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Theoretical aspects of the luminescence of porous silicon
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The luminescence in the visible range of porous silicon is analyzed in the hypothesis of quantum
confinement. We calculate the electronic and optical properties of silicon crystallites and wires with
sizes between 0 and 4.5 nm. The band-gap energies of such confined systems are in agreement with the
photon energies observed in luminescence. We calculate the radiative recombination times of the
confined excitons. We conclude that experimental nonradiative processes in porous silicon are more
eKcient than calculated radiative ones at T=300 K. The high photoluminescence eKciency of porous
silicon is due to the small probability of finding a nonradiative recombination center in silicon nanocrys-
tallites. Recently, it has been proposed that the low-temperature dependence of the experimental radia-
tive decay time of the luminescence of porous silicon could be explained by the exchange splitting in the
fundamental exciton. We show that the inAuence of the valley-orbit splitting cannot be excluded. The
sharp optical-absorption edge above 3.0 eV is not proof of the molecular origin of the properties of
porous silicon because silicon nanostructures present a similar absorption spectrum. We calculate the
nonradiative capture of electrons or holes on silicon dangling bonds and show that it is very dependent
on the confinement. We find that the presence of one dangling bond at the surface of a crystallite in

porous silicon must destroy its luminescent properties above 1.1 eV but can produce a luminescence
below 1.1 eV due to a radiative capture on the dangling bond.
PACS number(s): 73.20.Dx, 78.55.Hx

I. INTRODUCTION

The observation of intense photoluminescence from
porous silicon has stimulated considerable activity. Be-
cause of the large blueshift of the observed radiations
with respect to the bulk silicon band-gap energy, it has
been proposed that the quantum confinement in crystal-
lites ' or wires' is at the origin of the luminescence in
the visible range. But this hypothesis has been chal-
lenged by models involving siloxene derivates, polysi-
lanes, or hydrides ' on the surface of porous silicon.
Another suggestion is that the dominant luminescent ma-
terial is amorphous in nature. ' The quantum
confinement interpretation of the luminescence of porous
silicon is supported by the evolution of the luminescence
intensity and peak position with anodic oxidation '

which could lead to a progressive reduction in nanostruc-
ture sizes. More recently, studies have shown that
thermal oxidation gives a similar blueshift of the lumines-
cence peak. ' '" The confinement model also seems to be
consistent with structural characterizations. ' ' From a
theoretical point of view, many papers have shown that
confinement in wires' ' or dots' ' with typical sizes
under 6 nm could explain the important blue shift of the
luminescence compared to bulk silicon. Anyway, many
points are still under debate. In particular, the lifetime of
the luminescence is very long, in the range between mil-
liseconds and microseconds, ' ' and the decay mecha-
nism of the luminescence is unclear. The inhuence of de-
fects, in particular surface defects, on the luminescence
needs to be studied. Recently, it has been shown that the
optical excitation spectrum of porous silicon samples has
an important threshold above 3 eV. ' ' It has been con-

eluded that the quantum confinement model is not valid
because the optical threshold should be in the 1.5-eV
range as in luminescence. In this paper, we analyze the
interpretation of quantum confinement from the results
of theoretical calculations on silicon crystallites and
wires. The electron-hole recombination processes in such
confined silicon structures are investigated. We show
that predicted optical properties of silicon crystallites are
consistent with optical experimental data on porous sil-
icon.

II. ELECTRONIC STRUCTURE OF SILICON DOTS
AND WIRES

There are many experimental evidences that porous sil-
icon is characterized by complex structures with nanome-
ter sizes. ' ' ' It is thus reasonable to expect that
quantum confinement could be the origin of its lumines-
cence. It was supposed that porous silicon consists of sil-
icon wires because the chemical dissolution widen the
pores and, for high dissolution, pores merge isolating sil-
icon columns. ' From structural analysis clusters of crys-
talline silicon (quantum dots) were also proposed, ' ' '

but the crystalline character of such nanostructures is
sometimes questioned. ' Qther studies show that the
morphology of luminescent porous silicon is more com-
plex, consisting, for example, of a three-dimensional (3D)
network of quantum segments in a noodlelike or wool-
ball structure. The quantum structure describing
porous silicon may probably be intermediate between
dots and wires consisting, for example, of a wire with a
varying diameter. " Therefore we have performed calcu-
lations about dots and wires to understand the
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confinement effects in porous silicon (some preliminary
results were already published in Ref. 19).

The calculation of the electronic structure of silicon
crystallites and wires is done using the linear combination
of atomic orbitals (LCAO) technique. We choose crystal-
lites and wires with, respectively, spherical and cylindri-
cal shapes. We suppose that the nanostructures have the
same lattice structure and the same interatomic distance
than bulk silicon. Experiments show that a small lattice
relaxation occurs perpendicular to the surface but its am-
plitude is small (Aa/a between 3.7X10 and 46X10 )

so it has no incidence on the electronic structure of
porous silicon. In the case of crystallites, this allows us
to use symmetry operations of the Td point group which
considerably reduces the size of the calculations (see Ref.
20 in which the authors use a similar simplification). We
are able to treat clusters containing up to 2059 atoms
(cluster size = 4.3 nm). We suppose that all the dangling
bonds are saturated with hydrogen atoms. For sirnplici-
ty, we suppose that there is no hydrogen-hydrogen in-
teractions. The hydrogen atoms are simply used to simu-
late the bonds at the surface of the cluster and sweep sur-
face states out of the fundamental band gap. In our
LCAO approach, the silicon atoms are represented by
one s and three p atomic orbitals, and the hydrogen
atoms by one s orbital. For each nanostructure, we write
the Hamiltonian matrix H and the overlap matrix S in
the basis of atomic orbitals. Then we solve the secular
equation (H ES)4=0 to —obtain the one-electron ener-
gies E and wave functions %. To build up H and S ma-
trices, we use the empirical parameters of Ref. 29 which
include the interactions and the overlaps up to the third
neighbors. These have been fitted to the best pseudopo-
tential band structure of bulk silicon. Compared to
tight-binding methods, such a procedure gives not only a
good description of the valence band but also of the con-
duction band. Spin orbit is not included as its contribu-
tion is small in the case of silicon.

