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Selective manipulation of the emission spectrum of an electron
in a biased double-well heterostructure driven by a free-electron laser
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We study the emission spectrum of an electron in a biased double-well heterostructure driven by a cw
laser field. It is shown that, in general, the emission spectrum consists of triplets at all harmonics of the
laser frequency. We analytically and numerically show that it is possible, by making the proper choice
of parameters, to selectively eliminate each line in the spectrum.

Recently, interesting effects have been found in the in-
teraction of electrons in symmetric double-well hetero-
structures with laser fields in the IR and microwave re-
gions. Among these are suppression of tunneling, ' ' the
induction of a static dipole moment, ' and low-
frequency generation. ' These effects have been stud-
ied in isolated systems as well as in systems which include
interaction with a dissipative bath. ' In a series of pa-
pers it has been shown, using a two-level approximation,
that the emission spectrum of the electron resulting from
such interactions consists of odd harmonics of the laser
frequency co as well as split even harmonic doublets. ' '

The components of the doublets interfere destructively
and disappear when they merge, unless co is not much
higher than the splitting between the two levels A. The
effects listed above require that the light-matter interac-
tion energy (Ep) be larger than the splitting between lev-
els and also be of the order of the photon energy.
Quantum-well heterostructures are most suitable for ob-
servation of such effects due to their large dipole mo-
ments (10—103 larger than that of molecular systems) and
adjustable small splitting between levels. " The intensities
required can be obtained by using a free-electron laser
which produces intense 20-ps square pulses that are tun-
able in the region of 6—170 cm

Although these effects were obtained for both optical
and tunneling initial conditions, in general they are
stronger for tunneling initial conditions. By tunneling in-
itial condition we mean that the electron is initially local-
ized in one of the wells (prepared in a coherent state), and
by optical initial condition we mean that the electron is
initially in an eigenstate, and therefore has the probabili-
ty of being in both wells. However, though possible, '

the tunneling initial condition is hard to achieve. This
problem is overcome when the double-well structure is
biased (see Fig. 1) because the electron in an eigenstate is
naturally localized in one of the wells. The system loses
the inversion symmetry giving rise to various effects. For
example, the laser field can, by a proper choice of param-
eters, delocalize the initially localized electron. '

The purpose of this paper is to study the emission spec-
trum resulting from the interaction of an electron in a
biased system with a laser field, and manipulate the spec-
trum by choice of parameters such as laser frequency,
amplitude, and bias.

We consider the system described by the following
Hamiltonian:

H=

ho�„+

V(t)cr, ,

The time-dependent dipole moment may be defined as
follows:

i(t)=&pl .(t)lq&,

and in the representation (1)

(4)

M
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FIG. 1. The biased double-well heterostructure.

where b, is the splitting parameter, V(t) is a driving
force, hereafter we consider the units where A is equal to
1. For superlattices,

V(t) = [Eocos(cot )+E, jp&z,

where Eo is the amplitude of the cw field, E, is a constant
field used for breaking the symmetry, o. and o., are the
Pauli matrices, and p&2 is the transition dipole between
the two levels. The Hamiltonian (1) may be easily re-
duced to the form which is convenient for the description
of optical properties by making use of the following uni-

tary transformation:

U =exp(inosl4) .

The Hamiltonian (1) then takes the form

H= UHU '= —V(t)o +ho, .
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FICx. 2. Numerically calculated emission spectrum with 6= 5
cm ', Ace=100 cm ', e, =1.0, eo =2.56.

FIG. 4. Numerically calculated emission spectrum with b = 5
cm ', fico=100 cm ', e, =0.03, co=4.2.

p(t)=[a& (1 +a2 ~21]lcr, (t)I[a& l1)+a2~2)] . (4')

The dynamics of p(r) is governed by the integro-
differential equation

dp/dr= —(6/%co) f dr, p, (r, )
0

X cos[epsin(r) —epsin(ri )

+e, (r—r, )],
where

dp/dr= —(b, /fico) Re f dr, p(r, )J (ep)
0

X expIib. e(r —r, )]

—(b, /%co) Re g' J (ep )J„(ep )

n, m = —oo

Xf dr ip(7 i)
0

X exp[i(e, + n )r

(10)

—i(e, +m )ri],

where the prime in the double sum in the second term is
used to exclude the term with I =n =p, and p in the first
part of Eq. (10) is the nearest number of photons required
to match the bias

e—:2Ep p i z/A'co

e, =2E,p&z/fico . —

e, —=p+Ac,
where Ac is the mismatch. Figure 1 illustrates the biased
wells with mismatch corresponding to p =2. For cases
with small mismatch parameter,

In order to solve Eq. (5) with the initial condition (6),
we expand the kernel in a Fourier series with Bessel func-
tion Fourier coeKcients'

hc ((1

5/fico « 1,

(12)

(13)
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FIG. 3. Numerically calculated emission spectrum with 6= 5

cm ', A'co=100 cm ', e, =2.0, co=2.56.
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FICi. 5. Numerically calculated emission spectrum with 4= 5
cm ', Ace=100 cm ', e, =1.03, co=5.1.
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the following low-frequency solution has been found in
Ref. 13:

co
—= [b. +(AE) ]' (16)

po(r)/p, z=(bE) /co&+6„/6 cosI&coz] .

