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The sixfold degeneracy of the 1s( A, +E+T2) ground state of substitutional group-V donors in Si,
originating from the six 6 conduction-band minima, is lifted by the valley-orbit (chemical) splitting, with
1s(E) and 1s(T~) remaining close to the effective-mass position and 1s( A &) depressed significantly. The
binding energies of 1s( 3

& ), 1s(E), and 1s(T~) are accessible to an experimental determination through
the observation of the 1s( A, ), 1s(E),1s( T2)~npo, np+ transitions in the Lyman spectrum of the neutral
donors, where the po and p+ levels are accurately described in the effective-mass theory. We have
remeasured the excitation spectrum of Si(P, As, Sb, or Bi) in the temperature range 1.8—100 K under
high resolution and signal-to-noise ratio; while only the 1s( 3, )~npo, np+ transitions are observed at
the lowest temperature, the 1s(E),1s ( T2)~npo, np+ transitions appear on thermally populating 1s (E)
and 1s(T2). In this manner we have recorded the 1s(E),1s(T2)~2p0, 2p+ transitions in Si(P, As, and
Sb) at optimum temperatures in the range 20—80 K. In Si(Sb), the transitions which originate from
1s ( T2) are doublets but not those from 1s (E). This feature arises from the inclusion of the spin-orbit in-
teraction which lifts the sixfold degeneracy of 1s(T2.I 5) resolving it into a doublet 1s(T&.I 7) and a
quadruplet 1s( T2:I 8); the latter has a smaller binding energy implying a positive value for the spin-orbit
coupling parameter. The corresponding observations in Si(Bi) reported here show the spin-orbit split-

ting of 1s( T&.l"5) in Bi and yield a binding energy of 30.1 meV for 1s(E:I8).

I. INTRODUCTION

In the effective-mass theory (EMT) of substitutional
group-V donors in the elemental semiconductors Si or
Ge, the orbital wave functions of the donor-bound elec-
tron are the hydrogenic envelope functions modulated by
the Bloch functions of the energetically equivalent
conduction-band (CB) minima. ' The theory thus au-
tomatically. endows each eigenstate of the donor electron
with a multivalley degeneracy, six for Si and four for Ge
in view of their ( 100),b„and ( 111),L, CB minima, re-
spectively. According to this model, all the group-V
donors have the same ionization energy EI for a given
host, independent of the chemical nature of the impurity.
This is contrary to the experimental facts: in Si, for ex-
ample, EI for the substitutional group-V donors ranges
from 42.74 meV for Sb to 70.98 meV for Bi whereas EMT
yields 31.27 meV. While the values of EI are indeed very
small, consistent with the hydrogenic model, the larger
values found experimentally represent a significant depar-
ture from EMT. On the basis of the hydrogenic model
one expects a Lyman spectrum arising from the 1s~np
transitions in the infrared for neutral donors; such spec-
tra are in fact observed. However, they exhibit a striking
feature: while all the group-V donors have excitation
lines with the same spacings between corresponding lines
with similar relative intensities, the entire spectrum of
one is displaced in energy with respect to that of the oth-
ers. The identity of the spacings is explained by recogniz-
ing that the p states of all the donors are accurately pre-
dicted by EMT since the p-state wave functions have
negligible amplitude at the donor site and any departure

from the screened Coulomb potential in the immediate
vicinity of the donor site has no significant effect on their
binding energies. In contrast, the s states —in particular
the 1s ground state —with large amplitudes at the donor
site experience chemical shifts dependent on the chemical
species of the donor, thus accounting for the shift of the
Lyman spectrum of a given donor with respect to that of
another. In Fig. 1 we show schematically the relevant en-
ergy levels in EMT and those for a typical substitutional
group-V donor.

The separation between 2po and 2p+ is a consequence
of the effective-mass anisotropy; it is fully accounted for
in EMT incorporating a CB with axial symmetry and the
associated effective-mass anisotropy. Since the eigen-
functions of the electronic states must conform to the
tetrahedral (Td) site symmetry of the donor, they are
classified according to its irreducible representations, as
shown on the right-hand side of Fig. 1. Thus the 2po
and 2@+ states belong to 3&+E+T2 and 2T&+2T2, re-
spectively. To the extent the spherically symmetric
Coulomb potential adequately represents the physical sit-
uation, the eigenstates belonging to different irreducible
representations are accidentally degenerate as in the case
of A „E,and T2 of 2po and the two T, 's and T2's of
2p+. In contrast, the departure from the spherically
symmetric Coulomb potential in the immediate vicinity
of the donor site lifts the sixfold degeneracy of
ls(A, +E+T2), resolving it into ls(A, ), ls(E), and
ls(T2). This decomposition is referred to in the litera-
ture as Ualley-orbit or chemical splitting. The linear corn-
binations of the wave functions are such that ls( A, )