Results for the band-gap energy of silicon crystallites
and wires with respect to the diameter are plotted in Fig.
1. As expected, the highest confinement energy is ob-
tained for the crystallites which correspond to the OD
system. We have reported results for cylindrical wires in
100, 110, and 111 directions. There is a strong anisotro-
py between directions, in particular for small diameters.
The observed radiations of porous silicon are in the ener-
gy range between 1.4 and 2.2 eV. ' From Fig. 1, we see
that this could be compatible with crystallites sizes be-
tween 2.5 and 4.5 nm. Similar results have been obtained
by different groups' ' and our results agree with other
published band-gap energies. ' ' Small discrepan-
cies between all theoretical results do not change the con-
clusion that confinement could be at the origin of porous
silicon luminescence. Anyway, for quantum wires, a very
large blueshift (hv) 2.0 eV) can only be obtained for
very small diameter ( & 2.3 nm). In that case the stability
of such structure in the same crystallographic system
than bulk silicon is not obvious. For the crystallites,
the band-gap energy follows approximately a d ' law
where d is the diameter. The exponent 1.39 is different
from 2 which would have been obtained using an
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FIG. 1. Calculated optical band-gap energies for various sil-
icon crystallites (+ ) or wires (100: X; 110: +; 111: 0 ) with
respect to their diameter d. The continuous lines are an inter-
polation and an extrapolation of these results by a d " law. The
black dots and squares are the experimental results of Ref. 37.
The dashed line is the band-gap energy for the crystallites in-
cluding the Coulomb interaction between the electron and the
hole.

1.5

III. LUMINESCENCE OF SILICON
NANOSTRUCTU RES

In the hypothesis of quantum confinement, the
luminescence of porous silicon is expected to be due to

eff'ective-mass theory. It means that a good description
of the bands is necessary. This is not surprising here in
view of the large confinement energies. However, a care-
ful analysis of our data shows that energies for large di-
ameters tend to follow a law with a higher exponent
which finally tends towards 2 at infinity when the
effective-mass approximation becomes valid. Before
comparing to experimental results, we include the
Coulomb and correlation energies between the electron
and the hole which has been estimated in Ref. 36 for
spherical crystallites. The dashed line in Fig. 1 represents
the variation of the electron-hole pair energy with respect
to the diameter of the crystallites. The correlation energy
is negligible in the range of interest here and the attrac-
tive Coulomb energy between the electron and hole is
approximated by —3.572(e /Ed ). We also report in Fig.
1 experimental results on optical band gaps measured
on small hydrogenated silicon crystallites. Two sets of
results are plotted (black dots and squares), difFering by
the method to evaluate the size of the crystallites. The
agreement between theory and experiment is good, taking
into account the uncertainties. This represents a positive
test of our calculation and supports a posteriori the fact
that the silicon particles have a crystalline character.
Finally, we find that the confinement energy is slightly
more important for valence states than for conduction
states. ' This depends of the crystallite size and for in-
creasing radii, 65—55% of the total confinement energy
is in the valence band.
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the radiative recombination of electron-hole pairs from
the lowest exciton states whose binding energies are
enhanced compared to bulk silicon. If the widening of
the gap is an obvious consequence of the confinement, it
is more difficult to predict its infiuence on the efficiency
of radiative processes compared to nonradiative ones. In
bulk silicon, because of its indirect band gap, the emis-
sion of light is only possible with the assistance of pho-
nons to supply momentum in a second-order process.
Therefore the luminescence of bulk silicon is weak as
nonradiative recombinations become more efficient. The
confinement of the electron-hole pair in real space leads
to a spread of the wave functions in the reciprocal space
and then radiative recombination can occur in a first-
order process. In this part we try to estimate the evolu-
tion of the first-order radiative recombination probability
with respect to the confinement. We also look at its vari-
ation with the temperature. Some preliminary results
were already published.

The radiative recombination time ~ of a first-order ra-
diative process is defined from the Fermi golden rule and
is given by

16~ e
, , Eo I & inc u fBv & I'

3 p pyz g

where ~iBc ) is the initial state of the electron in the con-
duction band and

~fBv ) is the final state in the valence
band (i.e., the hole state). Eo is the energy of the transi-
tion and n is the refractive index of porous silicon. From
ellipsometry ' and optical-absorption experiments, it
seems that the refractive index decreases with increasing
porosity. We choose a value of 1.33 which has been given
for porous layer with a porosity of 74%%uo. The momen-
tum matrix element ~(iBc~p fsv ) ~

is developed in the
tight-binding basis. In the case of crystallites, Eq. (1)
takes into account the 3D confinernent of the exciton. In
effect, as the crystallite radius is smaller than the silicon
free-exciton Bohr radius (-43 A), the wave function of
the exciton is well approximated by the product
~itic ) fBv ). In the case of wires, we should multiply Eq.
(1) by an excitonic factor which is assumed to be close to
one. The calculation is done replacing the atomic orbit-
als by Gaussians. Note that this procedure has been
used to predict the optical cross section of the isolated
dangling bond in silicon. The calculation of the recom-
bination rate of Eq. (1) corresponds to a one-electron
theory: the spin is not included and therefore the effects
due to the exchange interactions are neglected. As dis-
cussed below, the exchange splitting must have an impor-
tant effect on the low temperature dependence of the ra-
diative recombination rate.

Measurements of the dependence of photolumines-
cence decay rates on photon energy were made at room
temperature. Therefore we have included the effect of
the temperature for a best comparison. To do that, we
calculate the probability 8'„„ofoptical transition be-
tween two states n and n', respectively, of the conduction
and valence bands [Eq. (1)]. The thermally averaged
recombination rate is given by

g W'„„exp

(-'
=" (2)

n, n'

where E„„.is the photon energy of the transition, k is the
Boltzmann constant, and T is the temperature [the spin
degeneracy is not included in the sum of Eq. (2): its in-
clusion would divide the recombination rate by a factor 2
as only transitions between states with same spin are al-
lowed]. This assumes that the thermalization of the elec-
tron and the hole after excitation in the bands is more
efficient than the radiative recombination. We will see
later that this is reasonable because the radiative recom-
bination is not very efficient.

