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Vibrational and elastic efFects of point defects in silicon
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We calculate the free energies and normal modes associated with point defects in silicon. The
dynamical matrices of a large relapsed supercell of perfect silicon and supercells containing defects
are calculated. Diagonalization gives all the vibrational frequencies, and localized defect modes
are found from the eigenvectors. The elastic eH'ect of the defects is found by a method involving
inversion of the dynamical matrices. The free energy and vibrational entropy of the defects are found
by standard statistical techniques.

I. INTRODUCTION

Calculations of vibrational frequencies within perfect
crystals is a relatively straightforward process. The peri-
odicity of the lattice reduces the size of the computation
to diagonalizations of relatively small dynamical matri-
ces, which are easily achieved on any small computer.
When a defect is introduced into a crystal, the period-
icity is lost. Therefore the symmetry properties used to
reduce the size of a calculation can no longer be used. To
model a defect, a supercell containing a large number of
atoms can be used to reduce the finite size effects that
could be caused by periodic boundary conditions used in
conventional lattice dynamics of perfect crystals. In most
cases this leads to a prohibitively large calculation.

There are several methods by which we can calcu-
late vibrational frequencies in crystals containing defects.
Since thermodynamic properties depend only on the sum
of the eigenfrequencies, they can be obtained simply from
the determinant of the dynamical matrix. This is rela-
tively simple to calculate and was originally done several
years ago. To obtain all of the eigenfrequencies is more
demanding, but was made possible by a method using
Green's functions. In this method a cell is constructed
containing the defect. An inner region around the defect
is found where there is a significant difFerence between
its matrix of force constants and that of a perfect lattice.
This relies on being able to identify such a region and so
is applicable only to point defects.

Another method is by direct calculation. A large
supercell containing the defect is relaxed into its ground
state. The large dynamical matrix is calculated and di-
agonalized. Periodic boundary conditions are used which
allow more general calculations than the Green's function
method since linear and planar defects can be simulated.
If a modern parallel or vector computer is used for the
diagonalization, the running time is no longer a signifi-
cant factor, and so this method is the one which we use
here.

In this paper, we present the results of several calcula-
tions. First, the 0 K configurations of various defect con-
figurations are determined by atomistic relaxation using
an empirical potential which has previously been shown
to give good results on the energetics of both bulk silicon

and silicon clusters. We use the Parrinello-Rahman I a-
grangian to allow the shape and size of the box to change
so that no external stresses act on the supercell. The re-
laxed positions of the atoms and the second derivative
of the potential are then used to calculate the dynami-
cal matrices for the supercells. Diagonalization gives the
vibrational frequencies and their corresponding eigenvec-
tors. A search through the eigenvectors enables us to
identify localized modes caused by the defects. A method
involving inversion of the dynamical matrix is then used
to calculate the elastic coefIicients of both the perfect and
defected crystals.

From these vibrational frequencies we calculate the
change in vibrational entropy, free energy, and ionic vi-
brational energy induced by the defects. This is done by
standard statistical methods.

We use both 216 and 512 atoms in simulations of the
perfect crystal with plus and minus one atom for the in-
terstitials and vacancy, respectively. This allows us to
compare any changes in elastic properties or energetics
of the crystal with changes in defect concentration and to
examine the importance of finite size efI'ects on formation
energies. This involves diagonalization and inversion of
up to 1539 x 1539 real dense symmetric matrices. We
have therefore written code to carry out the entire cal-
culation on the massively parallel Connection Machine
CM200 containing 16 384 processors at the Edinburgh
Parallel Computing Centre.

In Sec. II we describe the silicon model which we will
use and the potential and molecular dynamics simula-
tion used to relax the supercell. The methods by which
we calculate and diagonalize the dynamical matrix are
shown in Sec. III. The phonon density of states curves
for various defects are also calculated and localized modes
caused by the defects are found. In Sec. IV, the calcu-
lations of the elastic coefficients are described. Thermal
vibrational properties are calculated in Sec. V by statis-
tical methods.

