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The edge electronic structure and collective excitations of a two-dimensional Wigner crystal are stud-
ied as a function of the strength of an external static potential that compresses the electrons at the edge
of the crystal. It is demonstrated that, as the strength of the external confining potential is increased, the
electrons at the edge may melt, giving rise to a phase of the two-dimensional electron gas in which the
bulk is essentially crystalline, while the edge is melted. In the generalized random-phase approximation,
this melting transition is signaled by the appearance of a collective mode which is gapless even in the
presence of pinning centers, and is localized to the edge of the system. The consequences of this melting
transition on the transport properties of the system are discussed.

I. INTRODUCTION
As shown by Wigner,! a gas of electrons will form a
crystal at sufficiently low density and temperature when
the energy cost of localizing electrons around lattice sites
is outweighed by the decrease in the potential energy due
to the formation of the lattice. The Wigner crystal (WC)
has effectively been observed some 14 years ago in a two-
dimensional electron gas (2DEG) on the surface of liquid
helium;? however, at the densities attainable in this sys-
tem, the electron gas is almost classical. To study quan-
tum effects on the electron solid, one must consider sys-
tems of higher electron density, such as a 2DEG that is
formed at a semiconductor inversion layer or at the inter-
face of a heterostructure. Unfortunately, at least in the
heterostructures,® the electron density is much higher
than the critical density for the observation of the WC
and again, the zero-field crystal is not observable. To
enhance the possibility of observing the crystallization, a
perpendicular magnetic field may be applied to the
2DEG. This forces the electrons to execute circular cy-
clotron orbits for which the energy is quantized in units
proportional to the magnetic-field strength. If the mag-
netic field is strong enough, all electrons have the
minimum quantized kinetic energy, i.e., all are in the
lowest Landau level. The large quantized kinetic energy
allows the electrons to be localized to a length compara-
ble to their classical cyclotron orbit radius ! =V'#ic /eB.
Once / becomes small compared to the typical distance
between electrons, crystallization will occur. Thus, con-
trary to the zero-field situation, a Wigner solid will occur
for any density if the magnetic field is strong enough.
There is currently an active search for observing the WC
in GaAs-Al,Ga,_,As heterojunctions and in metal-
oxide-semiconductor field-effect transistor inversion lay-
ers. So far, these experiments suggest that the WC has
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been observed, although the evidence is not yet con-
clusive. It seems that a reentrant transition from quan-
tum Hall fluid states [giving rise to the fractional quan-
tum Hall effect (FQHE)] to electron crystal states occurs
in sufficiently strong magnetic fields.

Another subject of recent interest is edge effects in the
2DEG in strong magnetic fields.” Most work has focused
on the integral and fractional quantum Hall effects
(IQHE, FQHE), for which theoretical models exist that
describe transport on Hall plateaus completely in terms
of edge states. In this work as in a previous publication,®
we focus instead on edge effects in a 2D Wigner crystal in
a strong magnetic field. Below, we discuss the behavior
of the edge electrons of the crystal when they are subject-
ed to an inhomogeneous external potential, such as the
potential at the edge of the positive background of
donors, or a potential due to a remote-gate geometry. In
Ref. 6, we discussed various edge reconstructions that ap-
pear in the presence of a soft edge potential that allows
the electron density to fall off slowly from its bulk value
to zero. In the present paper, we instead discuss
phenomena—specifically, edge melting and
reconstruction—that occur in the presence of an external
potential that tends to confine the electrons at the edges.
(We note that the case of a confining edge potential
which varies on the intermediate length scale of the aver-
age7 interelectron separation has been discussed by one of
us.”)

To study the edge electronic structure of the WC, we
use a supercell technique which restores periodicity to
the system, reducing the more difficult problem of a
finite-size crystal to one that may be handled numerically.
The ground state of the crystal is calculated in the
Hartree-Fock approximation (HFA) for different values
of the confining potential. Once this ground state is
known, it is possible to calculate the excitation spectrum
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of the crystal, using the generalized random-phase ap-
proximation (GRPA), and to discuss its transport proper-
ties.

With the above approximations, we show that when
the strength of the confinement potential is increased, the
edge electronic structure undergoes a reconstruction, fol-
lowed by a melting transition. In the case where there is
reconstruction, there is a noticeable change in the
response function that should be observable experimen-
tally. More interesting, however, is the edge melting that
occurs at sufficiently strong confining potential. As we
show below, this melting transition is signaled by the ap-
pearance of a gapless mode in the excitation spectrum
that is present even when disorder pins the crystal in the
bulk. Interestingly, the excitation spectrum in this case
bears a strong resemblance to that of the edge states in
the QHE. However, there is an important difference: a
calculation of the ground-state current density shows that
the melted edge is not chiral. We find local currents in
both directions at any given edge, such that the net
current at a melted edge vanishes identically, in contrast
to the situation in the QHE. The appearance of a gapless
mode suggests that the system becomes metallic in the
melted edge regime, at least within the mean-field (HFA)
approximation, even though the WC state is believed to
be insulating when edge effects are not important. Our
calculations bear out such an interpretation, in that the
chemical potential falls in a large gap in the density of
states for the unmelted case, whereas at the melting tran-
sition, this gap closes up.