Figure 2 is a plot of the calculated recombination rate
(1/r) for many spherical crystallites with different diam-
eters. We present 1/r versus the calculated photon ener-

gy of each crystallite because information concerning the
diameters is not available experimentally. Results of Fig.
2 correspond to the radiative recombination at T =5 K.
The scattering of the calculated rates in Fig. 2 is very im-
portant. The first reason for this scattering is the fact
that the symmetry representations of electron and hole
states in the Td point group can change very quickly
from one crystallite to another and the optical matrix ele-
ment is very sensitive to these changes (some transitions
are even forbidden). For example, for big crystallites,
there are six nearly degenerate states coming from the six
equivalent minima of the conduction band. They give
rise to one 3 ] state, one twofold degenerate E state, and
one threefold degenerate T2 state whose splitting (valley-
orbit splitting) between them is of the order of 10 meV
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FIG. 2. Calculated recombination rate (ms ') of an excited
electron-hole pair in silicon crystallites (crosses) with respect to
the photon energy at 5 K. The spin degeneracy is not included:
its inclusion would divide the calculated recombination rates by
a factor of 2.
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FIG. 3. Calculated recombination rate (ms ') of an excited
electron-hole pair in silicon crystallites (crosses) with respect to
the photon energy at 300 K. The spin degeneracy is not includ-
ed: its inclusion would divide the calculated recombination
rates by a factor of 2. Continuous lines plot the experimental
dependence (Ref. 22) of decay rates on photon energy for three
65% porosity layers that differ by oxidation level.

for the biggest crystallites that we have studied here. But
the lowest state can be any one of the three depending on
the size of the cluster. The second reason for this scatter-
ing is that the optical matrix element is proportional to
the reciprocal space overlap of the electron and hole
wave functions which is a strongly oscillating function of
the size of the crystallites. Note that this oscillation
disappears in case of direct-gap materials.

There are some global features which can be extracted
from results of Fig. 2. For crystallites with an optical gap
larger than 2.3 eV (sizes lower than 2.5 nm), the radiative
recombination is quite efficient with a characteristic time
lower than 10 ps. The mixing of different k states is im-
portant and the clusters get optical properties intermedi-
ate between and indirect-gap and direct-gap material. ' ' '

This result opens very interesting perspectives for further
applications involving silicon crystallites. Another
feature of Fig. 2 is the strong decrease of the radiative
recombination rate for lower photon energy. This is ob-
viously due to the indirect nature of the silicon band gap
which gives a radiative recombination rate equal to zero
in the limit of bulk silicon (in a first-order theory). The
decrease is very abrupt for energies lower than 2 eV and
then the radiative recombination becomes quite slow. A
decrease of the decay rate of the luminescence for lower
photon energy is also observed experimentally. ' '

Figure 3 presents the calculated thermally averaged
recombination rates for the same silicon crystallites as on
Fig. 2 (T =5 K) but for T =300 K. Compared to Fig. 2,
we see that the scattering of points is reduced. This is
due to the averaging over the nearly degenerate states of
different symmetry which cancel the effect of valley-orbit
splitting previously described. Nevertheless, the scatter-
ing due to the oscillating nature of the k-space overlap of
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FIG. 4. Dependence of the thermally averaged recombina-
tion rates of some typical crystallites on the temperature.

the conduction and valence wave functions remains. In
comparison to our theoretical results, we plot the depen-
dence of photoluminescence decay rates given in Ref. 22.
We see that, on average, the calculated radiative recom-
bination rates are about one order of magnitude lower
than the experimental decay rate. ' This is particularly
true for photon energies lower than 2.0 eV. This means
that, even if the confinement brings some momentum
mixing to allow 6rst-order optical transitions, the radia-
tive recombination is probably less eKcient than nonradi-
ative processes at 300 K as concluded from some experi-
mental studies. ' For a photon energy around 1.8 eV
(typical luminescence. peak energy of porous silicon), we
predict an average radiative recombination time of about
1 ms. Therefore, the long decay rates of the lumines-
cence are not in contradiction with the hypothesis of
porous silicon, on the contrary. We conclude that the
high photoluminescence efficiency of porous silicon is not
due to a high radiative recombination rate of electron
pairs but to a low efficiency of nonradiative processes. As
noted in Ref. 22, this originates from the restricted
volume available to the carriers.

In Fig. 4, we have reported the calculated radiative
recombination rates with respect to the temperature. For
clarity, this is done only for some crystallites (results for
the others are very similar). The first important point to
notice is the quasi-independence of the recombination
rate with temperature for T) 80 K. Therefore, the large
variation of the recombination rate and of the intensity of
the luminescence at temperatures above 250 K which has
been observed experimentally ' ' can be only ex-
plained by nonradiative or by phonon-mediated radiative
recombinations. Of course, the spins of the electron and
the hole have been neglected in our calculation and
another dependence on temperature is expected because
of the singlet (S =0) and triplet (S = 1 ) splitting due to
the exchange interaction between particles. ' This
splitting explains well the low-temperature dependence of
the luminescence lifetime. ' But, because this splitting
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energy is estimated around 10 meV, ' it must have no
effect on the high-temperature dependence of the recom-
bination rate (above 100 K, for example). Therefore, this
shows the importance of the nonradiative processes —or
here phonon-assisted processes —in the luminescence of
porous silicon at high temperature, at least in the model
of quantum confinement. Below 80 K, our calculated
recombination rates often increase with temperature (a
fact that we have verified for many crystallites). As dis-
cussed above, this is due to the small valley-orbit split-
tings between levels with different symmetries
(AI, E,etc, . . . ) which are characterized by strongly
varying probabilities of optical transitions. Such a tem-
perature dependence is due to the fact that the lowest
transition corresponds rarely to the most efficient among
all the possible transitions. However, the symmetries of
our wave functions are a consequence of the spherical
shape of the crystallites. In the case of porous silicon, the
crystallites have probably more complex shapes which in-
duce a splitting and a mixing of the various states, maybe
averaging the transition probabilities. So we believe that
the great diversity in shapes probably reduces a possible
variation of the radiative recombination rate at low tem-
perature because of valley-orbit splittings. Anyway, a
possible temperature dependence due to valley-orbit in-
teraction cannot be ruled out (a similar conclusion has
been obtained recently for silicon wires ). The electron-
hole exchange interaction is maybe more independent on
the crystallite shape and its inhuence on the low-
temperature dependence of radiative recombination rates
is probably important as shown in Ref. 45. Finally, in
Fig. 5 we give the calculated recombination rates for 110
quantum wires. It is interesting to note that the results
are very close to the case of crystallites with no important
differences (100 and 111 quantum wires also give similar
results). Anyway, we should estimate the influence of the
excitonic factor which can be at the origin of an enhance-
ment of the recombination rate.