II. MOLECULAR DYNAMICS SIMULATION

It is well known that a simple pair potential is unable
to stabilize the open diamond structure of silicon, where
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the lattice becomes unstable with respect to close-packed
structures. There have been many attempts in recent
years to formulate silicon potentials which are able to
model such diverse physical properties as phase changes,
defect motion and configuration, surfaces, amorphous
structures, etc. One of the most commonly used poten-
tials is that of Stillinger and Weber (SW). In the devel-
opment of this potential, two conditions were adopted:
first, the diamond structure is the most stable at low
pressures, and secondly, the melting point and the liq-
uid structure inferred by molecular dynamics simulations
are in good agreement with experiment. The drawbacks
with this potential, however, are that it contains nine fit-
ted parameters and also a three-body term which proves
cumbersome to implement. It also predicts that the dia-
mond structure is the stable structure at all pressures.
The present study is concerned with point defects within
a silicon diamond lattice. A recent comparative study of
silicon empirical interatomic potentials concluded that
none of the interatomic potentials considered appear to
be superior to any of the others, each with its strengths
and limitations. None were found to be totally transfer-
able, most being able to reproduce the properties that
they were fitted to, but often performing quite badly on
other aspects. We therefore consider it necessary to use a
potential that is able to reproduce structural properties
of solid states of silicon rather than those of a solid-liquid
phase transition. The potential that we have used, de-
scribed below, is able to accurately describe the structure
of small silicon clusters, whereas, for example, the SW
potential tends to overestimate the bond length in such
cases. It has also been successfully used to calculate
various structural and thermodynamic properties of the
comple~ tetrahedrally bonded ST12 and BC8 structures
in silicon where large amounts of distortion to bond
length and bond angle occur. This type of distortion and
rebonding is extremely relevant to the present study. We
therefore feel that, although other potentials have greater
merit in other applications, the potential presented in
Ref. 14 is well suited to describing the structural and
energetic properties of point defects in silicon.

This simple model based on localized electrons in co-
valent bonds not only reproduces the phase diagram and
various defect configurations, but also reduces to a sim-
ple form. ' Each atom interacts with all other atoms
with a pairwise potential. It is also bonded covalently
to four of its closest neighbors. These bonds repel each
other through a pairwise bond-bond potential, which is
represented mathematically as a repulsion between the
six possible pairs of first nearest neighbors. The form of
the potential for the ith atom is

N 4

4; =
2 ) A exp( —nr;~) —

2 ) Rr exp( —Pr, k)

+ ) ) C[cos(QJpIy) + &]
k=1 1=k+i

The i and j subscripts run over the entire crystal, while
the l and k subscripts run over the four atoms to which
the central atom i is bonded.

The first term is a repulsive term in which each atom
is a6'ected by every other atom. It is short ranged and
can be associated with the overlap of the ionic cores. The
second term represents the four covalent bonds that an
atom has to its nearest neighbors and the final term is
the repulsion arising from increased overlap between the
electrons in neighboring bonding orbitals of these four
bonds. The value of w is set such that this final term in
the potential is zero if the two bonds are at the tetrahe-
dral angle and at the relaxed length. This term is similar
in form to that used in the SW potential.

The parameters are fitted to the diamond bond length,
bulk modulus, lattice parameter, and energetics of small
silicon clusters. The parameters used in this work are
as follows: A = 208442.8, B = 16.63588, n=5.673585,
P=1.144811, C = 1.00, and su=0. 4976687. The units
are A. and eV.

A bonding arrangement has to be found to minimize
the energy of defects with this potential. For the inter-
stitial atoms, the additional atom is placed into a perfect
lattice close to the particular interstitial site to be ex-
amined. A search through the most probable bonding
configurations for one where each atom has exactly four
bonds, all bond lengths are less than a given maximum,
and there are no threefold rings is performed. Note that
bonding to an atom's four nearest neighbors is not always
a correct bonding arrangement. This is because in that
scheme if an atom i has a neighbor j, then it does not
necessarily follow that i is a neighbor of j.

