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Surface and interface elastic waves in superlattices: Transverse localized and resonant modes
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Localized and resonant transverse elastic waves associated with the surface of a semi-infinite superlat-
tice or its interface with a substrate are investigated. These modes appear as well-defined peaks of the vi-

brational density of states, either inside the minigaps or inside the bulk bands of the superlattice. The
densities of states, which are calculated as a function of the frequency co and the wave vector k~~ (parallel
to the interfaces), are obtained from an analytic determination of the response function for a semi-
infinite superlattice with or without a cap layer, and also for a superlattice in contact with a substrate.
Besides, we show that the creation from the infinite superlattice of a free surface or of the substrate-
superlattice interface gives rise to 6 peaks of weight {—4) in the density of states, at the edges of the su-

perlattice bulk bands. Then when one considers together the two semi-infinite superlattices obtained by
cleavage of an infinite one along a plane parallel to the interfaces, one always has as many localized sur-
face modes as minigaps, for any value of k~~. Although these results are obtained for transverse elastic
waves with polarization perpendicular to the saggital plane (containing the propagation vector k~~ and
the normal to the interfaces), they remain valid for the longitudinal waves in the limit of k~~

=0. Specific
applications of these analytical results are given in this paper for Y-Dy or GaAs-A1As superlattices. The
effect of a Si surface cap layer on the surface of this last superlattice is also investigated.

I. INTRODUCTION

The propagation of acoustic waves in superlattices has
been the object of many experimental and theoretical
studies over the past decade, summarized in several re-
cent review papers. ' The extended states propagat-
ing in the whole superlattice form bulk bands which are
separated by small gaps. Localized modes associated
with a perturbation of the perfect superlattice may exist
inside these gaps. In particular, it was shown that sur-
face acoustic waves may exist, as well as modes localized
at the interface between a superlattice and a substrate, or
near a planar defect in an otherwise perfect superlat-
tice. ' '" However, to our knowledge, the variation of the
vibrational density of states associated with the above cit-
ed perturbations of a superlattice has not yet been stud-
ied, apart from a short attempt at showing only in the
surface local density of states the peaks associated with
surface localized modes. Intense peaks were observed in
Raman experiments' on Si capped Ge Si„superlattices
and interpreted with the help of a simple linear chain
model as resonant modes (also called leaky waves). In
this paper, we study resonant and localized modes togeth-
er with the variation of the density of states associated
with surfaces and interfaces in superlattices. Closed form
expressions are obtained for transverse elastic waves po-
larized perpendicular to the saggital plane, i.e., the plane
containing the propagation vector k~~ (parallel to the in-
terfaces) and the normal to the interfaces. However,
these results also remain valid in the case of longitudinal
waves propagating along the axis of the superlattice,
which means in the limit of k~~

=0.
These investigations are done with the help of the

response functions associated to such heterostructures. "
The knowledge of these Green's functions enables us to
calculate both the local and total density of states. Then,
in addition to the dispersion of extended and localized
states, one can also obtain the spatial distribution of the
modes and, in particular, the possibility of resonant
modes which may appear as well-defined peaks of the
density of states inside the bulk bands.

The organization of this paper is as follows. Section II
presents the model we use for these studies. Section III
gives the analytical results obtained for the densities of
states in the above-described heterostructures. Section
IV shows the numerical results for Y-Dy or GaAs-A1As
semi-infinite superlattices with or without a surface cap
layer and for such semi-infinite superlattices in contact
with a substrate. The response functions necessary for
these studies are given in the Appendix.

II. THE MODEL

The superlattice is formed out of an infinite repetition
of two different slabs, labeled by the unit-cell index n.
Each of these slabs of width d, is labeled by the index
i =1 or 2, within the unit cell n. All the interfaces are
taken to be parallel to the (x&,x2) plane. A space posi-
tion along the x3 axis in medium i belonging to the unit
cell n is indicated by (n, i,x~ ), where —d, /2 ~x3 ~ d,. I2.
The period of the superlattice is called D =d ] +dp.

We limit ourselves to the simplest case of shear hor-
izontal vibrations where the field displacements u2(x3)
are along the axis xz and the wave vector k~~ (parallel to
the interfaces) is directed along the x& axis. We can then
consider with the same general equations the two follow-
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ing cases.
(i) A superlattice built out of cubic crystals with (001)

interfaces and k~~ along the [100j crystallographic direc-
tion. The corresponding bulk equation of motion for
medium i is

"'~'—k'C"'+C"' u (x )=0d
P ~

I~
44 44 2 2 X3

dX3

where p" and C4'4) are, respectively, the mass density and
the elastic constant and co is the frequency of the vibra-
tions.