However, it is important to recognize that when one
goes beyond mean-field theory, the physical situation is
likely to be strongly influenced by quantum fluctuations.
Below, it will be seen that the melted edge is a quasi-one-
dimensional system, so that edge electrons in the melted
state may be thought of as a realization of a Luttinger
liquid. It has been shown recently® that impurities can
pin a Luttinger liquid, even though such a system does
not generically have long-range translational order. Even
in the absence of impurities, the periodic potential seen
by the edge electrons due to the bulk (crystallized) elec-
trons can in principle pin them; this was shown explicitly
for slowly varying confinement potentials,” but may apply
in a more complicated way in the present model.’
Indeed, this system represents a realization of the Lut-
tinger liquid in a periodic potential, for which a compli-
cated set of transitions between pinned and conducting
phases has been shown to exist.” The phase diagram of
this system could, in principle, be mapped out by careful
examination of the conductivity of a melted edge as a
function of confinement potential and magnetic field.

This paper is organized as follows. In Sec. II below, we
introduce the supercell technique that allows us to take
into account the finite size of the Wigner crystal. We also
introduce there our model Hamiltonian, including the
confining potential as well as the pinning potential that
simulates the effect of bulk disorder. In Sec. III, we
briefly discuss the formalism and numerical method that
we use to calculate the ground-state density and current,
in the HFA, as a function of the confining potential. Sec-
tion IV is concerned with the calculation of the density-
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density response function as well as collective excitations
of the crystal in the GRPA. Finally, our numerical re-
sults are presented and discussed in Sec. V. A short ac-
count of this work has appeared previously.!?

II. MODEL AND HAMILTONIAN

The system that we consider consists of a strip of elec-
trons which is infinite along X and has a finite width W
along y. Within the strip, the electrons form a triangular
lattice with nearest-neighbor separation a,. A neutraliz-
ing positive background of width W is assumed to lie at a
distance d below the strip of electrons. (In this work, we
shall take d =0. We study the effect of nonvanishing d in
Ref. 6.) To model different possible electrostatic environ-
ments for the 2DEG, we also consider the effect of an ad-
ditional local confinement potential V(y) (in practice due
to a remote-gate geometry). We take the strength of this
confining potential as variable, and study its effect on the
ground state of the system when a strong external mag-
netic field is applied perpendicular to the plane of the
strip.

To take into account the finite width of the system, we
employ a supercell technique. That is, we assume that
the system consists of an infinite number of strips with
center-to-center separation 4. In this way, the system is
made periodic in both X and § directions. This has the
important advantage of allowing us to work with the
Fourier transform (p(G)) of the ground-state density
that we define below. To allow more possibilities for edge
reconstructions, we take the unit cell of the system as
given by an area of surface §a,X 4 and containing N,
electrons. That is, the unit cell has length £a, in the X
direction. Classically, the positions of the electrons are
then given by

r;,.=~R;+r,, (1)

where R; is the position of the unit cell and r, the posi-
tion of the electron a in this unit cell. The positions {R;}
form a rectangular lattice, that can be described by the
discrete set of reciprocal-lattice vectors

2wn, 2wn,
gag = A

, nmen,=0,£1,%2,.... ()

In principle, to recover the result for a single strip, we
must let 4 — co. In practice, we use large enough values
for A4 that our qualitative results no longer change as A4
is increased. We find that for our present purposes, very
large values of A are not actually required. The extent to
which it is possible to discuss the large A4 limit within our
numerical approach is addressed in Sec. V.

In the strong-magnetic-field limit that we consider, the
filling factor of the total system is given by v=N/g (N is
the total number of electrons in the system and g is the
Landau levels degeneracy). This filling factor is related to
the filling factor in a strip v, by the relation

W
1 (3)

v=vy
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To respect charge neutrality, the density of the positive
background must then be given by
N,

= Ea W 4)

np

where N, is the number of electrons in a unit cell.

In the strong-field limit, i.e., #iw, >>e?/I (0, =eB /mc
is the cyclotron frequency and e/l characterizes the
strength of the Coulomb interaction), we can make the
usual approximation of neglecting Landau-level mixing
and restricting the Hilbert space to the first Landau level.
It is thus convenient to define a new density operator
p(q) by the relation

n(q)=ge 1""/*(q) , (5)

where the Gaussian form factor reflects the wave func-
tions of the electrons in the lowest Landau level. In
terms of this operator, the Hartree-Fock approximation
(HFA) for the Hamiltonian of the two-dimensional elec-
tron gas in the strong-magnetic-field limit takes the sim-
ple form!!

ghio,

p(0)+g 3 [U<G)+2¢i<G) p(G), (6)
G i

where the potentials ¢; are defined below, and the quanti-
ties {p(G)) can be considered as the order parameters of
the crystal phase. (In the homogeneous phase, only
{p(0)) is different from zero.) In Eq. (6), U is the self-
consistent Hartree-Fock field produced by the electron
lattice, and is given by

‘l_e “6212/2( 1 _SG,O)

UG)= G

e
1

— V' /2e AL (GU/4) [(p(G))

