the field operator associated with the
creation of an electron at position r and is related to the
tight-binding wave functions @, ;(r) by

=3 pX(r)e) . (10)
nk

Here the operator c,jk creates an electron in a quantum-

wire state with subband index n and wave vector k.
J

Gr=3 3 chcpn 2 = 3 Zﬁ,o’a,(k)

nk n'k’ Ry, L

In evaluating the integrals over localized atomic orbit-
als, we neglect two-center integrals in comparison with
on-site integrals. For small Q;, scattering, the exponen-
tial factor is slowly varying over atomic dimensions and
can be treated as a constant to be taken outside the in-
tegral. Thus

f d’;(r—Ro“‘La’z‘)eiQ""’.r(ﬁ (T—Ru—L'aZ)dr
= Qg Ro(e'qL"Saa 8R R,SLL ) (14)

and the form factor simplifies to

. iQIl'g-R
Gu =3 3 cheve | 3 ZiEOZE, (e
nk n'k’ Rya
1 (k' +a—
X |— i(k'+gq—k)La 15
N2¢ (15)
The sum over L gives the selection rule
_1_ Eei(k‘+q_k)La:8k’—k—Fm,q (16)

N T

where I',, =2mm /a is a reciprocal-lattice vector in the
quantum-wire Brillouin zone and § is the Kronecker del-
ta function. If we ignore umklapp processes and thus set
I',, =0, we obtain

’ iQ;. ‘R
GrD=3 3 chep | D ZEFLOZE, (ke Wa™0
nk n'k’ Ry a
Xak'_k’q ’ (17)

where the sum over site coordinates is restricted to a
quantum-wire unit cell of height @ and cross-sectional
area A.

The scattering rates are obtained from Fermi’s golden
rule. The electron-scattering rate from state n,k to state
n',k’ due to emission and absorption of quantum-
confined phonons with quantum numbers / and /' is
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Performing the indicated integration over position, the
electron-phonon interaction becomes

172
=ie Vgi+qk+q?
1112' 2PVCUII' P
Xlay, +a—ll’q )Gy(q) , (11)
where
Gulg)= [ ¥'(x) o' y(r)dx (12)

is an overlap form factor which is written in terms of the
atomic orbitals as

sza Qg A
fgba(r Ry—La2)e "¢ ¢ (r—Ry—L’'aZ)dr .

(13)
[
, 3 2
W (1')= ﬂ'Gkk'(” 2[gf+qf+(k—k')?]
X {Nyyy8[E, (k') —E,(k)—fiwy, ]
+(Nyy + DS[E, (k") —E, (k) +Hiwy, 1}
(18)

where Ny, is the equilibrium occupation number for
phonons with energy ﬁmnlq. The form factor is

G (*=|3 ZRya K)*ZR o k")
R
0
2
i(q;Ro, +4pRy, +(k—Kk")Ry,)
Xe x )y z s

(19)

which can be evaluated in terms of the quantum-wire
tight-binding expansion coefficients. Note that for the
ground-state phonon (/=/'=0), the form factor ap-
proaches unity for k =k’ since the form factor reduces to
the wave-function overlap for ¢, (r).

The total scattering rate due to emission and adsorp-
tion of quantum-confined phonons is obtained by sum-
ming over all phonon quantum numbers / and /’. Thus

win = 2 (1) (20)

C. Solution of the Boltzmann transport equation

To solve the Boltzmann transport equation by the
Monte Carlo method, we define a steady-state distribu-
tion function f,(k) for each quantum-wire subband n.
We divide k space into evenly spaced k cells of width
Ak =2 /aN, where N, is the number of cells and the k
value at the midpoint of each cell is k,, (m = , Ng).
We wish to evaluate the average distrlbutlon functlon
fu(k,,)in each of these cells.
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The rate at which electrons in subband n with wave
vector k are scattered into other states is given by

=3 wpm . 1)
n'k’
The scattering-out rate for an electron in cell m is ob-
tained by averaging over initial states. Thus

1 k,, +Ak /2

n —_= n
ry, Ak Ji —akn dk T} . (22)
Converting the sum over k' to an integral, we obtain
=3 wm., (23)
n'm’

where

o kp+Ak/2 k- +Ak/2

1 L, f f
mm' = Ak 2 Jk,—Aks2 Jk,,—Ak/2

wpndk dk' (24)

is an average of the microscopic scattering rates over ini-
tial and final k cells m and m’. For each subband n and
wave vector k,, , we evaluate tight-binding energy bands
and wave functions. The scattering rates W".. are then
determined by numerical integration and tabulated. In
performing the double integrals, the energy-conserving &
functions in the microscopic scattering rates are replaced
by Lorentzians of half width y =2X 1073 eV and the sub-
band energies and form factors are evaluated by linear in-
terpolation.