(ii) A superlattice built out of hexagonal crystals with
(0001) interfaces. The isotropy of these interfaces enables
us to choose k~~ along any direction within the (x&,xz)
plane. For simplicity we shall leave k~~ along the x, axis.
In this case, the bulk equation of motion for medium i be-
comes

where

C; =cosh(a, di),

S,. = sinh(a;d; ),
F =~ C"'

i i 44

(10)

and k3 is the component perpendicular to the slabs of the
propagation vector k:—(k~~, k3).

manner taking into account the appropriate boundary
conditions. ' ' We shall give their expressions in the Ap-
pendix as they are interesting by themselves for the study
of many other physical properties.

Let us recall that the implicit expression giving the
bulk dispersion relations of such an infinite superlattice is

F
cos(k3D) =C, C2 + —,

' + S,S~
F2

p"co —k +C" u (x )=0 (2)

where C",,', C",2, and C4'4 are the elastic constants of medi-
um i.

It is well known ' that these transverse waves are not
coupled to the other waves polarized in the saggital plane
which contains the normal to the interfaces and the vec-
tor kii.

We also took advantage of the infinitesimal translation-
al invariance in directions parallel to the interfaces and
Fourier analyzed the equations of motion and all opera-
tors according to, for example,

2

g(coax, x')= f ", g(co, k„~x„x', )e' " "" "", (3)
(2m. )

where x~~
=—(x „x2) is the component parallel to the inter-

faces of the real-space position X. In the following, we
shall drop for simplicity the co and kII dependences of the
functions g.

Let us define

2 k2 (i) CO

II '
C44

for the cubic crystals and

C11 C12(i) (i)
2 —I 2

ZC~(')

2
(i) ~

C(i)
44

(4)

for the hexagonal ones. Then, as mentioned above, Eqs.
(1) and (2) have the same expression,

d —a; uz(x~ ) =0 .
dX3

III. DENSITY OF STATES

Knowing the response functions given in the Appen-
dix, one obtains for a given value of k~~ the local and total
density of states for a semi-infinite superlattice with a sur-
face cap layer. We shall indicate at the end of this sec-
tion how one can obtain from these quantities similar re-
sults for two limiting cases, namely the case of the inter-
face between a superlattice and a homogeneous substrate,
and that of a semi-infinite superlattice without a cap lay-
er.

A. The local densities of states

The local densities of states on the plane (n, i, x3) are
given by

(12)

where

d+(co )=limd(co +iE)
E —+0

(13)

and d(co ) is the response function whose elements are
given in the Appendix. The density of states can also be
given as a function of co, instead of co, using the well-
known relation n(ro)=2ron(co ) From the e.lements of
the response function given in the Appendix, we obtained
the following explicit expressions for the local densities of
states on the surface of the semi-infinite superlattice with
a cap layer (n =0, i =0) of width do,

do

The corresponding bulk response function for medium i
is defined by

d'
2—a2 G, (x, —x', )=5(x3 —x3) .

X3

The response functions associated to the different het-
erostructures considered here are defined in the same

C1S2 C2S1= ——Im +
F2 F1

SQ F1+ C1 C2 + S1S2
FQCQ

(14)
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where Cp, Sp, Fo have the same definitions as C;, S;, F;
given by Eqs. (9)—(11) for i =0,

1 0 2 1

q+(q' —1)'~', q & —1

t = i)+i(1—q')'~', —1&g&+I
g —(g' —1)'~', q & 1

with

(15a)
In the same manner the local density of states at the in-

terface between the cap layer and the semi-infinite super-
lattice was found to be

F, F2
g =C1C2+ —,

' + S1S2
F2 F1

(15b)
dp 1 C1S2 C2S1

n; co, k~~,'0, 0, — = ——Im + g —1

2 vr F2 F1

and

B. The total density of states

The total density of states for a given value of k~~ is obtained by integrating over x3 and summing on n and i the local
density n (co, k~~,'n, i,x3). A particularly interesting quantity is the variation of the total density of states between the
semi-infinite superlattice with the cap layer n=0 and the infinite superlattice having the same number of slabs as the
semi-infinite superlattice without the cap layer. This variation b,n(co ) can be written as the sums of the variations
b, ,n(co ) and 52n(co ) of the density of states in slabs 1 and 2 and the density of states no(co ) inside the cap layer

hn(co )=h, n(~0 )+b,2n(a) )+no(co )

where

(1) +d( /2
b, ,n(co )= g Im [d(n, l,x3;n, l,x3)—g(n, l, x3;n, l, x3)]dx3—d I /2

(2) —1 +d2/2
b2n(co )= P Imf [d(n, 2, x3;n, 2, x3)—g(n, 2, x3;n, 2,x3)]dx3

(19)