2
= {eT [H(G)(1—86,0)—X(G){p(G)) , (7
where I, is the modified Bessel function of the first kind.
The factor (1—38g () arises because the diverging part of
the HF potential is cancelled by the G=0 part of the in-
teraction with the nonhomogeneous positive background.
Since the confinement, pinning, and background poten-
tials all couple with the electron density through the usu-
al —e fdrn(r)(p,»(r) term, we have included them in the
summation over ¢; that appears in the Hamiltonian. In
the supercell scheme, all these fields have nonzero
Fourier components for =G only. The Fourier trans-
form of these potentials are given by the following ex-
pressions:
(a) The potential due to the nonhomogeneous positive
background (strips of uniform positive charge with width
W) is given by

Gr=— | €| sin(G, W /2)
% 1 ]Gl | G,w/2
— G252
Xe Gyl /486x,0(1_86,0) . (8)
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(b) The confining potential acting on one strip is taken
as

0, if |y|<x,
$e= yl—xo A ©
eV, VR ifxo<|)’!<7
3 T
so that
2 | [sin(G, 4/2)
A G,A/2
cos(G), 4 /2)—cos(G,x,)
(G, 4/2)X(1—2x,/4)
Xe G5 (10)

x,0

(c) For the pinning potential, which we take as a
Gaussian trap fixed at the center of each supercell, we
have in real space

—(r—R.)2/212
g,()=V, e TR (11)
Ri

where R; is defined in Eq. 1. Its Fourier transform is

e2

v,V
$,(G)= l—l Sare G, (12)
_ 2
where v, = —eV,l/e".

III. CALCULATION OF {p(G)) AND (j(G))
IN THE HFA

To calculate the order parameters {p(G)), we use the
method of Ref. 11. We briefly summarize here the main

steps.
We first introduce the one-particle Green’s function
G(X,X',7)=—(Tex(r)c}(0)) , (13)

and define its Fourier transform G(G, 7) by

GG, 1=¢g 'Y GX,X',7)
X, X'

Xexp[ —iG (X +X")/218,., , ¢ 2>
’ y

(14)

so that the components {p(G)) are connected to the
Green’s function by the relation

(p(G))=G(G,7=07) . (15)

Using #0/07( )=[H —uN,()] (u is the chemical poten-
tial of the electrons which we measure with respect to the
kinetic energy of the first Landau level), we obtain the
equation of motion
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liw, +1/H1G(G0,)—S, —%[U(G’_G)-Fz 6,(G'— G)Jexp[iG X G'I/21G (G, ) =8 0 » (16)

G

where o, is a fermionic Matsubara frequency. This last
equation can be rewritten as

liw, +u/%]1G(G,0,)—3, 4(G,G")G(G"0,)=8g,
<

(17)
with

4(6,6)=1[U(G—G')+3 $,(G—G"]

Xexp[iGXG'I?/2] . (18)

The problem is now reduced to that of finding the eigen-
values and eigenvectors of 4 (G, G’) that are defined by

S A(G,GV(G,)=V(G", o, . (19)
<

We can now perform a Matsubara frequency sum to get,
at T=0K,

jmax
(p(G)Y=3 V(G,j)[V(G=0,/)]*, (20)

j=1
where j_ .. must be determined by the condition that
(p(0))=v. 1)

The system of Egs. (19)-(21) must be solved self-
consistently, in an iterative way, until the order parame-
ters {p(G)) converge to a fixed value. In general, we
found that relatively good convergence could be obtained
by keeping =~600 values of G for systems with five or
fewer electrons per unit cell.

A problem arises, however, due to the fact that the
Hartree-Fock equations of motion may have many
different solutions corresponding to local minima in the
mean-field energy, which is given by

fiw, 1
+ -
2 2v %

+23 ¢,(G) |[{p(G))|?. 22)

Because the phase space of the order parameters is so
large, it is necessary to find a reasonable initial guess for
(p(G)), which is required to start the iteration process.
Since we are mainly interested in the domain of filling
factor v < 1, we choose, for this initial solution, the classi-
cal result!? corresponding to electrons localized around
each lattice site in Gaussian wave packets. In the ab-
sence of any confining or pinning potential, the classical
density pattern is given approximately by

. 112 S exp[—(r—R, . 2/21%] , (23)
T i,a

(n(r))=

or, in Fourier space,

—

(P(G))zﬁ"“ lzeiG-Ra o —G/4 , 24)

where the summation is over the positions of the elec-
trons in a unit cell. The exact classical positions of the
electrons in a unit cell can be obtained, for the general
case, by finding a classical potential-energy minimum, as
we discuss in the next section. In any case, we find that
Eq. (24) is generally a good seed for the iteration process.
In some cases, particularly those in which the edge poten-
tial is moderately steep, we have found it convenient to
start from a weak edge potential, find the solution of the
HFA with a classical seed, increment the edge potential,
and use the previous solution as a seed for the new prob-
lem. In this way, we can work our way up to moderate
and strong confinement potentials.

We iterate the Hartree-Fock equations with the initial
solution until we obtain convergence. As we show in the
next section, we can check the stability of any solution by
calculating the collective mode spectrum corresponding
to small oscillations around the mean-field solution.