After the scattering rates are tabulated, we use Monte
Carlo simulation of a carrier trajectory to obtain the dis-
tribution functions f,(k,,). Free-flight times are selected
by introducing the usual self-scattering mechanism to ob-
tain a constant total scattering rate for carriers initially in
subband n. The wave vector k, at the end of the free
flight is given in terms of the initial wave vector k; and
the free-flight time ¢, —¢; by the semiclassical expression
k;=k;—(eF /fi)(t;—t;) with F being the electric field.
The wave vector k; is used to assign the carrier to an ini-
tial k cell m. The scattering event terminating the free
flight is determined randomly based on the rates for tran-
sitions out of the initial state. If the carrier scatters to
subband n' and k cell m' the carrier subband index is up-
dated to n’' and the wave vector is updated by adding
Ak =k, —k, to k;. If a self-scattering is selected, we set
n'=n and m’'=m and proceed to the next scattering
event. After each non-self-scattering event, we note
which subband and k cell the carrier is in and use this in-
formation to create a histogram of f,(k,, ).

Once the distribution functions are determined, the
carrier drift velocity v, can be readily obtained as

k, +Ak/2
> fk —Ak/2 fa(kv, (k)
vg="" K, FAK/2 (25)
% fkm*Ak/z fallo)
where
1 dE, (k)
v"(k)ng (26)
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is the group velocity of an electron in quantum wire in
subband n with wave vector k. Approximating the
derivative of the band structure by a two-point difference
formula, we obtain

S £,k [ E,(k,, +Ak /2)—E, (k,,— Ak /2)]
1 nm

AT

Vg %
(27)

for the carrier velocity. Velocity-field curves are obtained
by plotting drift velocity as a function of applied field and
low-field mobilities are obtained from the slope of the
velocity-field curves at F =0.

III. RESULTS AND DISCUSSION

A. Band structure

We have calculated quantum-wire band structures for
several wire widths. The computed band structures are
shown irol Fig. 3 for quantum wires with L =7.7, 15.4,
and 23 A. The Brillouin zone is one dimensional since
the wire is only periodic along [001]. The repeat distance
along this direction is @ =5.43 A whereas in bulk Si is the
repeat distance is @ /2. Thus the quantum-wire Brillouin
zone is half the bulk Brillouin zone along [001]. Al-
though bulk Si is indirect, the Si wire band structure is
seen to be pseudodirect with an X-like conduction-band
minimum and a I'-like valence-band maximum at the
zone center.

The direct conduction band in a quantum wire can be
qualitatively explained. In bulk Si, the indirect conduc-
tion band consists of six equivalent X valleys with minima
at +0.85(27/a) along {100) directions. These valleys
are anisotropic ellipsoids with two transverse masses of
0.19m, and a heavy longitudinal mass of 0.92m,. In
quantum wires, the projections of four of these valley
minima (oriented along the [100] and [010] directions)
onto the wire axis are at the zone center and their ener-
gies determined by the effective masses along the [110]
and [110] confinement direction. When projected onto
the [001] wire axis, these states give rise to the four close-
ly spaced, direct conduction subbands seen in Fig. 3.

d N="

L@ 1 T 9

5

5“ A S 154 & T 23 R
S L= I 1 1 i
- = LN .

-1 0 1 -1 0 ‘l -1 0 1
k (rv/a) k (r/a) k (rv/a)

FIG. 3. B‘;md structures of §i quantum wires (a) L=7.7 A,
(b) L=15.4 A, and (c) L=23 A. The Brillouin zone is one di-
mensional with k ranging from —#/ato +/a.
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Each subband consists of substantial admixtures of bulk
states derived from the four degenerate X valleys and we
have a strong intervalley mixing effect.

The quantum-wire subbands derived from the two X
valley along [001] are indirect since the projections of
their valley minima onto the wire axis are near
+0.85(27/a ), which becomes *+0.3(7/a) after mapping
into the quantum-wire Brillouin zone (since the
Brillouin-zone periodicity is the twice the bulk as ex-
plained earlier). The states derived from the two X val-
leys along [001] have higher energies than the direct
minima since the [001] valleys have light transverse
masses along both confinement directions. The indirect
minimum at k=0.37/a are clearly seen in Fig. 3, al-
though in Fig. 3(a), the band hybridization makes them
difficult to see.