For a given bonding arrangement the energy minimum
is located using a conjugate gradients routine starting
from a configuration in which all atoms are given a small
random displacement to break all symmetries. To check
the stability of such an arrangement, a simulation com-
prised of a few time steps of molecular dynamics is per-
formed and a further search for bonding configurations
performed, followed by another conjugate gradients min-
imization of any such new configuration. The tempera-
ture in the molecular dynamics (MD) is kept low so that
the interstitial configuration remains in a local minimum
of energy, otherwise it could be possible for it to trans-
form into a lower energy interstitial configuration. The
procedure for the vacancy is slightly simpler: an atom is
removed from the perfect lattice and the two pairs of dan-
gling bonds allowed to join, thus keeping all atoms four-
fold coordinated. Conjugate gradients then moves the
atomic configuration into its lowest energy state. This
iterative procedure finds the relaxed lattice structure and
most probable bonding configuration and it is that struc-
ture which is used for the lattice dynamics calculation.

Using the molecular dynamics code MOLDY, we have
performed simulations on the perfect crystal and also
cells containing a vacancy and a hexagonal and tetra-
hedral self-interstitial. This code uses the Parrinello-
Rahman method to perform constant (zero) stress
molecular dynamics within a supercell with periodic
boundary conditions. The bond search mechanism de-
scribed above allows for changes in the bonding topology
and hence for migration. We used a short time step of
1.0 fs which, combined with the Gear predictor-corrector
algorithm used in the MD, meant that the integration
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of the equations of motion was sufFiciently accurate that
although no thermostat was used, there was no drift of
temperature during the simulations. The supercells used
for the perfect crystal contain 216 and 512 atoms, with
plus and minus one atom for the interstitials and vacan-
cies, respectively. We found that the defect formation en-
ergies and volumes difI'er slightly between the two sizes of
simulation, therefore a larger cell containing 1000 atoms
for the perfect crystal was also used to check that the
defects are su%ciently well isolated in the 512 atom cell.

These defect formation volumes and energies are shown
in Table I. We find that the formation energies and vol-
umes are similar for the two larger simulations showing
that the defects are isolated for the 512 atom sized sim-
ulation. For this reason, we perform the vibrational cal-
culations on the 512 atom supercells only. The results of
the defect formation energies are in agreement with other
empirical results in that the tetrahedral interstitial is
energetically more favorable than the hexagonal intersti-
tial by more than 1.5 eV, and ab initio calculations,
showing that the tetrahedral self-interstitial has a lower
formation energy (but still slightly higher in energy than
we predict), although the result is highly dependent on
the choice of basis set. However, the ab initio calculation
divers numerically &om the covalent bond model result
for the vacancy formation energy, getting 4.4 eV for the
unrelaxed cell, reducing to 3.6 eV after symmetric relax-
ation. The authors express some doubt as to the accu-
racy of this calculation due to the importance of the long
range response to the Jahn-Teller distortion which they
were not able to calculate purely by ab initio techniques.
This is efI'ectively a finite size efI'ect and in this context
we note the strong dependence on system size exhibited
in Table I. We also note that the normal correlation be-
tween low formation volume and. low formation energy is
observed in all cases.

III. THE DYNAMICAL MAT&IX

We have written a new parallelized code for perform-
ing lattice dynamics calculations on large cells using
the CM200 computer. In describing it, we will use the
following scheme for describing the positions of atoms
within the crystal. The vectors aq, a2, and a3 define
the shape of the primitive unit cell, forming a paral-
lelipiped. The equilibrium position of the lth unit cell

TABLE I. The defect formation energies (in eV) and for-
mation volumes (in A. ) are shown as the system size is
changed. Systems I, II, and III are for 216, 512, and 1000
atoms, respectively, with plus and minus one atom for the
interstitial and vacancies in the supercell. The first three
columns show the energies; the second three show the vol-
umes.