We end this section by a discussion of the ground-state
current density. In the first Landau level, the instantane-
ous current density is completely transverse. As dis-
cussed in Ref. 13, this is merely a reflection of the fact
that the kinetic energy has been quenched, and perturba-
tions can cause particles to move only by means of virtual
transitions to higher Landau levels. We can, however,
define another current operator which does not include
the fast cyclotron motion, but instead retains only the
slow EXB drift motion of the particles in the magnetic
field. To do this, following Ref. 13, we write the equation
of motion for the density operator p in the lowest Landau
level. We find

i<,o(G)>= lz W(G')sin(G' XGI?/2){p(G'+G)) ,
ot iG
(25)

where

W(G)=U(G)+ ¢,(G) . (26)
For a slowly varying field, i.e., for W(G)/(e?/l)<<1
when GI > 1, we can write

sin(G' X GI?/2)=~G-(2XG")I*/2 . (27)
Comparing then Eq. (25) with the continuity equation

—ege_G212/4§t—<p(G)>=—iG'<j(G)> , (28)
we finally get, for the current operator in the lowest Lan-
dau level,

_ —eigl? oG4

#
X 3 W(G)EZXG)p(G'+G)) . (29
<

(j(G))
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In real space, this expression becomes (always in the
slowly varying field approximation),
6212

(j(r))-——T[VW(r)Xf}(n(r)) ) (30)
using Eq. (5). We note that Eq. (30) is consistent with
some recent expressions derived via density-functional
theory that relate the current to the electron density in a
magnetic field.'*

IV. COLLECTIVE MODE SPECTRUM IN THE GRPA

The collective excitations of the crystal are poles of the
density-density response function,!! which is defined by

Xo.c'k,7)=—g{Tp(k+G,7)p(—k—G',0)) , (31)

where k is a vector in the first Brillouin zone of the crys-
tal and p=p—{p). As for the calculation of the one-
particle Green’s function, we use the Hamiltonian of Eq.
(6) to derive the equation of motion of this correlation
function in the Hartree-Fock approximation (i.e., one
loop approximation x°). Using the commutation relation
of the density operators in the Hilbert space of the lowest
J

G"

As is seen from Eq. (36), the response function is com-
pletely determined once the order parameters {p(G)) are
known. The dispersion relation of the collective modes
are found by tracking the poles of y for several values of
the wave vector k.

It is of interest to compare the above quantum results
(HFA and GRPA) to those of the classical crystal in
which the electrons are viewed as rigid blocks oscillating
around their equilibrium position. Their instantaneous
positions are given [see Eq. (1)] by the vectors

r; ()=R;+r,+u, (1), (37

where u; ,(¢) represents the displacement of the electron
a in the unit cell i. We define the Fourier transform of
this displacement as

u (k)= u e N (38)

The density pattern of the classical crystal is thus given
by
n(r,t)=3 h[r—r; ,(£)], (39)
i,a

where the rigid envelope A (r) of the electron is given by
[see Eq. (23)]

1

hir)= exp[—r21%/2]. (40)
YT pl ]

To find the dispersion relations of the collective modes,

one needs to write a linearized equation of motion for the

displacement u(k,»). Using Newton’s law, this is given
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Landau level,
[p(q),p(q')]=2ig “'p(q+q')sin(qXq'I?/2),  (32)
3 [i9,86,6—Cs,c (k) X& 6k, 2,)=Dg c(k) ,

Pe
(33)
where
Coak)= |2 |UG-6"+3 4(0-6"
Xsin[(k+G)X(k+G')I*/2], (34)
and
Dg ¢(k)=—2i{p(G—G"))
X sin[(k+G)X(k+G')I?/2] . (35)

x° does not include the correlations that give rise to the
phonons of the electron crystal. In order to include these
correlations, we calculate the density response function in
the GRPA. This calculation is given in detail in Ref. 11.
The final result for the response function is

S |iQ,86.6-—Cg,g (kK)— %DG,GH(k)[H(k—i-G")—X(k+G”)] XYook, 2,)=Dg g (k) . (36)

[
by

—motuyk,0)=3 FM(k,0), (41)

n
where the F" are the forces acting on the electron « in-
cluding the Lorentz force and the force due to all the oth-

er electrons. After a straightforward calculation, we find
that

> [ {.7@2—2X£f)—wwcay ]Sa,ﬁ_ﬂa,BJ ‘ug(k,0)=0,
B i

(42)

where J is the 2X2 unit matrix, o, is a Pauli matrix,
D, s is the dynamical matrix of the electron lattice,
which is given by

Dy (k)= 2;?;]\[% (HG)“T;G(;TZ(HG)
s HO g
GO s o
(43)
and
=5 > GGh(G)¢,~(G)eiGT“ ’ (44)
mS G

is a 2 X2 matrix representing the influence of the external
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forces (positive background, confinement, pinning) with
¢,(G) defined in Egs. (8), (10), and (12).