(20)

(0) +dp/2
no(co ) = Im d (0,0,x3,0,0,x3)dx3—

dp /2
(21)

and d and g are the response functions of, respectively, the semi-infinite superlattice with the cap layer and of the
infinite superlattice. With the help of the explicit expressions of these response functions given in the Appendix we ob-
tained

p t S, F1 F2
b, ,n(co )= Im C2S1+—,

' C1S2 +
(t 1) aF, — ' F2 F,

d1S2+ 1—
2F2

F2
2

F2
1

Y
(22)

r—P t S2 F1 F2
b2n(co )= Im CiS2+ —,'C2Si +

(t —1) a2F2
' ' ' F2 F,

d2S1 F1+ 1—
2F1 F22

Y
(23)

(o) So
no(cu )= ~ Im.

2~ aoCo

C1S2 C2S1+ +do
2 1

F1 Sp C1S2 C2S1
C1C2+ S1S2—t + +

F2 FoCo F2 F1
(24)

where and then

FpSo S1 S2Y=C2 C1t t+
Cp F1 F2

(25)

At the limits of the bulk bands of the superlattice given
by t (coo) =+1, an expansion to first order in (co —coo) pro-
vides

b, ,n(co)+b~n(co) = —
—,'6(~ —coo) . (27)

So, the creation of a semi-infinite superlattice from an
infinite one gives rise to 5 peaks of weight ( ——') in the
density of states at the edges of the superlattice bulk
bands.

(t' —1)'
—1

8

d'g

dco
p 1

i sr 5 ( co coo—)—
(26)

C. Localized states

When the denominator of b, n(co ) vanishes for a fre-
quency lying inside the gaps of the infinite superlattice,
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F

Fo So
+CPS,

F] Co

Fi Co

Fo So
=0 (28)

together with the condition

F~ FoSo Ci S2 C2S
&

C) C2+ S)S~- +
F] Co F2 Fi

& I . (29)

D. The limit of a semi-infinite superlattice without a cap layer

one obtains localized states within the cap layer which
decay exponentially inside the bulk of the superlattice.
The explicit expression giving these localized states is

Fo So

Fz Co

E. The limit of an interface between
a semi-infinite superlattice and an homogeneous substrate

When the thickness do of the cap layer goes to infinite,
Sp /Co ~ 1 in the above expressions which remains valid
and enables us to study the interface between a semi-
infinite superlattice and an homogeneous semi-infinite
substrate. In particular, the results of Eqs. (28) and (29)
remain valid in this limit giving the localized interface
states, (27) giving 5 peaks of weight (

—
—,
'

) at the edges of
the superlattice bulk bands with (22) and (23) giving the
variation of the density of states within the space of the
superlattice. Within the space of the semi-infinite sub-
strate, rather than no(co ) we shall calculate the variation
don(co ) of the density of states between the substrate in
contact with the superlattice and the same volume of the
infinite substrate, namely

In the limit when the thickness dp of the cap layer goes
to zero, So ~0 and the above results (14), (22), (23), (27),
(28), and (29) remain valid for a semi-infinite superlattice
ending with a complete i =1 surface layer. We remark
on Eq. (24) that in this limit, no(co) vanishes.

In the limit where the cap layer i =0 is of the same na-
ture as the i =2 superlattice layer and do=d, (dz, the
same results provide the localized modes for a semi-
infinite superlattice ending with an incomplete i =2 sur-
face layer. In this case, we can calculate the variation of
the density of states between such a semi-infinite superlat-
tice and the same amount of the bulk superlattice, using
in Eq. (18) b, 2n(co ) integrated to d, /2 rather than to

d 2/2 in the last layer, and taking no(co ) =0.
A particularly interesting result can be obtained when

cleaving an infinite superlattice for the variation b, n, (co )

of the total density of states between the two complemen-
tary semi-infinite superlattices and the infinite one. It is
possible to show by using standard transformation of the
trace of the response functions' that b,n, (co ) can be ob-
tained from the knowledge of the elements

d i (0,2, d, ;0, 2, d, ) ancl d2(0, 2, d„'0, 2; d, )

of the surface response function of the two complementa-
ry semi-infinite superlattices, namely,

where

—aolx3 x 3 l

do(x3 x3)= e
0

1 1

2Fo 5o
—ao(x3+x 3 )Xe

C,Sq C~S,+
F2

F2
~p= C) C2+ SiS2 —t —Fo

Fi
C)S2 CqS)+F F,

1 aolx3 x 31Go{x„x',)= — (, e
2~oC4~o4)

We obtained like that
(0)

don(co )=

p(p)
don(co )= Im [do(x3, x3)—Go(x3, x3)]dx3

7T 0

(31)