is given by r~ ——lanai + l2a2 + l3a3 where lq, l2, and l3
are integers. Each unit cell contains N atoms labeled
by k = 1, . . . , 1V hence the equilibrium position of an
atom lk is r~A,

——r~ + ry. with respect to the origin of
the unit cell which contains the atom. Vibrations oc-
cur when the atoms are displaced from their equilibrium
position. We allow the atoms to move by an amount
u~I, = (zz „,u„,„,u„„) so that the actual position of an
atom is R)A, ——r)I, + u)I, .

Using similar notation to that of the original paper
of Born and Huang we show the method by which we
calculate the dynamical matrix. If we let p and v run
over the coordinate axes x, y, and z then the standard
method uses the following dynamical matrix:

D„„(»,) = —) e'» ('„I,, ) exp(zq. [r~ I, —r~yj
m

where

82C
@Pv QA~

~ ~i ) A: Jcl

0

(the 0 subscript indicates that the second derivative
is evaluated at the positions determined previously by
atomistic relaxation), and

(4)

We will be looking at defects in the crystal which wiH
remove the periodicity from the structure. Therefore the
entire supercell can be described by l = (0, 0, 0) only,
and k = 1, . . . , N for N atoms in the simulation. To
make a comparison we will treat the perfect crystal in
the same way. We treat the perfect lattice as one super-
lattice, which therefore has a very small Brillouin zone.
This allows us to sample only at q=O which means that
D„„(+&&,) is a real symmetric matrix. This ranges over
the same reciprocal space points allowed by that of a fully
symmetrized calculation with 64 unit cells. Thus, in ef-
fect, we are calculating the phonon frequencies of higher
valued wave vectors relative to the standard diamond cell
but without diagonalization of complex matrices. We are
then able to calculate densities of states and the displace-
ments associated with each normal mode, but unable to
associate a given phonon with its wave vector relative to
the standard unit cell. In the case of a defected lattice,
the Brillouin zone is also so small that sampling of wave
vectors other than q=O is unnecessary.

The l subscripts can be dropped and setting q=O, we
define our dynamical matrix as

where the matrix of partial second derivatives is now

Energy
II

Volume
II

024
& ra A: g k',

Hexagonal 4.20
Tetrahedral 2.52
Vacancy 2.82

4.56 4.56 -5.91
2.53 2.53 -4.82
2.15 2.14 15.24

-6.17
-4.86
16.16

-6.18
-4.86
16.17

with a similar expression for k = Iz' from Eq. (4). By
removing the sum over unit cells and carrying out the
calculation as if there is no symmetry within the super-



10 902 STEWART J. CLARK AND GRAEME J. ACKLAND
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a) Vacancy

that found experimentally, but these frequencies are in
good agreement. From examination of eigenvectors of
the low frequency modes it is found that these are bond-
bending modes and are therefore extremely sensitive to
the C parameter in the potential, but note that the same
potential is being used to give the structural energies
as well as phonon frequencies. There is no reason to ex-
pect that the frequencies arising from distortions in bond
angle described by the simple parametrization of the co-
valent bond charge potential should be related to the
energies associated with bond distortion. We predict a
cutoff frequency of phonon modes smaller than that of
experiment, but other Keating-like potentials not fit-
ted to the phonon dispersion curves often overestimate
or underestimate the TO band, for example, the SW po-
tential overestimates these frequencies by approximately
3 THz."

IV. ELASTIC CONSTANTS

b Tetrahedral Interstitial

There are several ways of calculating the elastic con-
stants of a material from knowledge of the interaction po-
tential. They can be found either from gathering statis-
tics from long MD calculations using the fluctuation for-
mula method, or directly from inversion of the ma-
trix of elastic coefFicients which can be easily calculated
from an empirical potential. The advantage of using the
MD method is that the elastic constants can be calcu-
lated at temperature and other thermodynamic averages
can be calculated simultaneously. Obviously, inverting
a 3N x 3N matrix at every time step in the simulation
of temperature is computationally prohibitive. But our
calculations are carried out at 0 K, therefore making the
latter method more effective since the dynamical matrix
has already been calculated.