departs from the EMT value significantly whereas ls (E)
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FIG. 1. Energy-level scheme (not to scale) of group-V
donors in Si. The letters next to the levels indicate the irreduc-
ible representations of Td, labeled according to the notation
used in Ramdas and Rodriguez (Ref. 3) as well as that in Koster
et al. (Ref. 5).

and ls(T2) remain close to it. ' In this picture the
differences in Ez for the different group-V donors arise
from the increased binding energy of ls ( A, ), the in-
crease being chemical species dependent. Introduction of
the spin of the donor electron requires a symmetry
classification based on the double valued representations
of Td, viz. , the doublets I 6 and I 7 and the quadruplet I 8

in Koster et al. The energy levels shown in Fig. 1 are
also labeled accordingly and display the spin-orbit split-
ting of the ls(T2. I 5) into ls(T2..I 7) and ls(T2.I s).
Note that for Td I

&
X I 6= I 6 and I 3 X I 6= I 8,

' hence
ls(A, :I,) and ls(E:I 3) become a doublet and a quad-
ruplet, respectively. At the lowest temperature only
ls ( A I ) is occupied by the donor electron and hence one
observes the ls(AI)~npo, np+ transitions in absorp-
tion. The spacings of the excitation lines are consequent-
ly the same for all the group-V impurities but the spectra
are displaced with respect to one another by the
differences in the binding energies of ls ( A, ).

From Fig. 1 it can be seen that ls (E), ls ( Tz )

~npo, np+ transitions can be observed by thermally po-
pulating the efFective-mass-like ls (E) and ls ( T2 ) states.
The temperature at which such transitions can be ob-
served depends on the extent to which ls ( A, ) is
depressed below ls (E) and ls ( T2 ). One must clearly
perform such experiments at temperatures suKciently
high to populate the upper 1s levels but low enough to
avoid thermal ionization as well as line broadening. For

the earlier work along these lines on group-V donors in Si
and Ge we refer the reader to Refs. 6—9.

The present work has been motivated by the significant
strides in instrumentation in the past 25 years, viz. (1) the
increased figure of merit of the detector (D '

), D ' (com-
posite Si bolometer)-2X10' cmHz'~ /W (Ref. 10) as
compared to D* (thermocouple) —10 cm Hz'~ /W; (2) a
maximum resolution of 0.0026 cm ' accessible with a
BOMEM DA. 3 Fourier transform spectrometer" (FTS)
as compared to that of a double-pass grating spectrome-
ter (0.25 cm ') used in our earlier measurements; (3) the
variable temperature cryostat' in which one can make
measurements at any desired temperature between 1.8
and 300 K as compared to the fixed bath temperatures
accessible in a glass cryostat (4.2 K for liquid He, 20 K
for liquid H~, 77 K for liquid N2, 90 K for liquid 0„195
K for dry ice and additional fixed temperatures reached
by pumping on the coolant). In addition, the multiple
rapid-scanning feature of the FTS, the convenient data
acquisition/processing as well as the ease of studying
several samples in succession without warming the cryo-
stat, have enabled high quality data to be acquired on a
reasonable time scale. An apodized resolution of
0.05 —0.5 cm ' was typically adequate in our measure-
ments and the signal-to-noise ratio was improved by
coadding each spectrum 50 times.

II. EXPERIMENTAL RESULTS
AND DISCUSSION

The Lyman spectrum of Si(P) at liquid-helium temper-
ature in the energy range from 18 to 45 meV shows the
well-known ls ( A, )~npo, np+ transitions between 34
and 45 meV (Ref. 13) whereas the energy range from 18
to 34 meV is characterized by the absence of any excita-
tion lines. In contrast, excitation lines appear in the
lower energy range with increasing intensity as the tem-
perature is increased, as can be seen from Fig. 2; they are
due to the ls(E), ls(T2)~npo, np+ transitions and their
increasing intensity with temperature is a consequence of
the increasing thermal population of ls(E} and ls(T2).
The ordering of ls (E) and ls ( T2 ) has been determined
by comparing the calculated and experimental intensities
of the transitions from these two states to a common ex-
cited state and fully confirmed by uniaxial stress mea-
surements which show that the number and positions of
the stress-induced components as well as their polariza-
tion characteristics are consistent with the ordering in
which ls (E}lies above ls ( T2 ).