IV. OPTICAL ABSORPTION
OF SILICON NANOSTRUCTURKS

Although most of the studies on porous silicon concern
luminescent properties, some of them are related to the
optical absorption of this material. Optical absorption is
expected to be a priori much less sensitive to surface
properties. From comparison between excitation spec-
tra of porous silicon and absorption spectra of silicon
molecules, it has been recently deduced that the lumines-
cence of porous silicon could come from silicon rnole-
cules. One argument was the sharp absorption edge
near -3.2 eV in the excitation spectrum which is much
higher than the predicted band gap of crystallites of —3
nm diameter ( —1.5 eV). However, the threshold of the
optical absorption has been measured below 2.0 eV and
also shows a blueshift compared to bulk silicon. ' These
shifts can be reasonably related to quantum size effects.
Therefore we have performed a theoretical calculation of
the optical absorption of silicon nanostructures in order
to see if it is compatible with the experimental results (a
calculation of the optical absorption spectrum of quan-
tum wires has been presented in Ref. 17). The optical-
absorption coefficient a(hv) for a photon energy h v is
given by

with notations defined above. We plot in Fig. 6 the
optical-absorption coefficient for a small crystallite which
is characterized by a calculated band gap of 3.45 eV. We
see that the maximum of absorption occurs near 5.0 eV.
Anyway, there is a visible peak at 3.45 eV indicating that
the absorption near the band edge is already rather
efficient. But this kind of crystallite is probably not in-
volved in the luminescence of porous silicon since the ob-
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FIG. 5. Same as Fig. 2 but for 110silicon wires.

FICz. 6. Optical-absorption coefficient o. with respect to the
photon energy h v calculated for a silicon crystallite with diame-
ter of 1.56 nm. The band gap is calculated at 3.45 eV (without
exciton binding energy).



48 THEORETICAL ASPECTS OF THE LUMINESCENCE OF. . . 11 029

served photon energy is much lower than 3.45 eV.
In Fig. 7 we present the absorption coefficient for a

much bigger crystallite eith a band gap of 1.67 eV. The
absorption edge is shifted near 3.5 eV which corresponds
to the direct-gap absorption of bulk silicon. Nothing is
visible in the figure between 1.67 and -3.0 eV at that
scale. The reason is that the optical matrix element for
transitions with energy between 1.67 and 3.0 eV is several
orders of magnitude lower than for transitions above 3.0
eV. The optical absorption becomes very close to the one
of bulk silicon —but with a blueshift of the absorption
edge, i.e., it is very close to the absorption of an indirect
semiconductor. Therefore, the excitation spectrum of
porous silicon reported in Ref. 23 with an excitation edge
above 3.0 eV is compatible with the hypothesis of quan-
tum confinement. In Fig. 8, we plot the absorption
coefficient of the same crystallite near the band edge (1.67
eV) but at a different scale and on the form of a bar chart,
the amplitudes of the bars representing the integrated ab-
sorption coefficient over the width of the bar. In order to
compare with the measured optical-absorption spectra re-
ported in Ref. 42, we must take into account the fact
that, in the quantum confinement hypothesis, the absorp-
tion is the sum of the absorption of numerous crystallites
with various shapes and sizes. The main effect of this
dispersion could be simply simulated by a broadening of
the absorption spectrum of one crystallite. Figure 8
shows that the absorption threshold is at the band-gap
energy (1.67 eV) because the transition is dipole allowed
even if this is only with fairly weak oscillator strength,
compatible with the long radiative lifetime in lumines-
cence. Therefore, the optical threshold is also subject to
a blue shift depending on the size of the crystallites in
agreement with experiments. ' It is interesting to note
that the absorption coefficient does not follow a linear
variation with photon energy but approximately a square
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law, in contrast with the experimental absorption spec-
trum of bulk silicon which is a linear function of photon
energy. Note that the experimental absorption
coefficient for p-type porous silicon samples (which
present the largest blueshift) is also highly nonlinear,
but it does not follow a power law with photon energy.
As discussed in Ref. 42, this may be due to a wide distri-
bution in band-gap energies due to a distribution in sizes
and shapes.

FIG. 8. Optical-absorption coefficient a with respect to the
photon energy h v calculated for a silicon crystallite with diame-
ter of 3.86 nm. The band gap is calculated at 1.67 eV (without
exciton binding energy). Same as Fig. 7 but only the energy re-
gion near the band gap is plotted. Amplitudes of the bars
represent the integrated absorption coefficient over the width of
the bar.

V. RECOMBINATION ON DEFECTS
IN SILICON CRYSTALLITES
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FICx. 7. Optical-absorption coefficient u with respect to the
photon energy h v calculated for a silicon crystallite with diame-
ter of 3.86 nm. The band gap is calculated at 1.67 eV (without
exciton binding energy).