Here,

b. =—(b, /fico)J~(eo)

and

(14)

(15)

Expression (14) is the exact solution of Eq. (10) when the
second term in it is neglected due to the fact that integra-
tion yields terms multiplied by frequency denominators.
Since the first term contains the smallest frequency Ac
[see Eq. (12)], it dominates the dynamics.

In order to solve for the high-frequency part of the
spectrum, we present the dipole in the following form:

7

p(w)=go(w) —(b, /fico) Re g' J (eo)J„(eo)I dpi J dwzp(rz)exp[i (e, +n )ri —i(e, +m )wz] .
0 0

Keeping only the terms with m = —p and performing first iteration with respect to po(r), one obtains the terms in the
spectrum not included in {14),

/l{7 ) po(7 ) (~/Aco) Jp(eo ) ail p 2 ( 1 ) [( ~p k ~p k )cos(k7 ) ++p I cos[(k cop ) ] ~p kcos[(k + cop )7 ] ] /2k
1@=1

(18)

where

A „=(co —bE)J +„(eo)+(co +hE)J „(eo),

B k=(B~+bE)J +k(eo)+(co EE)J k—(eo) . (20)

As is evident from Eqs. (18)—(20), in general, the spec-
trum consists of triplets, ken and ~(k+co~), centered at
all harmonics of the laser frequency. This is different
from the unbiased case where the spectrum consists of
doublets at even harmonics with vanishing amplitudes at
odd ones. * In addition to the external parameters eo
and 5/fin which control the dynamics of unbiased sys-
tems, here we also have the number of photons required
for the resonance p and mismatching Ac. By changing
the values of these parameters we can control the emis-
sion spectrum. In what follows we test the analytical
solution (18)—(20) by performing a numerical integration
of Eq. (10) and Fourier transforming the time-dependent
dipole moment to obtain the spectrum.

For example, in Fig. 2 we use exact "resonance, "
Ac, =O, to eliminate the central peaks and obtain only
co(k+6, ) where b, is defined by Eq. (15). Here, k in-
cludes both even and odd harmonics. When, in addition
to hc. =O, eo is taken to be a zero of the J Bessel func-
tion, the two satellites merge and destructively interfere

yielding vanishing spectrum except of a zero-frequency
term [see Eq. (14)]. By making the proper choice of eo
while still keeping bc=0, it is possible to eliminate any
one of the doublets shown in Fig. 2. In Fig. 3 we show an
example with p =2 and Jo(eo)+ J4(eo) =0, the amplitude
of the second-harmonic doublet is negligibly small as pre-
dicted by Eqs. (18)—(20). The analysis above is valid also
for weak bias, p =0 (but b,s&0). In such cases the spec-
trum consists of triplets at odd harmonics and doublets at
even ones due to the amplitude of the central peaks being
proportional to Jk(eo) —J k(eo)= Jk(eo)[1 —( —1)"].
Figure 4 shows an example with p =0 and hc, =0.03, and
the spectrum obeys the analysis. It is also possible to
eliminate any one component of a triplet by making one
of the amphtudes Ap k Bp p or Bp k Ap k equal to zero.
An example of this effect is shown in Fig. 5 where the
left-hand line of the first-harmonic triplet, the central line
of the second, and the right-hand line of the third one are
missing.

In conclusion, we have studied the emission spectrum
of an electron in a biased double-well heterostructure
driven by a cw laser field. We have shown that, in gen-
eral, the emission spectrum consists of a static com-
ponent, low frequency B (in co units), and triplets at fre-
quencies k and 0+m for k =—1,2, 3, . . . . The ampli-

Elimination of

TABLE I. Possibilities of selective manipulation.

all k
one k

(k —
cop )

(k+Qp)
whole k triplet

everything but static
static
all 2k

WO

arbitrary
arbitrary
arbitrary

%0
arbitrary
arbitrary

0

0
arbitrary
arbitrary
arbitrary

0
arbitrary

0
AO

arbitrary
Jp —k(~0) Jp+k(~0)

Mp ~c)Jp —k (Co )+ (Bp +Ac )J +k (eo ) =0
Qp+ ~~) p —k( 0)+(Cc)p ~E)Jp+k(80 )

J,-k(&o) = —Jp+k(&o)
Jp(eo) =0
Jp(eo)%0
arbitrary
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tudes of all lines and co depend on the bias e„ the laser
intensity eo, and the mismatch hs as defined in Eqs. (8),
(9), and (11). We have analytically and numerically
showed that it is possible, by making the proper choice of
the above parameters, to selectively eliminate each line in
the spectrum, a whole triplet, all of the exact harmonics,
the static component, and the whole spectrum but the

static component. The possibilities of selective manipula-
tion are summarized in Table I.
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