(32)

(33)

{34)

bn, (co ) =— Im ln det[di(0, 2, d„'0,2, ds)2=1 d

dc'

+d~(0, 2,d„'0,2, d, )] . (30)

1 1 1XIm. +
2&o 2Fo ~o

CiS2 C~S)+

(35)
Using the expressions given in the Appendix for these ele-
ments of the response functions, one finds that b, n, (co ) is
zero inside the bulk bands of the superlattice and that at
all edges of these bulk bands b,n, (co ) display 5 functions
of weight ( ——,

' ). These two facts, together with the
necessary conservation of the number of states, enable us
to conclude that when one considers together the two
semi-infinite superlattices obtained by the cleavage of an
infinite one, one has as many localized surface modes as
minigaps for each value of klan.

There is only one very spe-
cial exception to this general rule for a cleavage done
along a plane situated exactly in the middle of a given
slab.

Here also it is interesting to calculate the variation of
the density of states b'"nz(co ) between the semi-infinite
superlattice and substrate on one hand and these same
elements but coupled. 6"~nz(co ) can be obtained in
the same manner as above [Eq. (30)] but with
dz(0, 2, d, ;0,2, d, ) now being the surface element of the
response function of a semi-infinite homogeneous sub-
strate. Consider now the semi-infinite superlattice com-
plementary to the one above, in the same cleavage of an
infinite superlattice and calculate as above the variation
of the density of states b, ' 'nz(co ) between this comple-
mentary semi-infinite superlattice and the above sub-
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strate, on one hand, and these same elements but cou-
pled. Such calculations provide one exact result, namely
that the sum of the variation of the density of states of
the two complementary systems bnlc(co )=lb, "'nl(co )
+6' 'nl(co ) j is zero for co belonging at the same time to
the substrate and superlattice bulk bands. Bearing in
mind the result of Sec. III D regarding the existence of
surface states on these two complementary semi-infinite
superlattices, we can now expect resonances, associated
with the superlattice-substrate interface, which fall
within the superlattice gaps and inside the bulk band of
the substrate.

IV. APPLICATIONS AND DISCUSSIONS
OF THE RESULTS

In what follows, specific results will be given for Y-Dy
(Ref. 14) or GaAs-AIAs superlattices and also for this last
superlattice with a Si surface cap layer. Tables I and II
give the numerical values of the elastic constants and of
the mass densities of these crystals.

We shall first consider (Sec. IV A) semi-infinite super-
lattices, then (Sec. IV B) semi-infinite superlattices with a
surface cap layer and finally (Sec. IV C) semi-infinite su-
perlattices on a semi-infinite homogeneous substrate. All
the specific results presented here are given for transverse
elastic waves with polarization perpendicular to the sag-
gital plane containing the normal to the interfaces and
the propagation vector k~~ parallel to the interfaces.

TABLE II. Elastic constants and mass densities of GaAs,
A1As, and Si.

GaAs
A1As
Si

C44
(X10' N/m )

5.94
5.42
7.96

P
(kg/m )

5316.9
3721 ~ 8
2330

10

ing in this figure are enlarged by the addition of a small
imaginary part to the frequency co. The 6 functions asso-
ciated with the surface localized states are noted as I.;
and the 5 functions of weight (

—
—,
'

) situated, respectively,
at the bottom and top of the bulk bands are called B; and
T;. The form of these enlarged 6 functions B; and T; of
weight (

——') are not exactly the same because of the con-
tributions coming from the divergences in (co —coT )

or (co —
co& )

'~ existing in the density of states in one di-
l

A. Semi-infinite superlattices

TABLE I. Elastic constants and mass densities of Y and Dy.

Ci2 &44 p
( X10' N/m ) ( X10' N/m ) ( X10' N/m ) (kg/m )

Y
Dy

7.79
7.31

2.85
2.53

2.431
2.40

4450
8560

The applications presented here refer to a GaAs-A1As
superlattice with d& =dz and period D =d]+d2 ~ Figure
1 gives the dispersion of bulk bands and surface modes as
a function of k~~D. We have represented the surface
modes of the two complementary semi-infinite superlat-
tices obtained by cleaving the infinite GaAs-A1As super-
lattice within one GaAs slab, such that the thickness of
the remaining surface GaAs layer is, respectively,
d, =0.3d2 and d, =0.7d2 in each semi-infinite part. As
demonstrated in Sec. III D, one obtains as many surface
states as gaps and moreover there is one surface state in
each gap associated with either one or the other of the
complementary semi-infinite superlattices. One can ob-
serve that the surface modes are very dependent on the
thickness of the last surface layer of GaAs. We shall
come back to this point in the discussion of Fig. 3.