%'e have seen that nonradiative recombinations are
probably more efficient than radiative recombinations at
300 K. %'e want to discuss now some possible nonradia-
tive mechanisms which can occur in silicon nanostruc-
tures. Experimentally, there is some good evidence that
hydrogen is present in large quantities in porous silicon in
particular at surfaces and that its dissociation strongly
decreases the luminescence. ' ' ' ' ' The degradation of
the luminescence is correlated with an increase in the
density of dangling bonds ' due, for example, to hydro-
gen desorption. The adsorption of oxygen induced by
light is also a cause for light emission degradation '*

but this might be due to the formation of a thin layer of
oxide. In effect it is known to introduce many dangling
bonds which in this case are not as easily passivated by
hydrogen as during anodic oxidation. Dangling bonds
are thus expected to be very efficient nonradiative recom-
bination centers but a quantitative estimation of this
inhuence is needed. The electron-hyle recombination on
silicon dangling bonds is due to a multiphonon capture of
the electron and hole. Qur aim here is to estimate the



11 030 C. DELERUE, G. ALLAN, AND M. LANNOO 48

probability per unit time that an electron-hole pair creat-
ed in a silicon crystallite recombines on one dangling
bond at the surface of the crystallite. This probability is
related to the probabilities W that an electron and a hole
in delocalized states are captured in the localized defect
state. W is related to the capture coefficient c by c =QW
where II is the crystal volume (here, A=~d /6 where nt

is the crystallite diameter). The validity of the relation
c =QW is discussed in the Appendix. A theoretical esti-
mate of c is a difficult task. However, we can reason-
ably suppose that the physics of the capture in a crystal-
lite is not very different from the capture in bulk silicon
provided that the crystallite is not too small. For exam-
ple electron paramagnetic resonance experiments show
that dangling-bond states in porous silicon are very close
to the (111) surface dangling bonds Pb. 5 '~7 In bulk sil-
icon, instead of using c, it is common to introduce the
capture cross section defined as o. =c/v, z, where v,z is
the average thermal velocity approximately
equal to v, I, = +8kT Iform ' where I * is the effective mass
of the carrier trapped. One must note here that the
concept of capture cross section is quite artificial and the
capture coefficient is the meaningful physical quantity.

The situation we want to discuss now corresponds to a
crystallite with an electron-hole pair and a neutral dan-
gling bond at the surface. The electron-hole recombina-
tion on the dangling bond can be seen as a two step pro-
cess: first a carrier is captured by the neutral dangling
bond and then the second carrier is captured by the
charged dangling bond. Cross sections corresponding to
the capture of an electron of a hole by a neutral silicon
dangling bond at a Si-Si02 interface are measured in the
10 ' —10 ' -cm range at 170 K. Cross sections for a
capture by a charged dangling bond are not known exper-
imentally. Therefore, we first concentrate on the capture
of a carrier on a neutral dangling bond. The capture
cross section has a thermally activated behavior which is
usually approximated by

coordinate diagram of Fig. 9 which is valid both for the
capture of a hole or an electron by a dangling bond (ener-
gies are very similar for the two processes ).

Because of the quantum confinement, the ionization
energy Eo in crystallites is different from its bulk silicon
value. The dangling-bond state is fairly localized and its
energy will remain constant on an absolute energy scale
when the confinement is varied. Thus the change hE in
the ionization energy Eo is due to the shift of the band
edges. We have seen above that the shift is not the same
for the hole and for the electron but the difference
remains small. For example, it is close to 0.3 —0.4 eV (for
the hole and for the electron) for a blueshift of 0.7 eV.
On the contrary, the Franck-Condon shift is unaffected
by the confinement because it only depends on the local
atomic relaxation (Fig. 9).

From Eq. (4) we expect a strong decrease of the cross
section with the ionization energy and, therefore, with
confinement. But to estimate this change, Eq. (4) is no
longer valid because the condition Eo =d„c is not verified
any more when AE is important. We are also interested
in the dependence of the cross section over a wide range
of temperatures for which Eq. (4) is not accurate enough.
To improve on this, we make use of a recently proposed
analytic expression of the capture coefficient which
remains valid over the whole temperature range, any ion-
ization energy, and any strength of the coupling between
the lattice and the defect. The capture coefficient c is
written as coR where co is a coefficient whose dependence
on T and Eo is weak and R is a dimensionless function in
which the dependence on the same parameters is impor-
tant. R is given by

Energy

E
o. -exp

kT
(4)

with Eb equal to the barrier height ~r
Eb

iE

(&P —&Fc)

Eo-dFc

where Eo is the ionization energy of the defect and d„c is
the Franck-Condon shift equal to the energy gain due to
lattice relaxation after capture. d„c is related to the
phonon energy h v by d„c=Sh v where S is the so-called
Huang-Rhys factor. It can be shown that Eq. (4) is valid
only under restrictive conditions which are fulfilled in the
case of the dangling bond in bulk silicon: strong
electron-phonon coupling (S))1), high temperature, and
Eo -dFC. The fact that the Franck-Condon shift is close
to the ionization energy in bulk silicon (Eo=d„c) ex-
plains why the cross section is weakly thermally activat-
ed. This situation is summarized on the configuration

FIG. 9. Configuration coordinate diagram, representing the
variation of the total energy versus the atomic displacement for
two charge states of the defect [initial (i) and final (f) ]. Two in-
itial states are indicated, one (i) in bulk silicon (ionization ener-

gy Eo) and the other (i ) in a silicon crystallite (ionization ener-

gy Eo+hE). The situation in bulk silicon corresponds to a
negligible barrier for the capture. In silicon crystallites, the in-
crease in ionization energy creates a barrier Eb for the recom-
bination {in a classical picture).
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R= 1

&2'

2 —I /4

+z
hv

hv Eo
exp —S coth + +

2kT 2kT

T 2

+z
hv

1/2

slnh
hv hv,

with z= S
(6)

hv
sinh

2kT

In Fig. 10 we plot the capture cross section of a single
dangling bond with respect to the shift hE in the ioniza-
tion energy Eo. We take the cross section equal to 10
crn at 170 K which is a lower limit of the measured
values. This is valid for captures of electrons and holes
because the measured values are quite close for the two
processes at the neutral center. We also take hv=20
meV and S=15. The dependence of o. on the ioniza-
tion energy is very strong, over several decades. In the
approximate classical terms of Eq. (4), this is due to the
increase of the energy barrier for carrier capture with
ionization energy. Figure 10 shows that the dependence
of o. on temperature is weak when the shift in ionization
energy is small because the energy barrier is negligible.
But when the ionization energy increases, the dependence
becomes important as expected. Finally, we must add
that the dependence of o on temperature and on ioniza-
tion energy might be observed by measurements of the
kinetics of capture of excited carriers using optical or
electrical experiments. This would be a very good proof
of the quantum confinement hypothesis.