The valence bands are I'-like. At k =0, the highest-
lying state (or the top valence band) has (+,+) symmetry
and consists of predominantly z-like atomic orbitals. It
is, of course, direct in both bulk silicon and in the wire.
As the silicon wire is made smaller, the size of the direct
gap increases as can be seen in Fig. 3. The electronic
structure of the silicon wire with a direct, low mass valley
and high mass satellite valleys suggests a transferred val-
ley effect leading to negative differential mobilities and a
Gunn effect similar to that in bulk GaAs might be ob-
served in silicon quantum wires. This partially motivates
a study of the transport properties of the wire.

B. Scattering rates

The transition rate for scattering out of the k cell m in
subband n to any k cell in subband n’ is given by

m'=3 . W, The total scattering-out rate, obtained
by summing over all final subband states, is
an :zn’ ;lr:l =En'm'Wr’rl1’rln"

We plot scattering-out rates for electrons and holes in
a 7.7-A quantum wire at 7=300 K. In Fig. 4 we plot
""" and T'?, as functions of k,, for scattering from an ini-
tial subband »n to all final subbands n’. The conduction
subbands are shown in Fig. 4(a).

In Fig. 4(b) we plot scattering-out rates for initial states
in the first quantum-wire conduction subband. The sharp
peak in the scattering rate at k,, =0 is due to emission
and absorption of acoustic phonons (/=I]"=0 and
w=c,q). The acoustic-phonon population is approxi-
mately given by the equipartition expression
N,~(kpT /#iw)—% and the form factor simplifies to
|G (0,0,)2~8,,. If we neglect phonon energies in
comparison with electron energies and assume a parabol-
ic band with effective mass m,, we see that the
scattering-out rate due to emission and absorption of
acoustic phonons is approximately

ekyT
Tk~ ——2—
p Afic;
EkyT 2m,

~ — (28)
pAtic? #|k|

J 8[E (k) —E,(k)]dk’

The sharp peak in the cell-averaged scattering rate near
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the zone center is due to the enhanced density of states at
the conduction-band edge and falls off roughly as k,, \.
Clearly the broadening factor ¥ keeps the rate from being
infinite. Electrons initially in the first conduction sub-
band are primarily scattered back to the first subband,
but we note that some scattering to the second subband
near the zone center is allowed as can be seen in Fig. 4(b).

In Fig. 4(b) a sharp increase in the scattering-out rate is
seen near k =0.17/a. This enhanced scattering is due to
spontaneous emission of quantum-confined phonons.
The confined phonon bands are not thermally populated

Energy (eV)
'S
o

5 T T T
cl to c1-5 (b)
4 r total
——=—c1
........... c2-c5

Scattering Rate (10!5/sec)

Scattering Rate (10!%/sec)

-1.0 -0.5 0.0 0.5 1.0

FIG. 4. Acoustic deformation-potential scattering-out rates
for electrons in a 7.7-A silicon quantum wire at 300 K. The
conduction-band structure is shown in (a), scattering-out rates
for electrons in the first conduction subbands are shown in (b),
while scattering-out rates for electrons in the fifth conduction
subband are shown in (c). The scattering-out rates are k depen-
dent and are symmetric about ¥ =0. The solid line is the total
scattering-out rate for an electron with wave vector k while the
other lines represent the scattering out rates into a specific sub-
band.
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due to their higher energy, so we can set Ny, ~0 in the
expression for the scattering rate. If we take the phonon
dispersion to be constant over wave vectors of interest,

neglect the form factors between different subbands, and
J

2
1
Cyk)~——
? 2p Aticg I

el 2m,

11073

assume parabolic bands, the scattering-out rate due to
spontaneous emission of quantum-confined phonons is
approximately

= S |G iy o [ B[E (k') —E\ (k) —Hiey o Jdk’

~— S |G iy
2pAﬁcs2§| e

In the above expression, scattering by spontaneous emis-
sion of confined phonons is only defined at values of k
where the electron energy exceeds the quantum-confined
phonon energy. As electrons are accelerated to higher
energies, the number of quantum-confined phonon bands
available for scattering increases. The form factors can
be estimated in an effective-mass picture by replacing the
tight-binding wave functions with a continuous ground-
state envelope function. Thus

, ~_4__ L/2 5 ig;x
GUI'=—5 [T cosimx /L)e ™ dx

x [ cosmy /L)e™dy . (30)
—L/2

This integral is unity for the lowest phonon branch
(I=1'=0) and decreases rapidly with / and !’ due to the
rapidly oscillating exponentials in the integrand.