Diagonalization of Eq. (42) gives all the collective
modes of the electron lattice in the presence of the exter-
nal forces. In particular, for a lattice of one electron per
unit cell, there will be one magnetophonon and one mag-
netoplasmon mode. As was emphasized in Ref. 11, the
magnetoplasmon excitation is an inter-Landau-level exci-
tation and thus is not present in the quantum density
response function calculated above using only one Lan-
dau level. Instead, y corresponds to an approximation of
Eq. (42) in which the various resonant frequencies of the
external forces are much less than the cyclotron frequen-
cy .. A completely equivalent statement is to write Eq.
(42) without the inertial term Jw?2. The problem is then
reduced to that of finding the eigenvalues of a 2N, X2N,
matrix. The modes found in this way correspond to
intra-Landau-level excitations only.

Finally, we note that the condition for the equilibrium
of the different forces on an electron f3 is expressed, clas-
sically, as

z tGrBG

e
G 1

AT
+h'(G)3 ¢,(G) |=0. (45

The classical equilibrium position of the electrons in the
presence of the external fields can be found by searching
for solutions of Eq. (45) as a function of the positions rg.
The resulting electron density may then be used as an ini-
tial guess to start the iteration process for the Hartree-
Fock self-consistent {p(G)).

V. NUMERICAL RESULTS

We begin with a discussion of the results of the HFA
for the density profiles of this system. Typical contour
plots for the density are presented in Fig. 1 for several
values of the edge potential strength V, (in units of 1/1).
In these figures, we have taken v=1 and N.=5. In Fig.
1(a), the case of V,=0 is illustrated, for which the
confinement potential is due only to the finite neutralizing
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background charge. Each electron is spread out in a
wave packet of size I, since we are considering only
ground states in the lowest Landau level; this finite
spread of the individual electronic wave functions is thus
a consequence of the zero-point (quantum) motion of the
electrons, and we will see that this plays a crucial role in
the edge melting phenomenon. We note that the triangu-
lar lattice in the bulk of the system is essentially undis-
turbed, with only a small inward relaxation of the rows
closest to the crystal edge. The inward relaxation is pure-
ly an electrostatic effect, and we have confirmed in a clas-
sical electron system that this is expected to occur, using
Eq. (45).

As the parameter V, is increased in magnitude, one
can see that the initial effect is to compress the rows of
electrons nearest the edge together, as is clear in Figs.
1(b) and 1(c) (¥, =1.0 and 2.0, respectively). This is once
again a classical effect, and it should be noted that this
type of reconfiguration is unique to the Coulomb interac-
tion. For short-range interactions, one would expect that
pushing on the crystal at its edge would cause a small in-
crease in the bulk density of electrons. However, since
we require a neutralizing positively charged background
in the Coulomb system, a bulk increase in density be-
comes prohibitively large in energy, since this would
force the system to maintain a charge imbalance over
macroscopic distances. Thus, the main response of the
electron gas to the confining potential is localized to the
edge of the sample. This means that the local electron
density at the edge is higher than in the bulk. We should
note that such a situation is experimentally attainable if
the edge potential is turned on at low temperatures. In
this case, there is a high thermal barrier for electrons to
diffuse back to the charged donors, which play the role of
the neutralizing background. One thus has a fixed neu-
tralizing charge, and our system for which electron
charge is conserved as a function of the confinement po-
tential is appropriate. It is important to note that at
higher temperatures, the electrons could recombine with
charged donors, leading to a degrading of the electron
density at the edge. .

Figures 1(c) and 1(d) are actually two separate
configurations of electrons at ¥, =2.0; both are solutions
to the HFA. It is clear that the difference between the

Q@

P © ¢

FIG. 1. Hartree-Fock density patterns for
different values of the confining potential ¥V,
showing edge reconstruction and edge melting.
(a) V,=0.0; (b) V,=1.0; (c), (@) V.=2.0; (e)
V.=10.0. (Parameters are N.=S5, 4 =73 /2,
W=5V3/2, x,=V3/2, £=1, v=1/7. V, is
in units of /1)

(@)
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two configurations is that the two rows of electrons
closest to the edge have merged in the second
configuration. We find that these two types of solutions
can both be stabilized in a range ~1.5=V_ =< ~2.5, with
solutions of the type illustrated in 1(c) lower in energy at
the lower ¥V, end of the range, and solutions such as 1(d)
lower at the higher end of the range. This means that at
a critical value of V,, the edge configuration will go
through a sudden change. This is a reconstruction of the
edge electrons, and clearly in this example it is a first-
order transition.!*> We will see below that such a transi-
tion has a clear signal in the collective mode response of
the system.

At and above the potentials for which one reaches
configurations such as that illustrated in Fig. 1(d), zero-
point motion effects begin to become important: the indi-
vidual electron orbits are no longer well defined, and be-
gin to merge. At stronger confinement potentials [Fig.
1(e), V,=10.0], the transverse density oscillations with
the rows of electrons from which the high-density edge is
formed are nearly gone; the configuration at the edge
looks more fluidlike than crystallike. This is a melting
transition for the edge electrons, and we will see below
that it has a definite consequence: the electrons in the
melted edge are not pinned (at least within the HFA) by
bulk disorder, as they are for a solid edge. We will see
below that when one computes the response function in
the presence of bulk pinning centers, all the collective
modes will be gapped for cases 1(a)—1(d); however, case
1(e) turns out to have a gapless mode, suggesting that it
can support a current. This means that the edge melting
transition is a kind of metal-insulator transition, and
could be detected in transport experiments, as discussed
below.