Now we can come to the main aim of this section,
which is the comparison of the nonradiative capture due
to a single dangling bond in a crystallite with the intrinsic
radiative recombination. We estimate the nonradiative
capture rate 8' using the previous formulas. It depends
on the size of the crystallites through 0 and on the ion-

ization energy through cr (which itself depends on the
size). In Figs. 11 and 12 we plot W with respect to the
electron-hole energy in the crystallites, respectively, at
T =5 K and 300 K. For comparison, we also show the
calculated radiative recombination rates (same as Figs. 2
and 3). W decreases at high energy because of the in-
crease in the barrier. It decreases faster at T =5 than at
300 K because the process is strongly thermally activated
when the energy barrier becomes important. At energies
close to the bulk band gap, 8'also decreases very quickly
because the volume of the corresponding crystallite tends
to infinity and the probability to be captured by a single
dangling bond vanishes. For photon energies in the
range of interest for the visible luminescence of porous
silicon (1.4—2.2 eV), the nonradiative capture is much
faster than the radiative recombination, particularly at
T =300 K. We deduce that the presence of one silicon
dangling bond at the surface of a crystallite in porous sil-
icon kills its luminescence above 1.1 eV, in agreement
with experiments. ' But Figs. 11 and 12 show that for
small crystallites the nonradiative capture on a silicon
dangling bond becomes less efficient than the intrinsic ra-
diative recombination (for a photon energy higher than
2.2 and 2.6 eV, respectively, at T =5 and 300 K). This
may be of interest for the optical properties of small sil-
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FIG. 10. Dependence of the capture cross section o. of an iso-
lated dangling bond with respect to the increase AE in the ion-
ization energy Eo due to confinement (for holes or electrons) at
T =300 K ( ), T=170 K (6), T=100 K (+), and T=20 K
(x).

FIG. 11. Capture rates (T=5 K) of an electron or a hole in
silicon crystallites due to a nonradiative capture on a single neu-
tral silicon dangling bond plotted with respect to the excitonic
band-gap energy of the crystallites (continuous line). Crosses
give the radiative recombination rates of the electron-hole pairs
in the same crystallites. The other curves are the radiative cap-
ture rates of carriers on a neutral dangling bond (hole capture:
———;electron capture: - ~ ~ ).
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FIG. 12. Capture rates (T =300 K) of an electron or a hole
in silicon crystallites due to a nonradiative capture on a single
neutral silicon dangling bond plotted with respect to the exci-
tonic band-gap energy of the crystallites ( ). Crosses give
the radiative recombination rates of the electron-hole pairs in
the same crystallites. The other curves are the radiative capture
rates of carriers on a neutral dangling bond (hole capture:
———;electron capture: ~ ).

presence of a neutral dangling bond leads to the nonradi-
ative capture of the electron or the hole (more probably
the electron because the confinement energy is slightly
lower for the electron than for the hole and therefore the
capture barrier is smaller). So, in any case, a carrier
remains in the conduction band or the valence band. We
can now discuss its capture by the charged dangling
bond. The situation is summarized on the configuration
coordinate diagram of Fig. 13. The lower energy curve
corresponds to the ground state of the crystallite with
one neutral dangling bond at the surface. The higher
curve describes the system after optical excitation of an
electron in the conduction band. The intermediate curve
is the total energy after capture of the first carrier on the
dangling bond. These two higher curves are equivalent
to those labeled (i') and (f) in Fig. 9. The vertical shift
hE is the confinement energy. It is equal to the
confinement energy hE, of the conduction band with
respect to the bulk silicon conduction band in the case
where the first particle to be captured is an electron. It is
equal to hE, in the case of the capture of the hole. Eb, is
the energy barrier (in a classical point of view) for this
capture of the first carrier which has been analyzed
above. Eb2 is the energy barrier for the multiphonon cap-

icon nanostructures.
In bulk silicon, the recombination on a silicon dangling

bond is mostly a nonradiative process. This means that
the radiative capture of carriers on a dangling bond is
inefficient compared to the multiphonon capture. In
small silicon crystallites, we have just seen that the non-
radiative capture eKciency strongly decreases compared
to bulk silicon. Therefore, we can expect that the radia-
tive capture on a silicon dangling bond becomes compa-
rable to other processes in crystallites. We have calculat-
ed the radiative capture rate of an electron and a hole by
a single neutral dangling bond in the silicon crystallites
previously investigated. We first calculate the electronic
structure of the crystallites with one silicon dangling
bond at the surface. This is simply done by removing one
hydrogen atom of the crystallite. The radiative capture
rates are calculated by using Eqs. (1) and (2). Results are
plotted in Figs. 11 and 12 (hole capture: dashed line;
electron capture: dotted line). The oscillations in the
curves have the same origin than the dispersion of the in-
trinsic radiative recombination rates that we have previ-
ously described. They only appear at very low tempera-
ture (Fig. 11). We see that in average the radiative cap-
ture time is between 1 and 10 ps for the capture of a hole
and between 10 and 100 ps for the capture of an electron.
Therefore, for crystallites with an optical band gap lower
than 2.2 eV, the nonradiative capture is much faster than
the radiative capture. For crystallites with a higher opti-
cal band gap, the situation can be inverted depending on
the temperature. In that case, we see in Figs. 11 and 12
that the intrinsic radiative recombination and the radia-
tive capture are with comparable efficiency.