A full derivation of the calculation of the elastic coef-
ficients can be found in Ref. 24. We will give here the
final results for a crystal containing many atoms in a
single primitive unit cell. The elastic coeKcients can be
calculated directly &om C„„„asfollows. We allow o.,
P, p, A, p, , and v to run over the coordinate axes x, y,
and z. Then define

C p(kk') = 4 p, „, ,

C p (kk') = —2~4 p„„,ApyI, ,

C p ~(kk') = —4vr C p„„,ApI, y A%I,k .

(7a)

(7b)

(7c)

c) Hexagonal Interstitial

FIG. 2. Line drawings of the silicon crystals showing the
localized modes. The bold lines at each atomic site show the
direction and relative magnitudes of the vibrational mode un-
der consideration. (a) shams the vacancy mhere the positions
of the atoms surrounding the defect can be seen to relax to
reduce the vacancy formation volume. There are four atoms
vibrating with large amplitude for this localized mode sur-
rounding the vacant site at the top of the diagram. (b) shows
the tetrahedral interstitial and (c) the hexagonal interstitial
where the single localized vibration of the interstitial atoms
are clearly seen, with very little motion of the surrounding
atoms.

There will be three modes that have zero frequency due
to the three translational degrees of freedom of the entire
crystal. Therefore C p(kk') will have linearly dependent
rows and columns and hence be a singular matrix. We
introduce the (3% —3) x (3% —3) matrix r ~ to be
the inverse of C p(kk') (k, k' = 2, 3. . . , N), and for con-
venience of calculation define

r'"-'(kk'), k, k' g 0
0 otherwise.

For convenience, we remove A: = 1 rows and columns
from the dynamical matrix for the inversion. The choice
of k is arbitrary and therefore can be taken to be k = 1
without loss of generality.
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TABLE II. Elastic coefficients in eV/A. for both sizes of supercells. The numbers in the parentheses are the number of
atoms in the simulation.

|"44
8

Perf (512/216)

0.9351
0.7720
0.1631
0.8264

Hex (513)

0.9434
0.7771
0.1623
0.8325

Hex (217)

0.9556
0.7843
0.1612
0.8414

Tetra (513)

0.9438
0.7773
0.1619
0.8328

Tetra (217)

0.9561
0.7855
0.1619
0.8423

Vac (511)
0.9454
0.7792
0.1624
0.8346

Vac (215)

0.9587
0.7882
0.1631
0.8450

We define the following brackets where v is the volume
of the supercell:

[nP, pA] = ) C p „(kk'),
kk'

, , -) ) r„. ) c.'. ,I~k"II
kI p~ k I I

x ) C'& „(kk"')
)

.

I III

(np, pA) =—

(gb)

provided the strain energy of the crystal is invariant
against rigid body rotations and the stresses on the crys-
tal vanish. The atomistic relaxation simulation which
relaxed the atoms into the lowest energy configuration
and periodic boundary conditions on the supercells en-
sure that these conditions are satisfied.

The elastic coefFicients can then be expressed in their
more familiar form by pairing the indices by the equiva-
lences xx ~ 1, yy ~ 2, zz ~ 3, yz, zy ~ 4, xz, zx ~ 5,
and xy, yx ~ 6.

The bulk modulus 8 (for a cubic crystal) is then

C11 + 2C12
3

Table II shows the independent elastic coefBcients for
the various crystals in the two simulations. We calculate
the entire 6 x 6 elastic matrix in both cases and find, as
expected that C11 C22 C33 ) C44 C55 C66 ) and
C12 ——C21 ——C23 ——C32 ——C13 ——C31. All other coef-
ficients are zero. The bulk modulus is higher than that
of experiment (8=0.61 eV/A. s)because the parameters of
the potential are fitted for C = 0, although the elastic
coefI1cients are sensitive to the value of C. It can be seen,
however, that the change in bulk modulus seems to be
almost independent of the type of defect under consider-
ation.