To support this interpretation, we have computed the
density of states for the system within the HFA. This is
defined for an interacting system as

pE=-L1s6xx;E),
S X

where S is the system area. It is not difficult to show that
this may be rewritten as

D(E)=—%ImG(G=O,iw,,=E)

1 lV(G=0,j)2

T M2 o 4is

Figure 2 illustrates D (E) for several values of V. In Fig.
2(a), we display the case V.=0 [corresponding to Fig.
1(a)], along with the position of the chemical potential u.
One can see that u falls in a large gap region of D (E).
This implies that charged excitations require a finite ener-
gy, so that at low temperatures, the bulk WC is an insula-
tor. However, as V, is raised, some of the single-particle
states break off from the high-energy peak in D (E) [Fig.
2(b), corresponding to Fig. 1(d)], and begin to move to
lower energies, although the chemical potential still lies
in a gap. (We note that the small but nonvanishing value
of D (E) at the chemical potential is due to using a finite
value of 8; there are no states with non-vanishing weight

10 961

in the gap region.) Finally, at the melting transition [Fig.
2(c), corresponding to Fig. 1(e)], the gap in which the
chemical potential lies has completely closed up. Within
mean-field theory, the interpretation of this situation is
that one can generate charged excitations with

90.000 -

(a)

80.000
70.000 —— /J.
60.000 -

50.000 —-

e*,D(E)

40.000

FIG. 2. Density of states in the HFA (in arbitrary units) for
different values of the confining potential (in units of /™!). (a)
V. =0 corresponding to Fig. 1(a); (b) ¥, =2.0 corresponding to
Fig. 1(d); and (c) ¥,=10.0 corresponding to melted edge. The
vertical line represents the position of the chemical potential at
T=0 K. Note that the density of states does vanish at the
chemical potential in (b). The finite weight in this figure is a nu-
merical artifact.
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infinitesimal energy cost—allowing for a finite (metallic)
response to a weak electric field. However, as discussed
in the introduction, and as we will discuss further below,
it is unclear whether this metallic response actually sur-
vives at zero temperature when one goes beyond mean-
field theory.

To understand how the edge melting transition occurs
in this system, consider the effect of a confinement poten-
tial ¢(y) at the edge of a classical WC in a strong magnet-
ic field. We can associate a local drift velocity
vqa=cVé(y)XB/eB? with the bare confinement potential
¢ so that a WC spread out over the region in which the
confinement potential varies faster than linearly will tend
to shear. The system overcomes this by compressing in
the ¥ direction, so that the total (self-consistent) electric
field at any lattice point on the edge vanishes. In the
quantum-mechanical case, however, this compression has
a nontrivial effect: any attempt to compress the electron
density perpendicular to the edge will necessarily lead to
a spreading of the density parallel to the edge. This is
most easily seen within mean-field theory. Compression
of the charge density near the edge may be accomplished
by building the wave function out of single-particle states
that fall off more quickly in the § direction than do the
circular Gaussian orbitals out of which one may build a
WC state in an unbounded WC. However, any compres-
sion of a single-particle state in the lowest Landau level in
a given direction necessarily leads to spreading of the
wavefunction in the orthogonal direction.'® This is pure-
ly a result of zero-point motion of electrons in a strong
magnetic field, and may be expressed as an uncertainty
relation among guiding center coordinates'®!” of the elec-
trons AXAY ~]2. Alternatively, one may consider how a
WC is built up out of single-particle wave functions of the
form
1/4

exp[iYx /1*—(y—Y)/21?] .

(x,y)=
I/JYx}’ 7T12L2

To create states with transverse density oscillations
(density oscillations parallel to the edge) of wave vector
k,, one must consider linear combinations of the states ¥
and Y+k,/ 2, However, near the edge, states at large
values of Y-+k,/ 2 will have large energies, so that form-
ing such linear combinations becomes unfavorable. In
this way, transverse density oscillations are suppressed
near the edge.

Since the edge electrons are liquidlike, and are confined
to a region in which there is a potential gradient, it seems
reasonable to assume that the edge electrons have a non-
vanishing current density. This view is further supported
by the fact that one finds a linear mode in the collective
excitation spectrum, precisely as in the case of the QHE
edge states, which are known to carry current. This
turns out to be the case; however, there is a crucial
difference between a melted WC edge and the QHE edge:
the former is not chiral. In practice, this means that a
melted edge in the WC carries no net current, even while
there is a nonvanishing current density. To dema:strate
this, we have explicitly computed the current density
(j(r)) using Egs. (29) and (30). Contour plots of j, are
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FIG. 3. Ground-state current density {j (r)) in the HFA
corresponding to (a) Fig. 1(a) (normal edge) and (b) Fig. 1(e)
(melted edge). Positive values of (j, ) are denoted by solid lines
and negative values by dashed lines.