From the above discussion, we show that for crystal-
lites with an optical band gap of lower than 2.2 eV the

Energy

DB +h
or
DB++e

iE

E»

E+hE, +3K„

FIG. 13. Configuration coordinate diagram, representing the
variation of the total energy of a crystallite with one dangling
bond at the surface. The ground state (lower curve) corre-
sponds to filled valence states, empty conduction states, and the
dangling bond in the neutral charge state (DB ). The higher
curve [equivalent to curve (i') of Fig. 9] represents the same sys-
tem after excitation of an electron in the conduction band leav-
ing a hole in the valence band (DB +eBC+h»). The inter-
mediate curve [equivalent to curve (f) of Fig. 9; the curve (i) of
Fig. 9 is not reproduced here] describes the system after capture
of a carrier by the dangling bond. Two situations are possible:
the capture of the electron, the hole remaining in the valence
band (DB +h») or the capture of the hole, the electron
remaining in the conduction band (DB +e&&). hE is the ener-

gy shift of the conduction or the valence band due to
confinement compared to the bulk silicon band structure (con-
duction for the capture of the electron, valence for the capture
of the hole).
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ture of the second carrier which we want to discuss now.
Compared to the first capture, the second one involves
much larger energies (the sum of the thermal ionization
energies is equal to the bandgap energy). From Fig. 13
and Eq. (5), we can calculate the energy barrier Eb2. We
obtain

(E o+bE —2d„c)
b2 4d FC

where E o is the bulk silicon band-gap energy and AE is
the confinement energy of the band corresponding to the
carrier involved in the second capture (bE, for the elec-
tron, b,E, for the hole). For a confinement energy b,E of
0.3 eV, EI,2 is equal to 0.53 eV which is a very large bar-
rier for a multiphonon capture. Therefore, the capture
cross section for the second capture should be strongly
reduced compared to the first one [injecting the appropri-
ate values in (6) gives a reduction factor of 3 X 10 at
T= 300 K and 5 X 10 " at T= 10 K]. But this does not
take into account the fact that the dangling bond is
charged and that the capture must be enhanced by the
Coulomb interaction. The numerical estimation of this
enhancement is difficult task and will not be done here.
Anyway, due to the large barrier Eb2, we can conclude
that the second capture may become a radiative process,
at least at low temperature. The energy of the emitted
photon ( h v in Fig. 13) should be equal to E 0
+DE —2dpc which is about 0.8 eV for a AE of 0.3 eV.
Note that an infrared emission from porous silicon has
been reported recently and interpreted as due to the radi-
ative recombination on silicon dangling bonds. ' Our
study concludes that this interpretation is coherent with
the hypothesis of quantum confinement and that the pho-
ton emission would correspond to the capture of the
second carrier, more probably the hole.

From comparison of Figs. 12 and 3 we see that the
nonradiative recombination rate on a silicon dangling
bond is several orders of magnitude higher than the ex-
perimental decay time of the luminescence at T=300 K.
Therefore, the presence of silicon dangling bonds in the
crystallites cannot explain the decay time of the lumines-
cence. Other nonradiative processes must be involved.
In bulk silicon, the Auger effect is an important mecha-
nism of nonradiative recombination. This process in-
volves three particles, one electron and two holes or two
electrons and one hole. So it requires an extra electron or
hole with the excited electron-hole pair. In the hy-
pothesis of quantum confinement in silicon crystallites,
the probability to find an impurity or a defect is low due
to the small number of atoms in the crystallite ( & 10 ).
Therefore, the probability to have an extra hole or elec-
tron due to the doping is weak and the Auger effect
should be ruled out. This is one additional argument ex-
plaining the long decay time of the luminescence. Note
that this conclusions is not valid in the case of infinite sil-
icon wires. Another possible process for nonradiative
deexcitation is the tunneling of carriers through oxide
barriers surrounding the confined zone. It seems to ex-
plain quite well the experimental results.

VI. CONCLUSION

We have shown that the luminescence of porous silicon
can be explained by quantum confinement of the
electron-hole pairs in quantum crystallites or wires with
diameters lower than 4.5 nm. The confinement induces
band mixing which gives dipole allowed band-gap transi-
tions but we show that the optical matrix elements
remain small. The calculated radiative recombination
rate is lower than the experimental decay time of the
luminescence, meaning that nonradiative recombination
is probably involved. We have also found that the optical
absorption of silicon crystallites is very close to the one of
bulk silicon with a sharp edge above 3.0 eV. The low
temperature dependence of the radiative decay time of
the luminescence could be explained by the exchange
splitting in the lowest exciton state but the inAuence of
the valley-orbit splitting is not excluded. We have also
studied the nonradiative capture of carriers on silicon
dangling bonds in silicon crystallites. We demonstrate
that the capture is very dependent on the confinement en-
ergy because of the apparition of a barrier for the cap-
ture. Anyway the presence of one silicon dangling bond
in a crystallite of porous silicon must destroy its lurnines-
cence in the 1.4—2.2 eV range. For small crystallites
which can emit photons with energy higher than 2.2 eV,
we have shown that the nonradiative recombination on
dangling bonds becomes less efficient that the radiative
recombination. The recombination of electron-hole pairs
on a dangling bond in a crystallite may be at the origin of
the luminescence in the infrared region.
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APPENDIX: VOLUME DEPENDENCE
OF THE PROBABILITY OF CAPTURE

To calculate the probability 8'of nonradiative capture
of a carrier by a single dangling bond, we have used the
relation W=c/0 where c is the capture coefficient and 0
is the crystal volume. If we forget the dependence of the
capture coefficient itself on the crystallite size —due to
the dependence on the crystallite band gap as discussed in
Sec. V—this relation naturally means that the probabili-
ty of capture 8 is inversely proportional to the crystallite
volume Q. The reason is that this probability is somehow
proportional to the overlap between the extended wave
function of the carrier and the localized wave function of
the defect which, for bulk states, exactly scales as 1/A.
However, it is not clear if this is still valid in the case of a
surface —or interface —defect where the wave function
of the carrier has a sharp variation on a small distance in
the vicinity of the defect. The aim of the appendix is to
discuss the volume dependence of the probability of cap-
ture by a surface or interface defect.