Figures 3 and 4 show the excitation spectra of Si(As)
and Si(Sb), respectively, in the energy range between 18
and 30 meV. At the lowest temperatures (T-20 K for
As and T-10 K for Sb) no lines are seen. However, as in
the case of Si(P), upon raising the temperature, the
ls(E), 1s(Tz)~npo, np+ transitions appear with increas-
ing intensity. It is clearly seen that the larger the chemi-
cal shift of ls( A, ) from the EMT value, the smaller the
thermal population of ls (E) and ls ( Tz ) and consequent-
ly the larger the temperature necessary for the onset of
the transitions from ls(E) and ls(T2). Such transitions
are observed only above —30 K for Si(As) for which
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TABLE I. Observed energies of the 1s(E),1s(T2)—+2po, 2p+ transitions for the various group-V
substitutional donors in silicon. The experimental errors in the temperature and energies are +0. 1 K
and +0.01 meV, respectively.

Donor
Temperature

(K) 1s (E)—+2po

Transition energies (meV)
1s ( T2)~2po 1s (E)~2p+ 1s(T, )~2p+

P
As
Sb

Bi

EMT'

'See Ref. 4.

44.9
59.9
30.1

89.4

21.08
19.75
19.02

18.7

19.76

22.41
21.18
21.61(I 7)
21.32( I )

(r, )

20.7( I )

19.76

26.14
24.86
24.16

23.7

27.48
26.29
26.76( I 7)
26.46( I )

(r, )

25.7(I 8)
24.87

ls ( A, :I 6)~ ls (E:I s) transition. The binding energy of
ls (E:I s) thus deduced, 30.15 meV, agrees well with 30.1

meV obtained in the present work.

III. SUMMARY

The results of the present investigation are compiled in
Table I where the observed energies of the
ls (E), ls ( Tz )~2po, 2p+ transitions for the various
group-V donors in silicon and the values calculated from
EMT are compared. While there is excellent agreement
with the results obtained by us previously for Si(P, As,
and Sb), the spectra have been recorded under
significantly superior signal-to-noise (S/N) ratio, spectral
resolution, and optimum sample temperature. The
ls(E), ls(Tz)~2p~, 2p+ in Si(Bi) are reported here. The
binding energy for the upper spin-orbit split ls ( Tz.I s )

deduced from our measurements is in agreement with
that obtained from the weak ls(At) —+ls(Tz. l s) transi-
tion observed by Krag, Kleiner, and Zeiger. ' From the
present measurements and the previously unidentified
ls(A, :16)~ls(E:Is) transition of Krag, Kleiner, and
Zeiger we conclude that the binding energy of ls(E:I s)
in Si(Bi) is 30.1 meV. During the course of our investiga-
tions we have observed a typical decrease of -0.2 meV
in the transition energies of ls (E), ls ( Tz )~2p0, 2p+ as
the temperature was increased from 20 to 80 K, whereas
the transition energy of ls(A&)~npo, np+ increased
only by -0.07 meV in going from 2 to 60 K. Hence any

intercomparison between donors as well as the compar-
ison of experimental values with those predicted by EMT
must take into account this small temperature effect.
Again, an accurate measurement of these shifts with tem-
perature was facilitated by the reliable measurement of
sample temperature and the excellent S/N ratio of the
spectra shown in the figures which represent actual data
points without any averaging of the noise except that
achieved with coaddition. Another interesting tempera-
ture effect is the increase in the linewidths with increas-
ing temperature. We have observed a typical increase of
-0.5 meV in the full width at half maximum for the
ls(E), ls( Tz )~2po, 2p+ transitions between 25 and 80 K
and -0. 1 meV for the ls( A, )~npo, np+ transitions be-
tween 2 and 80 K. A systematic determination of the
linewidths and line shifts and their comparison with the
theoretical calculations of Barrie and Nishikawa' is
planned in the future. Finally, the electric dipole forbid-
den ls ( A

&
)~ ls (E ) transitions in group-V donors are al-

lowed in the electronic Raman scattering, thus comple-
menting the infrared absorption data. Such Raman lines
have been reported for Si(P, As, and Sb) (Refs. 17 and 18)
and their positions are in excellent agreement with those
deduced from absorption measurements.
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