For the moment, let us show in Fig. 2, for kI~D =6, the
variation of the vibrational density of states between the
semi-infinite superlattice terminated by a GaAs layer of
width d, =0.7d2 and the same amount of the bulk super-
lattice, as defined in Sec. III D. The 5 functions appear-

6
N

a

U

FIG. 1. Bulk and surface transverse elastic waves in a GaAs-
A1As superlattice. The curves give coD/C, (GaAs) as a function
of k~~D, where co is the frequency, k~~ the propagation vector
parallel to the interfaces, C, {GaAs) the transverse speed of
sound in GaAs, and D =d

&
+d2 the period of the superlattice.

The shaded areas represent the bulk bands. The dotted lines
represent the surface phonons for the semi-infinite superlattice
terminated by a GaAs layer of thickness d, =0.7d2. The dashed
lines represent the surface phonons for the complementary su-
perlattice terminated by a GaAs layer of thickness d, =0.3d2.
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7.366

4 890::

4.364

3.177:::-'-:--

0
I

0.5
S

d2

I

1.5

FIG. 3. Variation of the dimensionless frequencies coD/C,
(GaAs) of the surface modes of semi-infinite GaAs-A1As super-
lattices, for EIID=3, as a function of d, /d2, where d, is the
width of the surface layer which may be GaAs (dashed lines) or
A1As (full lines). The shaded areas show the first three bulk
bands of the superlattice.

FIG. 2. Variation of the density of states in units of D/C,
(GaAs) between a semi-infinite GaAs-A1As superlattice ter-
minated by a GaAs layer of width d, =0.7d2 and the same
amount of a bulk superlattice, for kII D =6 and as a function of
coD /C, (GaAs). B; and T;, respectively, refer to 6 peaks of
weight ( —4 ) situated at the bottom and the top of the bulk
bands and L; indicates the localized surface modes.

mension. Apart from the above 5 peaks and the particu-
lar behavior near the band edges, the variation An(co, k~~ )

of the density of states does not show any other
significant effect inside the bulk bands of the superlattice.

Having seen that the frequencies of the surface states is
very sensitive to the width d, of the last surface layer, we
present in Fig. 3 the variation of these frequencies, for
EIID=3, as a function of d, /d2, as well for a surface
GaAs layer (dashed lines) as for a surface A1As layer (full
lines). One sees in this figure, for d, /dz ~ 1, that for all
combinations of two complementary superlattices such
that d, &+d,z=d2, one always has a surface state in each
gap. Let us also note that the same frequency of a sur-
face state reappears with a given periodicity when d, /d2
takes values greater than one. When d, increases, the fre-
quencies of the existing surface modes decrease until the
corresponding branches merge into the bulk bands and
become resonant states; at the same time new localized
branches are extracted from the bulk bands. However,
the resonant modes remain we11-defined features of the
density of states only as far as their frequencies remain in
the vicinity of the band edges. Raman investigations of
superlattice surface states as a function of the width of
the surface layer appeared recently' for capped amor-
phous Ge/SiO superlattices.

B. Semi-in6nite superlattices with a surface cap layer

Now we assume that a cap layer of Si, of thickness do,
is deposited on top of the GaAs-A1As superlattice ter-
minated by a full GaAs layer. The dispersion of localized
and resonant modes induced by a cap layer of relative
width do/D=4 is presented in Fig. 4. Depending on
their frequencies, these modes may propagate along the
direction perpendicular to the interfaces in both the su-
perlattice and the cap layer, or propagate in one and de-
cay in the other, or decay on both sides of the
superlattice-adlayer interface. The interface localized
modes corresponding to this last case are labeled by the
index i in Fig. 4. Note that when the Si cap layer is de-
posited on a A1As layer of the superlattice, different lo-
calized and resonant modes appear. '

The variation of the density of states An(co) between
this superlattice with the Si cap layer and the same
amount of the bulk superlattice without the cap layer was
calculated as explained in Sec. IIIB. This b,n(co) is
plotted in Fig. 5, for kIID =3, as a function of
coD/C, (GaAs). 8,. and T; here also refer to 5 peaks of
weight (

—
—,
'

) at the edges of the superlattice bulk bands;
L, and R;, respectively, indicate the localized and reso-
nant modes induced by the Si cap layer. The most in-
tense resonance R2 is the lowest one situated just above
the Si sound line. The next resonances are less intense,
especially at higher frequencies where the separations be-
tween the successive branches increase.

With the help of Eqs. (14) and (17), we also studied lo-
cal densities of states. We found that they change with
the position of the plane on which they are calculated. In
particular, we found that the local density of states on the
surface of the Si adlayer shows the same behavior as the
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B
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B
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~~D/C (GaAs)

T~ B4
!