illustrated in Fig. 3. Positive values of {j, ) are denoted
by solid lines, and negative values by dashed lines in these
figures. Figure 3(a) illustrates the case corresponding to
the density profiles of Fig. 1(a); one can see that each
electron is essentially executing a closed orbit, so that no
net current flows through the system. Figure 3(b) is the
current density for the same system parameters as in Fig.
1(e); here, we find continuous current flows along the
melted edge, but that the current on the inner side of a
melted edge runs in the opposite direction of that on the
outer side. A numerical integration of the total current
carried by the melted edge in the X direction turns out to
vanish identically, within the numerical accuracy of our
calculation. Indeed, it may be shown on general grounds
that so long as one may draw a line through the melted
edge between two points where the gradient of the elec-
tron density vanishes, the total current through the line
must vanish, so long as the ground state of the system lies
completely in the lowest Landau level.'*

Finally, it is worth noting that for values of ¥V, just
above the critical one at which the edge melts, it is rather
clear from Figs. 1 and 3 that the resulting system is
quasi-one-dimensional, in that there are single-particle
(Hartree-Fock) states with currents running in opposite
directions, some of which will be physically close to one
another on the scale of a magnetic length. It is interest-
ing to consider this as an isolated system, including the
bulk electrons only through a periodic potential to which
the edge electrons are subject. A model of this sort was
analyzed previously within mean-field theory for poten-
tials varying more slowly than those considered here.”

In a one-dimensional model, it becomes possible to go
beyond mean-field theory, and consider effects of quan-
tum fluctuations on the interacting system. In the ab-
sence of a periodic potential, fluctuations are known to
cause a breakdown of mean-field theory, leading to a sys-
tem known as a Luttinger liquid. This system, a Lut-
tinger liquid in a periodic potential, was analyzed in some
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detail recently by Kolomeisky.” It was found that as a
function of the electron-electron coupling and the prod-
uct of the linear electron density with the external poten-
tial period, there will be a phase boundary separating
pinned states from conducting states. It is interesting to
note that one may actually investigate a large range of
the phase diagram of this system using the edge melting
phenomenon: by increasing the edge potential, one in-
creases the linear (edge) electron density, and by varying
the magnetic field, one may change the scattering ampli-
tude between left-moving and right-moving states, which
effectively changes the interelectron coupling.

Thus, although the HFA approximation predicts that
the melted edge should be conducting, so that one obtains
metallic behavior right at the melting transition, we find
from the considerations of Ref. 9 that the melted edge
could be pinned at zero temperature, depending where
precisely the system ends up on the phase diagram.
However, even if this is the case, it is still possible to
detect the edge melting in a finite temperature transport
experiment: for the pinned Luttinger liquid, the conduc-
tance vanishes as a power law 77 at low temperatures,
whereas for a conventional WC the conductance is ex-
pected to vanish exponentially. We note that recent
work® on the effects of impurities on transport in the Lut-
tinger liquid leads to a similar prediction for finite tem-
perature transport. Thus, the phenomenon of edge melt-
ing allows for an experimental realization of the Lut-
tinger liquid in a periodic (and, inevitably, a disorder) po-
tential, which should have some unique and interesting
transport properties.

We now turn to our results for the collective edge
modes of the WC. In the GRPA, the collective modes
corresponding to intra-Landau-level excitations are given
by the poles of the density-density response function
Xc,clk,@). As we see from the equation of motion of y
[Eq. (36)], this function is completely determined once
the order parameters {p(G)) are known for a given value
of the confining potential. In Fig. 4, we have plotted the
dispersion relation of the first five modes obtained from
the GRPA for the density profile corresponding to Fig.

0.03

0.02 1

0.01 A

ho (units of /1)

0.00 4o e
0.00 0.06 0.70 0.15 0.20
k. (units of 2n/a,)

FIG. 4. A comparison of the dispersion relation of the five
lowest collective modes calculated in the GRPA (@) and in the
classical harmonic approximation (full lines) for the density pat-
tern of Fig. 1(a). (k,=0.0.)
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1(a); i.e., for no confining potential. These five modes are
in direct correspondence with the five classical modes of
vibration of a system with five electrons per unit cell.
There should be, of course, ten modes, for a 2D system,
but we have made the approximation of keeping only the
first Landau level in our calculation of Y, so that all the
inter-Landau-level modes are lost. As we mentioned
above, we can calculate the dispersion relation of these
five modes for a classical harmonic lattice by first calcu-
lating the equilibrium positions of the five electrons using
Eq. (45), and then solving Eq. (42) without the inertial
term. This harmonic result is represented by the full
lines in Fig. 4. The difference between the GRPA and
harmonic results are due to anharmonic and quantum
corrections (such as the deformation of the wave function
of the vibrating electrons) not included in the simple cal-
culation leading to Eq. (42). While there are some
differences, one can see that the qualitative behavior of
the various modes agree fairly well, especially in the
long-wavelength limit. (We have exploited this agree-
ment between the quantum and classical calculations to
understand the low-energy spectrum of the WC at a soft
edge in a previous publication.’) In the remainder of this
paper, we shall concentrate on the lowest-energy mode
only.