Scattering between different subbands is possible be-
cause of nonzero form factors between initial and final
states. In Fig. 4(b) we see that electrons in the first con-
duction subband may scatter into higher subbands. For
values of k near the zone boundary, the scattering rate is
enhanced due to the large density of states.

The scattering-out rates for the first four nearly degen-
erate lowest-lying conduction subbands are very similar.
In Fig. 4(c) we show the scattering-out rates for electrons
in the fifth conduction subband. This band includes the
two satellite valleys near +0.37/a as can be seen in Fig.
4(a). In this case we see two sharp peaks in the
scattering-out rates centered at the minima of the two sa-
tellite valleys. As in the case of the single valley centered
at k =0, these two peaks are due to emission and absorp-
tion of acoustic phonons (the ground-state phonon band)
near the bottom of the satellite valleys, while the nearby
side peaks are again due to spontaneous emission of
higher-lying quantum-confined phonons. As can be seen
from Figs. 4(b) and 4(c), the scattering rates become large
in small wires. For scattering rates this large, corrections
to the golden rule should be included to more accurately
determine the rates.

C. Distribution functions

We have studied room-temperature = electron-
distribution functions f,(k) in 7.7- and 15.4-A quantum
wires. In Fig. 5 we show room-temperature electron-
distribution functions for a 7.7-A quantum wire in the ab-

|k |V Ty o/E, (k)

Energy (eV)
'S
o

»
°

@
o

0 kV/cm (b)

fn(k) (arb. units)

fn(k) (&I‘b units)

-1.0 -0.5 0.5 1.0

0.0
k (r/q)

FIG. 5. Electron distribution functions in a 7.7-A silicon
quantum wire at 300 K. The conduction-band structure is
shown in (a) for comparison. The electron distribution func-
tions are shown in (b) in the absence of an electric field and in
(c) with an applied field of 300 kV/cm. For this case, the band-
edge mobilities are very low and the electrons are confined to
the bottom four condition subbands.
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sence of an electric field [Fig. 5(b)] and with a field of 300
kV/cm [Fig. 5(c)]. In our convention, the electric field
points to the left and electrons drift to the right. In the
absence of an electric field, we recover the equilibrium
distributions which are given explicitly by f,(k)
—[E,(k)/kT] . .

e " . In n-type wires the four pseudodirect
conduction-subband minima at the zone center are heavi-
ly populated while the higher-lying subbands are empty.
In the presence of an electric field, the electron distribu-
tions are distorted and displaced to the right, giving rise
to a net positive drift velocity for electrons and negative
current density. In the 7.7-A wire, the scattering rates
are very high and band-edge mobilities are very low.
Consequently, the electrons are confined to the vicinity of
the band edge even at very high fields.

In Fig. 6 we plot room-temperature distribution func-
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tions for a 15.4-A quantum wire. The quantum-wire
bands are shown in Fig. 6(a) and the distribution func-
tions are shown in Fig. 6(b) and 6(c) in the absence of an
electric field and with an electric field of 105 kV/cm. As
can be seen in the figure, only the lowest four bands are
populated at room temperature in the absence of an elec-
tric field. With an applied field of 105 kV/cm, we see a
significant scattering into higher-lying subbands. In par-
ticular, we note that the two satellite valleys are popu-
lated.

D. Low-field mobilities

Low-field electron and hole mobilities at 300 K are
shown in Fig. 7 for wire widths between 7.7 and 23 A.
The electron mobilities depend on wire size and vanish as
L —0. For electrons, low-field mobilities can be estimat-
ed in a simplified relaxation-time approximation. In
thermal equilibrium, we have seen that the electron-
distribution functions are localized near the bottom of
the four pseudodirect valleys. These bands all have ap-
proximately the same effective mass and there is little
scattering among them at small values of k. Thus, elec-
trons in the four valleys behave almost identically and we
need only consider an electron in a single parabolic band.
The electron mobility is given by p=e7/m, where m is
the electron effective mass and 7 is the relaxation time.
The relaxation time is