10

0
k]I D

l

4
!

6

FIG. 4. Dispersion of localized and resonant modes (dashed
lines) induced by a Si cap layer of thickness do=4D, deposited
on top of the GaAs-A1As superlattice terminated by a full GaAs
layer. The shaded areas are the superlattice bulk bands. The
heavy line indicates the bottom of the bulk band of Si. The
branches labeled (i) correspond to modes localized at the
superlattice-adlayer interface.

total density of states illustrated by Fig. 5. On the con-
trary, the local density of states at the superlattice-
adlayer interface is pretty different. These behaviors can
be understood by the very different boundary conditions
exiSting on these two planes.

The frequencies of the localized and resonant modes
vary with the thickness do of the cap layer. Figure 6
presents these variations, for kiiD = 1. The first branches
become closer one to each other when do increases, and
as a consequence the intensities of the corresponding res-
onances increase. Let us also notice that the curves in
this figure are almost horizontal when a localized branch
is going to become resonant by merging into a bulk band.
The variation with do is faster when the resonant branch
penetrates deep into the band, but then the intensity of
the resonant state decreases, or may even vanish in par-
ticular when do is small or the frequency is high. Finally,
let us mention here too that for any given frequency co in
Fig. 6, there is a periodic repetition of the modes as a
function of do.

When the thickness do of the cap layer goes to infinite,
we find the situation of a semi-infinite superlattice in con-
tact with a homogeneous substrate. We address this case
in the next section.

, . -,-,I,. ;:,. ' ' . : -. ! . -. ..: ' . "" ';:.:- I'. .-.

8

~. .. .' '.i-, ", -,

~ &.. .:,". . ~, .
~ ..

6
N

lg

04

2

0
! I

2

do
D

3 4

FIG. 6. Dimensionless frequencies coD/C, (GaAs) of the lo-
calized and resonant modes induced by a Si cap layer of width
do on the semi-infinite GaAs-A1As superlattice of Fig. 4, for
kiiD =1

~

FIG. 5. Density of states [in units of D/C, (GaAs)] corre-
sponding to the case depicted in Fig. 4, for

klan D

=3. The contri-
bution of the same amount of the bulk GaAs-AlAs superlattice
was subtracted. B;, T;, and L; have the same meaning as in Fig.
2; R; refers to resonant modes.
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C. Semi-in6nite superlattices on a semi-infinite substrate

The possibility of shear horizontal waves localized at
the interface between a superlattice and a substrate was
demonstrated before using a transfer-matrix method.
Here we show the possibility of resonant modes, associat-
ed with this interface, which appear as well-defined
features of the density of states. The results will be illus-
trated, as in Ref. 9, for a Y-Dy superlattice such that
d, =d2 and D =2d2, in contact with a substrate having
its transverse speed of sound equal to two times the Dy
transverse speed of sound.

In Ref. 9 the existence of localized modes was dis-
cussed as a function of the parameter y=C~„'/C~4"'
(where the index s refers to the substrate), considering ei-
ther that a Dy or a Y layer of the superlattice is in con-
tact with the substrate. The interface localized modes
originated in general from one of the two following ex-
treme cases: y =0 or y ~~; in the former case the local-
ized modes are those associated with the free surface of
the superlattice, whereas in the latter the amplitudes of
the vibrations go to zero at the interface and remain van-
ishingly small in the substrate. To show the interface res-
onant modes in this section, we present, respectively, in
Figs. 7 and 9 two examples in which the elastic constant
C4'4' of the substrate takes two very different values, such
t at ~=C44yC44~' ——0.S or 4.

(i) Case y =0.5. Figure 7 gives the localized and reso-
nant interface modes for both the complementary super-
lattices in which the substrate is either in contact with a
full Y or a full Dy layer. In the former case, the two full
lines in the minigaps of the superlattice are localized in-
terface modes which continue (dashed lines) as well
defined resonances inside the bulk band of the substrate
and within the superlattice minigaps. As the elastic con-
stant C44' of the substrate has here a weak value
(y=0. 5), these resonances are close to the surface states
of the semi-infinite superlattice (y=0). Their intensities,
of course, decrease when y increases.

Now, if the substrate is in contact with a Dy layer, one
obtains the dashed-dotted branch near the bottom of the
bulk bands, which is partly localized (k

~~

D ~ 5 ) and partly
resonant with the superlattice states (k~~D ~ 5). However
the dashed lines mentioned in the preceding paragraph
are also associated with small resonances in this case.