In comparison to experimental data we overestimate
Cqq (for the perfect crystal) by only 1.2% which is an
improvement on the SW potential where C11 is overes-
timated by 10%. However, the covalent bond charge
potential overestimates C12 by double whereas SW only
overestimates by 25—30%. Like the SW potential we also
underestimate the shear modulus C44 by a large amount
although SW is closer to experiment. Neither the cova-

The elastic coefIicients are then

c ~pp = [np, pA] + [pp, nA] —[pA, npj + (np, pA)

(Io)

where c is the defect concentration, LC;~ is the change
in elastic coefBcient caused by the defect, and C;~ is the
elastic coeKcient of the perfect crystal. The defect strain
polarizabilities are shown in Table III. We find that a va-
cancy causes greater stifFening of the crystal than either
of the interstitials.

V. STATISTICAL CALCULATIONS

Temperature dependence of thermodynamic quantities
can be calculated from simulations performed at a sin-

D.95—

o.a-
Q

0.85—
~A
V lh-

~A
W

0.8—
Q

U
O.i63-

N
0$

F4
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~ B~ cii~ ciR

I I I I I I I I I

0.0 0.5 1.0 i.5 2.0 2.5 3.0 3.5 4.0 4.5 5.OX&0

Defect Concentration (10 )

FIG. 3. Changes in elastic coefBcients with respect to con-
centration are shown for the hexagonal interstitial. We find
the changes in elastic coefFicients with respect to concentra-
tion, dc,~/dC, are constant. Note the change in scale for C44.

lent bond charge potential nor the SW potential were fit-
ted to elastic constants therefore it is not unusual in that
they are not in agreement with experimental results, with
the exception of C11 where our calculation is remarkably
close to that of experiment.

The elastic coefI1cients are also calculated for the
smaller supercell, allowing us to find the change in elas-
tic coefFicients with respect to concentration. The coefI1-
cients are seen to rise with concentration (Fig. 3), apart
from C44 which decreases very slightly. This is show-
ing the characteristic defect stifFening in silicon. ' From
these graphs we can calculate the defect strain polariz-
abilities which relate concentration of defect to stiKness
by

LC,
)

C ij
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Hexagonal Tetrahedral Vacancy

TABLE III. Defect strain polarizabilities o.,~ are shown
for the various defects. It can be seen that the vacancy causes
the crystal to stiR'en to a greater degree than either of the
self-interstitials.

sum of the logarithms (in the reduced units of SW) to be
4.7533 per particle, although a full free energy analysis
with temperature is not plotted. A similar calculation
with each dynamical matrix calculated from the covalent
bond charge model yields the lower value of 3.1110for the

4.55
3.39
-2 ~ 52
3.79

4.77
3.52
-3.77
3.97

5.63
4.76
-2.19
5.07

1.4—

3N —3
1

1 —exp k T

gle temperature. ' For example, free energy of a solid
can be determined from the local atomic configuration,
hence a minimization of the free energy with respect to
atomic coordinates gives both the equilibrium structure
and free energy of the solid which could contain defects.
This requires thermal statistics to be gathered in either a
MD or Monte Carlo simulation to calculate the canonical
average of a thermal quantity. A series expansion of the
partition function in configurational space for a thermo-
dynamic quantity can then yield values in the surround-
ing phase space.

We do not do this as we already have the defect con-
figuration and the phonon modes associated with such a
configuration. Thermal properties using the vibrations
within the crystal can be calculated simply from statis-
tical mechanics. Since all of the vibrational modes are
known, the partition function is calculated simply from
Bose-Einstein statistics:
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where i labels the 3N —3 nonzero vibrations allowed
within the supercell. This allows us to calculate the vi-
brational free and ionic vibrational energies and also the
vibrational entropy.