In the absence of a confining potential, we see from
Fig. 4 that the lowest mode is gapless, and for k,=0
disperses as k,./2. This result contrasts with the usual
k372 dispersion of the infinite crystal.'® The hardening of
this low-energy mode is simply a result of the restoring
force on the electrons in one direction due to the inhomo-
geneous neutralizing background. This can easily be seen
by assuming a uniform motion, ug(k)—u(k), of all the
electrons in the unit cell in the lowest-energy mode in the
small k limit. The problem of solving Eq. (42) is then re-
duced to that of diagonalizing a 2 X2 matrix and expand-
ing in powers of k (see Ref. 19). In the presence of a pin-
ning potential, we would expect from similar considera-
tions that this lowest-energy mode would exhibit a gap

] — —
0.008 1
s
0.006 1
“’O\ ]
5]
3 0.004 .
S ]
20.002 - —
0.000 Y .

107003 0.006 07009
kr (units of 2n/a,)

0.00

FIG. 5. Dispersion relation of the lowest collective mode for
normal edge [pattern of Fig. 1(a)]. The lower (upper) set of
points (@) is for w(k) in the absence (presence) of pinning. The
full lines are a fit with the expected dispersion relation at small
k (see text); i.e., square root in the absence of pinning and linear
dispersion in the presence of pinning (v, = —0.25, k, =0).
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FIG. 6. Dispersion relation of the lowest collective mode for
the melted edge [density pattern of Fig. 1(e)]: (a) without pin-
ning and (b) with pinning. The full lines are a fit with a square
root dispersion relation (v, = —0.25, k,=0).

proportional to the pinning force and would disperse
linearly with k, (at k,=0). To see that this is indeed the
case, we have plotted in Fig. 5 the dispersion relation of
the lowest-energy mode of Fig. 4 in the presence of a pin-
ning potential consisting of a single Gaussian trap at the
center of each supercell (see Sec. III). As expected, the
WC becomes an insulator in the presence of disorder,
since it takes a finite electric field to unpin the crystal and
produce a current. We have verified that a similar
behavior of the low-energy mode occurs for the other
density patterns represented in Figs. 1(b)-1(d).

The situation changes radically when the edge is melt-
ed [density pattern of Fig. 1(e)]. In that case, the disper-
sion relation of the lowest collective mode is represented
in Figs. 6(a) and 6(b). We see that there is also a gapless
mode in the absence of pinning for the melted edge.
However, this mode remains gapless when the pinning
potential is added, showing that the density wave of the
melted edge is not pinned by disorder, in contrast to the
normal edge. We believe that the presence of such a gap-
less mode may be a defining property for the edge melting
transition.

Strictly speaking, our pinning potential is periodic, so
we are not dealing with true disorder in this model.
However, this approximation for the response function in
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the presence of bulk pinning is analogous to the uniform
pinning approximations used in simple phenomenological
treatments of charge-density waves.?’ Thus, our periodic
pinning potential should be understood as a washboard
potential. Within our formalism, a more sophisticated
microscopic treatment of disorder seems to be prohibi-
tively difficult.

The dispersion relation derived above corresponds to a
superlattice of WC strips. Our aim, however, is to con-
sider the single-strip case. As we already pointed out,
this would mean taking the limit where 4 — «. Because
the number of reciprocal-lattice vectors increases very
rapidly with 4 /W, it is numerically impossible to treat
realistic values of 4 /W. In the present work, we have
set A=7V'3/2, A/W=1 and x,=V3/2. We have also
examined systems with unit cells twice as large, and
found no qualitative change in our results. Indeed, the
physical explanation of the edge melting given above is
quite general, so that melting should occur for large sys-
tems as well. For finite A /W values, we expect the
dispersion relation to show the single-strip behavior (a
low-energy mode dispersing as kV'[In(k)| in agreement
with the result for one-dimensional systems?'!) for wave
vectors in the range 1/4 <<k, <<1/W. For the above
values of 4 and W, this range is quite small. However,
our aim in this paper was to demonstrate the metal-
insulator character of the edge melting transition. It
should thus be kept in mind that if the superlattice has a
gapless mode, then so must also the single strip. This is
due to the fact that, quite generally, screening effects in a
superlattice tend to lift gapless collective modes over
what one expects in an isolated system.?? Thus, a gapless
mode in the superlattice case necessarily implies the pres-
ence of one for the single strip geometry.

VI. CONCLUSION

We have investigated the edge electronic structure for
electrons in a Wigner crystal state, and found that with
increasing confinement potential strengths, the edge elec-
trons undergo a reconstruction followed by a melting
transition. In contrast to the crystal state, the state in
which an edge has melted has a gapless collective mode,
even in the presence of bulk pinning centers, and can thus
carry a current. The edge melting transition can then be
thought of as an insulator-to-metal transition, within
mean-field theory.

Correlations beyond mean-field theory may change this
conclusion about the transport properties of the melted
edge, depending on the degree of disorder and the
strength of the coupling to the bulk WC. However, we
find that an appropriate model predicts an unusual
power-law temperature dependence for the conductivity
of this system, even if the zero-temperature state of the
melted edge is pinned. It should also be possible to probe
both the pinned and conducting states by varying the
magnetic field and/or the confining potential strength. In
any case, the edge melting transition of this system is a
unique manifestation of quantum effects in the magneti-
cally induced WC, and has many interesting experimental
consequences.
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