When one creates the two complementary superlattices
used in Fig. 7 from the infinite superlattice and the
infinite substrate, the variation of the density of states
b, nIc(co) can again show the new distribution of the
states. We have presented such an example in Fig. 8(a),
for k~~D =1: the loss of states due to the 6 peaks of
weight —

—,
' at every edge of the bulk bands is mostly

compensated by the peaks associated with the resonant
states (Ri R2, R3). This compensation can even be ob-
served more easily in Fig. 8(b) showing the variation of
the number of states, defined as ENIc(co)= f ob, nIc(co')dc@'. One can also check the validity of the
statement presented in Sec. III E, namely, that b, nIc(co )

is zero for co belonging at the same time to the substrate
and superlattice bulk bands.

(ii) Case y =4. In Fig. 9 we have considered the case of
a superlattice terminated by a Dy layer. The two local-
ized interface states (full lines) continue by resonances
(dashed lines) lying just below the substrate bulk band.
They correspond to modes localized on the side of the
substrate and progressive on the side of the superlattice.
Note also the existence of two other resonances in the
minigaps of the superlattice; they are localized on the
side of the superlattice and progressive on the side of the
substrate. A study of the density of states shows that the
resonance appearing in the lowest superlattice minigap is
as wide in frequency as the gap and is less sharp than the
resonance lying in the second minigap. The frequencies
of these last two resonances are rather closed to those of
the localized modes appearing on the surface of this su-
perlattice in the limit y —+ ~ (Ref. 9) (this imposes on the
displacements to vanish on this surface). When y de-
creases, the intensities of these resonances decrease and
their widths increase over the whole minigaps.

Now if the substrate is in contact with a Y layer, the

10

a
V
Q

k(I D

FIG. 7. Interface localized and resonant modes associated
with the two complementary Y-Dy superlattices in which the
substrate is either in contact with a Y or a Dy layer. The shad-
ed areas are the bulk bands of the superlattice. The heavy
straight line indicates the bottom of the substrate bulk band.
The parameters of the substrate are defined as C,"=2C,' ' and

y = C4q' /C44 ' =0.5. When the superlattice terminates with a
Y layer, the localized (respectively, resonant) modes are present-
ed by the full (respectively, dashed) lines. The dashed-dotted
line is an interface branch associated with a Dy termination of
the superlattice.



48 SURFACE AND INTERFACE ELASTIC WAVES IN. . . 10 995

I

R2

LA

CO

-10

II
Cl

-20
O

Bq

-30
(a)

0.5

0

2 3

FIG. 8. Variation of the density of states (a) and of the num-
ber of states (b), at K~~~D =1, for the two complementary super-
lattices of Fig. 7 created from the infinite superlattice and the
infinite substrate. B; and T; have the same meaning as in Fig. 2,
whereas B, refers to the 5 peak of weight ( —

2 ) situated at the
bottom of the substrate bulk band.

k!ID

FIG. 9. Interface localized and resonant modes, as in Fig. 7,
but for a substrate such that C44'=4C44"' and C,"=2C,' "' in
contact with a Dy slab of the superlattice.

dashed curves in Fig. 9 still correspond to interface reso-
nant states, which are however less intense than in the
case of a superlattice with Dy termination. {The local-
ized modes are, however, different from those presented
in Fig. 9.)

In the above discussions, the resonances were defined
as peaks in the density of states of the whole system. It is
worth mentioning that these features do not necessarily
appear in the local density of states at the superlattice-
substrate interface. This especially happens when the
stiffness of the substrate (parameter y) is high; indeed, in
this case, the frequencies of the resonant modes are prac-
tically the same as in the case y~ ~, but the Green's
function (and therefore the local density of states) at the
superlattice-substrate interface vanish exactly at the
latter frequencies.

V. CONCLUSION

semi-infinite superlattices obtained by cleavage of an
infinite one along a plane parallel to the interfaces, as
many localized surface states as minigaps exist for all
values of k~~. An extension of these studies to waves po-
larized in the saggital plane will probably reveal even
more interesting resonances.

As a final remark, let us emphasize that the calcula-
tions presented here for the transverse elastic waves can
be transposed straightforwardly to the electronic struc-
ture of superlattices in the effective-mass approxima-
tion, ' or to the propagation of polaritons' in these het-
erostructures when each constituent is characterized by a
local dielectric constant E(co). This is because both the
equations of motion and the boundary conditions in the
above problems involve similar mathematical equations.
Therefore, the general behavior and conclusions obtained
in this paper will prove to be useful for the two other
physical problems.