_2 E(k)
- kﬂ% I‘l(k)-i-l‘z(k)feq(k)/%feq(k), (31)

where E (k) is the parabolic electron energy band and
Seq(k) is the equilibrium electron distribution function.
The scattering rates I'j and I', are the approximate
scattering-out rates given in Eq. (28) and (29). Electron
drift velocities are low in comparison with bulk silicon.
It is important that scattering by emission of excited
quantum-confined phonons be retained in the treatment
of quantum wires. If we consider scattering from only
the lowest acoustic-phonon branch, we see that the
scattering-out rate I'; is proportional to 4. Consequent-
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FIG. 6. Electron distribution functions in a 15.4-A silicon
quantum wire at 300 K. The conduction-band structure is
shown in (a), the distribution functions in the absence of an elec-
tric field are shown in (b), and the distribution functions in the
presence of a 105-kV/cm electric field are shown in (c). In the
absence of an electric field, only the bottom four conduction
subbands are populated at room temperature. When an electric
field is applied, carriers are scattered into higher subbands.
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FIG. 7. Low-field electron and hole mobilities as functions of
wire size at 300 K. The electron and hole mobilities are ob-
tained from the Monte Carlo calculation by taking the slope of
the velocity-field curves at low fields. A relaxation-time esti-
mate for the electron mobility is shown for comparison.
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ly, the relaxation time and mobility would be proportion-
al to the area of the wire in the absence of other scatter-
ing mechanisms. Scattering involving excited quantum-
confined phonons, however, is important even though
these bands are not appreciably populated at room tem-
perature. Electron scattering by emission of quantum-
confined phonons greatly enhances the total scattering-
out rate when E (k) exceeds the excited phonon energy.
The relaxation-time estimates for electron mobilities are
indicated in Fig. 7, in fair agreement with the Monte Car-
lo results.

E. Drift velocities

For each of the wire sizes studied, we compute room-
temperature electron and hole drift velocities as functions
of the applied electric field. Velocity field curves for elec-
trons at 300 K are shown in Fig. 8(a) for wire widths be-
tween 7.7 and 23 A. For electric fields up to 50 kV/cm,
only the four lowest-lying pseudodirect valleys are
significantly populated. The drift velocities are seen to be
Ohmic at low fields. At hiogher fields, a velocity satura-
tion effect is seen in the 23-A wire which we attribute to a
combination of nonparabolicity effects and scattering of
electrons into the low-lying indirect valley at 0.3 /a.

Unfortunately, negative differential mobility is not seen
in these curves. This is attributable to two effects: (1) the
mobility goes down as the wire becomes smaller and (2)
the satellite valley separation energy goes up as the wire
size becomes smaller. Both of these effects combine to in-
hibit the transfer of electrons into the satellite valleys as
the wire size becomes smaller. These results suggest that
the optimum condition for observing negative differential
mobility is for high mobilities (i.e., low temperatures) and
small valley separation (i.e., large wires or bulk silicon).
Indeed, bulk silicon at low temperature does exhibit a
small negative differential mobility.!”

In Fig. 8(b) the hole drift velocities are shown as a
function of the applied electric field for wire widths be-
tween 7.7 and 23 A. At room temperature and for fields
up to 50 kV/cm, only the four highest-lying valence sub-
bands contribute significantly to the total hole drift veloc-
ity. The valence subbands are highly nonparabolic, the
hole distributions are spread out over a large region of k
space, and the scattering-out rates are strongly k depen-
dent. Consequently, it is difficult to interpret hole drift
velocities in terms of effective masses and scattering rates
for carriers residing in a parabolic valley.

IV. CONCLUSIONS

We calculate transport properties of idealized silicon
wires using the Monte Carlo Method. The quantum wire
subbands and wave functions are computed in a realistic
tight-binding model, which yields subbands and tight-
binding wave functions. Assuming deformation-potential
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FIG. 8. Velocity-field curves at 300 K for 7.7-, 15.4-, and 23-
A silicon quantum wires. Electron velocity-field curves are
shown in (a) and hole velocity-field curves are shown in (b).

acoustic-phonon scattering, we compute scattering rates
between tight-binding initial and final states within the
framework of Fermi’s golden rule.

Although bulk silicon is indirect, the silicon wire band
structure is pseudodirect with an X-like conduction-band
minimum and I'-like valence-band maximum at the zone
center. The electron and hole subbands are highly non-
parabolic with the lowest-lying electron masses much
smaller than the lowest-lying hole masses. Electron
mobilities are found to be approximately five time larger
than hole mobilities and the computed low-field mobili-
ties increase with wire size.
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