By taking the differences between the perfect crystal
and the crystals containing defects (scaled to the same
number of atoms) we can see the effects that the de-
fects have on the thermal properties. The plots of these
excess free energies, ionic vibrational energies, and en-
tropies in the harmonic approximation against temper-
ature are shown in Fig. 4. These can be compared to
Fig. 5 which shows the total vibrational free energy, ionic
vibrational energy, and entropy for the perfect crystal.
These quantities for the defected crystals are not shown
in this figure since they are indistinguishable at this scale.
We And that the tetrahedral interstitial has the highest
vibrational free energy at any temperature. We also note
that the excess vibrational free energy within a crystal
due to the defect is 1000 times smaller than that of the
defect formation energy and hence that the tetrahedral
interstitial is stable. This leads to the conclusion that
the defect formation energy for interstitials and vacancies
within a crystal in the harmonic approximation is almost
independent of temperature. The free energy of a silicon
crystal at zero pressure was found from the SW potential
by summing the logarithms of the frequencies obtained
from a 512-particle dynamical matrix. They find the
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FIG. 4. Differences in (a) vibrational free energy, (b) vi-
brational entropy, and (c) ionic vibrational energy are shown
vs temperature. The zero of each scale is taken to be the
value of that property of the perfect diamond structure at
each temperature.
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perfect crystal. This is due to the larger density of states
at the lower frequencies. The value obtained from the
SW potential is expected to be larger than that of exper-
iment since the TO bands of the dispersion relation have
significantly higher frequencies than that of experiment.
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bg

e —O. i5—

—0.25—

Calculations on the hexagonal and tetrahedral intersti-
tial and vacancy with the covalent model give (in SW
reduced units) 3.0845, 3.0872, and 3.0928, respectively.

The defect formation energies can also be found, in-
cluding the anharrnonicity, by running the molecular dy-
namics simulation described in Sec. II, including temper-
ature, over an extended period of time to collect ther-
mal averages. We ran simulations comprising the perfect
crystal with defect for 12 000 time steps of 1.0 fs which is
longer than 10 periods of the lowest frequency vibrations
(Fig. 1). This allowed us to evaluate the anharmonic
defect formation energy to within 3.0'. We find that
the defect formation energy is unchanged within a tem-
perature range of 0—1000 K. This confirms the validity of
obtaining our result using the harmonic approximation.

Finally, we calculate the configurational entropy of the
defects to give a comparison to the vibrational entropy.
The Boltzmann definition of entropy, S = k~ ln 0, where
B is the number of configurations, can be used to calcu-
late the configurational entropy per atom, after simplifi-
cation by Stirling's formula, by
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where m is the number of possible diferent defect sites
and (" is the defect concentration. The configurational en-
tropies for the three defects considered are shown in Table
IV. We find that under the harmonic approximation, the
contributions to the entropy of a crystal are given by the
configurational entropy and vibration entropy in roughly
equal proportions at nonzero temperature.

In the converged calculations the difference in intersti-
tial formation energy between tetrahedral and hexagonal
is 2.0 eV (Table I). From Fig. 5, the vibrational free
energy is not enough to transform a tetrahedral intersti-
tial to the hexagonal position. The relative stability of
the anharmonic case is tested by running molecular dy-
narnics at increasing temperature, allowing the bonding
to change throughout the simulation. We do not find
a transition from the tetrahedral to hexagonal site at
temperatures up to 1360 K and at higher temperatures
we find that the interstitial is free to move throughout
the crystal. This demonstrates that the harmonic ap-
proximation we have taken is accurate up to relatively
high temperatures. Recent work using the SW poten-
tial on self-interstitial diffusivity in silicon has found
a simple migration path for several self-interstitials over
a temperature range of 733—1473 K. In this work the
relaxation was done in a somewhat diferent way from
our MD simulations. Energy minimization was carried
out by quenching the system by a steepest descents algo-
rithm after relaxing the system by a lengthy Monte Carlo

0.0
I I I I I

100 200 300 400 500 600 700 800
Temperature (K)

TABLE IV. Configurational entropies for the large and
small supercells. The units are in 10 ev/K per defect.