This paper has presented an analytical study of the
density of transverse elastic waves for semi-infinite super-
lattices, for superlattices with a cap layer, and for semi-
infinite superlattices in contact with a substrate. Particu-
lar attention was devoted to resonances (also called leaky
waves) appearing in such heterostructures and to their re-
lations with the localized modes. It was demonstrated in
particular that when one considers together the two
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APPENDIX: SUPERLATTICE RESPONSE FUNCTIONS

Following the interface response theory, ' ' we ob-
tained the following.

d~ d& S2 tin
—n'I+&

g n, 1,—;n',1, +2' ' ' 2 F2

S, , I.—'—il+i
(A2)

1. For the in6nite superlattice

(a) The elements g(m, m'), where m =—(n, i, +d;/2) of
the response function g between the different interface
planes, as functions of C, , 5, , F„ t, and g [Eqs. (9)—(ll)
and (15)j, are

g n, 1+;n', 1, — S2 tin —n'I+I

t' —1

Si tin-"'+'I+'
F t2 —1

(A3)

g n, 1, —;n',1, — CIS2 C2SI

d)
g n, l, +;n', 1, +2' '' 2

C,S2 C2S,

In —n'I+1

t —1
2 (A4)

ln —n'I+1

t2 —1
(Al) (b) The element of this response function between any

two points of the infinite superlattice was found to be

g (n, i, x3,'n ', i ',
x 3 ) =5„„5;;.U;(x3, x 3 )+ sinh a,

S;S; ' 2

d—x» s1nh a; +x3 .g(M, M )

slnh cubi' x 3

i'
slnh cubi' +x 32

(A5)

where

i
U~(x3 x3)= — exp[ —a;~x3 —xP j+ sinh a; Qlx 3 exp —a; —+x3

L

dl+sinh a, +x 3 exp —a; —x3 (A6)

In Eq. (A5) the last three terms are the product of a (1X2) matrix by the g(M, M ) (2X2) matrix and by a (2X1)
matrix. g (M, M . ) is the (2 X 2) matrix formed out of the elements given by Eqs (Al) —(A4), for m =(n, 1,+d, /2) and
m ' = (n', 1, +d, /2).

2. For the semi-in6nite superlattice with a surface cap layer

The semi-infinite superlattice with a surface cap layer under consideration here is terminated by the unit cell n =0
formed of a surface layer i =0 of width dp deposited on the i = 1 layer of the semi-infinite superlattice. The underneath
unit cell n = —1 is formed out of the i =2 and then the i = 1 layers of the superlattice and so on.

(a) In this paper, we need the following elements of the response function d between different interface planes:

do do do dp
d 0,0—;0,0, =d 0,0, ;0,0, —2'''2 ''2''' 2

C)S2 C2S)+
F2 F)

(A7)

dp dp
d 0,0, ;0,0,''2'''2 C&S2 C2S& So F+ + C C2+ SIS2 —t

F2 FI FoCo F (A8a)

dp
d 00, — 00, —dp 1 CIS2 C2S)+

2 5 F2 F (ASb)

and for n and n' ~0 and i&0,
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d n 1 — 'n' 1—2' '' 2 t2 1

d n, l, —;n',1,2' ''2 S tiln —n'/

n n C1Sq C2S1+F F,F1F

C, S2 C2S1
(

,
~

, S, t Sq

F2 F1 F1 F
t /n

—n' —1/
1

Y
(A9)

(A 10)

d n, 1, ;n', 1, — —1

S tl~ —n'I S tl~ —~'+1I
2 + 1 C1S2 C251 Y—t +

F2
(Al 1)

d1
d n, l, ;n', 1,' '2' ''2 C1S2 C2S1+ t )n —n'[ t

—n —n' —1
S S2 Y
F, F (A12)

where 5 and Yare given by Eqs. (16) and (25).
(b) The elements of this response function between any two points of this heterostructure can also be obtained in

closed form. In the present study we need only the trace of this response function, so we give here only these expres-
sions for two points belonging both either to the superlattice or to the surface cap layer.

(i) When the two points are inside the superlattice d (n, i,x3;n', i', x 3 ) is given by Eq. (A5) in which one has to replace
g(M, M . ) by d (M, M ) given by Eqs. (A9) —(A12).

(ii) When the two points are inside the surface cap layer

d (0,0,x3,0,0,x 3 ) = Up(x3, x 3 )

dp
sinh ap x 3

1 do+ ' slnh Exp
SQ

X3
dp

;sinh ap +x3 'd(Mp, Mp )
dp

slnh Exp X3

(A13)

where

Up(x3, x 3 ) =—
~'

dp
exp[ —ap l

x 3 x 311+ sinh ap
p o

X3
do

exp Qp +x3

dQ dp
+sinh up +x 3 exp —ap —x3 (A14)

and d (Mp, Mp) is the (2 X2) matrix formed out of the elements given by Eqs. (A7) —(A8), for Mp =(0,0, +dp/2).
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