In Fig. 14, we show a simplified representation of a Si-
Si02 interface which is of interest here for the I'b center.
The transition between the Si and SiO2 is not abrupt,
there is a zone with intermediate composition SiO . The
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FIG. 14. Representation of a Si-Si02 interface with an inter-
mediate zone of approximate composition SiO . The width of
this region is denoted by a.

0
width a of this intermediate region is of the order of 5 A.
Let us assume that the defect, the dangling bond, is local-
ized at the Si-SiO interface (note that this assumption
has no incidence on the conclusions of the appendix and
that the following discussion still holds in the case of a
surface or of another interface). Because of the large
SiO2 band gap, the wave function of the carriers tends to
zero at the Si02-SiO interface which we take as the ori-
gin of the positions. As already mentioned, the probabili-
ty of capture 8' is proportional to a matrix element
((P&„~V~gk ) ~

where ~g&„) is the localized defect wave
function and

~ gk ) is the wave function of the free carrier.
Let us discuss this term in two cases of interest, for a
semi-infinite system and for a spherical crystallite.

The first case we want to discuss corresponds to a pla-
nar Si-SiO -Si02 interface with a semi-infinite Si bulk
material (x being the growth direction). The wave func-
tions of the free carriers in the bulk correspond to Bloch
functions. Because the boundary conditions impose that
they vanish at x =0, the wave functions (in a simple en-
velope function treatment) can be written as

sin(kx) e' ~~
"~~

+L Vs
where the normalization has been made over a volume
A=I.S, k is the projection of the momentum in the x
direction, and k~I and

r~~ are, respectively, the projections
of the momentum and the particle vector position in the
(y, z) plane. Then the probability of capture is propor-
tional to

if the system is macroscopic. This is confirmed by many
experimental results. For example, the decay rate of the
electron-hole pairs at the Si or Ge surfaces follows a 1/L
low where L is the thickness of the sample.

The second case we discuss corresponds to a spherical
crystallite of silicon embedded in a SiOz matrix. The rep-
resentation of Fig. 14 still holds but with curved inter-
faces. The wave function of the carriers is of the form
sin(kr)/&Rr where r has its origin at the center of the
crystallite and R is the radius of the sphere described by
the Si02-SiO interface. Since the wave function van-
ishes at r =R, k is equal to m/R for the ground state.
The probability of capture is given by

1. sin(kr) 3 sin[k(R —a) j
&Rr " R

sin(ka)
R

(A2)

We see that the form of Eq. (A2) is quite comparable to
the one of Eq. (Al) in the case of a semi-infinite system.
Note that when the size of the crystallite increases ("mac-
roscopic limit" ) one would find the same behavior in the
two cases and the thermal averaging would give the same
( 1/R ) ~ ( 1/0 ) dependence. But the interesting case
corresponds to small crystallites where the energy split-
ting between the ground state and the first excited state
of the crystallite is larger than the thermal energy kT. In
that case, only the ground state corresponding to
k=m/R is populated. Then, as the dimensions of the
crystallite are still large compared to a, ka =m(a /R ) ((1
and the probability of capture becomes proportional to
1/R . Therefore the simple rule 8'=c/Q is no longer
valid in the case of the capture of defects at the surface of
small crystallites. In Fig. 15, we have drawn the depen-
dence of 8'with respect to the radius R of the crystallite
(it only takes into account the dependence due to the

2
(- sin(kx) e' '~"~~ „d sin(ka)'

W g
— —V) dx dr~~ (Al)

where the integration is made over the defect volume sit-
uated at x -a. As the system is macroscopic, the k states
form a band and one must take the thermal average of
the probability (Al). This results in the replacement of
sin(ka) by Jsin(ka) f(k, T)dk, where f (k, T)dk is the
probability of occupancy of the state k at temperature T.
Therefore, there is no longer a dependence of the proba-
bility on k in Eq. (Al) and the probability is simply pro-
portional to 1/Q. We deduce that the probability of cap-
ture of carriers by surface or interface defects follows the
same volume dependence than in the case of bulk defects

R (arb. units)

FIG. 15. Variation of the capture probability W of a carrier
by a dangling bond at surface of a crystallite as function of the
radius of the crystallite R due to the variation of the overlap be-
tween the wave function of the carrier and the wave function of
the defect (other sources of variation are not included).
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variation of the overlap between the carrier and defect
wave functions). At large R, i.e., when the spacing be-
tween confined states is small compared to the thermal
energy kT, it behaves as j. /R . For smaller R, it behaves
as 1/R

From the above conclusions, the validity of the results
presented throughout this paper concerning the nonradi-
ative capture on a dangling bond at surface of a crystal-
lite could be questioned. To do this calculation, we have
used the relation 8'=c/0, the capture coefficient c being
deduced from its experimental value for the Pb center at
Si-Si02 interface (which is equivalent to the semi-infinite
system described above). We have seen that this pro-
cedure is perfectly valid in the case of big crystallites.
However, in the case of interest here, a correction must
be included to account for a different variation of the

overlap of the wave functions with respect to the crystal-
lite radius. As seen in Fig. 15, taking a simple 1/R law,
we have underestimated the probability W (the calculated
value would correspond to the continuation of the 1/R
law at low radius represented by a dashed line in Fig. 15).
Therefore, the conclusion that the presence of dangling
bond in a silicon crystallite destroys its visible lumines-
cence is still strengthened by this correction. To estimate
numerically the amplitude of the correction is not simple.
Anyway, we have already seen that the dependence of the
capture coefficient on the size of the crystallite involves
changes of several orders of magnitude and, obviously,
this conclusion will not be significantly altered by such a
correction. In the same spirit, the conclusion that the
capture of a carrier by a charged dangling bond must be a
radiative process will not change.
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