FIG. 5. Plots of ionic vibrational energy, free energy, and
entropy per atom vs temperature. Only the plots for the
perfect crystal are shown since the diA'erences in the curves
for the defects are too small to be seen on this scale (see Fig.
4).

Defect

Hexagonal interstitial
Tetrahedral interstitial
Vacancy

5.377
6.572
6.321

4.635
5.831
5.575

Large supercell Small supercell
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method at 500 K with system sizes of the host crystal
ranging from 64 atoms to 512. Both calculations sug-
gest that the tetrahedral configuration is the more stable
(by 2.0 eV and 1.74 eV, respectively), but the SW for-
mation energies are both significantly larger (by about 2
eV). However, they find that a lower symmetry extended
self-interstitial has the most stable configuration of 3.66
eV. Their calculations suggest a migration mechanism
of the extended interstitial where the extra atom moves
from this low energy state to an identical one by passing
through the state of a tetrahedral interstitial, thus requir-
ing less energy than the tetrahedral-hexagonal transition
that we have calculated above. We have not examined
migration paths but concur that diffusion of the tetrahe-
dral interstitial via a path through the hexagonal state
does not occur until a much higher temperature than the
Maroudas-Brown diffusion mechanism.

VI. DISCUSSION

We have carried. out a complete analysis of the har-
monic behavior of point defects in silicon using an empiri-
cal potential. The supercell method has allowed us to cal-
culate the phonon densities of states and elastic constants
for various point defect concentrations and compare the
results by applying the same method to the perfect crys-
tal. Knowledge of the complete densities of states also
enabled us to determine the change in thermodynamic
properties of the crystal caused by the defects and com-
pare them to the configurational properties. The results
lend support to the common assumption that the two
quantities are interchangeable. The supercell method. has
also allowed us to calculate the small change in defect for-
mation energies with respect to temperature. This result
could not be obtained with comparable computational
efI'ort by running a molecular dynamics simulation and
collecting thermal averages due to the short time step
required in the simulation compared to the lowest fre-
quency vibrations, our results there were only accurate
enough to show the formation energies were not signifi-
cantly changed.

We find that the covalent bond charge potential gives a
reasonable description of many properties of point defects

in silicon, being able to predict the relative stability of the
defects and their configuration. It inaccurately describes
the values of some elastic coefficients, but does find that
defect stiffening occurs in silicon.

Analysis of the normal modes shows that some high fre-
quency modes are highly localized at the defect, whereas
the perfect crystal has no modes closely associated with
any particular atom.

The free energy of defects is dominated by the internal
energy contribution, and to a first approximation the en-
tropic and vibrational efI'ects can be ignored. Moreover
the entropy is dominated by the harmonic contribution,
and again to first order anharmonic eKects can be ig-
nored. Thus we were unable to measure any anharmonic
entropy efI'ect in the free energy of formation of point
defects.

This work has been made possible by applying stan-
dard lattice dynamics techniques on a large supercell us-
ing a massively parallel computer. The diagonalizations
take approximately 12 min and the matrix inversions 7
min on 2 processors. Only memory requirements pro-
hibit larger systems from being considered since the size
of the dynamical matrices is of order (3N) . A possi-
ble method of increasing the size of system and hence
the complexity of the defects that could be considered is
to use a large cluster of atoms without periodic bound-
ary conditions, so that the dynamical matrices become
band. matrices. Although this would add the extra com-
plication of surface modes, it would reduce the memory
requirements of the problem, scaling as K with a large
prefactor, and allow use of an algorithm for diagonaliz-
ing sparse matrices which is an order of N faster than the
Jacobi method we used to diagonalize dense matrices.
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