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Effects of an external magnetic field on shallow donor levels in semiconductors
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An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germani-
um at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The
effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a

magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed
analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phos-
phorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T
is explained successfully.

I. INTRODUCTION

Since the original theoretical works' on donor states
in silicon and germanium in 1954—1955, the effective-
mass theory (EMT) of impurity states in semiconductors
is now sufficiently complete and accurate to explain in a
satisfactory way the conventional infrared excitation
spectra of shallow donors in silicon and germanium. Up
to now, the Faulkner variational method has been the
most accurate method of calculation of donor energy lev-
els in the absence of magnetic field. Shallow donor elec-
tronic states in semiconductors in the presence of the
magnetic field along the z direction have been theoretical-
ly mostly studied by different variational calculations.
For the case where the external magnetic field makes an
angle with the z direction, it is customary to assume that
only the z component of the magnetic field has an appre-
ciable effect. ' Using the perturbation method, Pajot
took into account the magnetic Hamiltonian, including
some quadratic terms and perpendicular magnetic-field
components. They obtained improved agreement for the
energy splitting of donor transitions in silicon at high
fields. However, they still neglected some terms in the
Hamiltonian. In this paper, we deal with the full magnet-
ic Hamiltonian by the Faulkner variational method.
Faulkner's model allows us to evaluate analytically all
terms in the Hamiltonian. Our results could be used
where the EMT approximation is valid.

The Zeeman effects of donor impurities in semiconduc-
tors have been frequently studied using far-infrared (FIR)
-absorption spectroscopy and have yielded important in-
formation about the electronic structure of donors. But
these experiments were limited by linewidth, due in part
to the relatively high doping concentration required by
FIR absorption and high compensation broadening. Re-
cent advances in semiconductor purification have made
possible better measurements of Zeeman spectra of shal-

low impurities in semiconductors by photothermal ion-
ization spectroscopy (PTIS). Navarro measured the Zee-
man spectra of shallow donors in ultrapure germanium
with PTIS. In previous papers, ' we reported the experi-
mental results of a photothermal ionization spectroscopy
measurement of Zeeman effects of phosphorus in ultra-
pure silicon. These experimental results are discussed
and explained in this paper.

The organization of this paper is as follow. Section II
briefly describes our experimental results. Our theoreti-
cal method is presented in Sec. III. In Sec. IV theoretical
results are applied to investigate the energy levels of
phosphorus in silicon. The magnetic-field dependence of
the absorption intensity of some spectra is explained
qualitatively by our theory. The change of spectroscopy
intensity refIects directly the mixture of donor states in
the magnetic field. The brief conclusion is presented in
Sec. V.

II. EXPERIMENT RESULTS

Our samples come from an ultrapure silicon single
crystal with phosphorus as the main residual impurity,
grown by the zone-melting technique. They are orientat-
ed by x rays, and the orientation error is less than +0.5 .
The sample dimensions are 3.5X7X8 mm and their
resistivity is 450 Q cm at room temperature. A technique
which combines ion implantation and fast lamp annealing
has been developed for preparing perfect Ohmic contacts
for ultrapure silicon at helium temperature. The sample
was mounted on the homemade sample holder and put
into the stainless-steel Dewar with He as the exchange
gas. The temperature was measured by a calibrated Ox-
ford carbon thermometer. The magnetic field was pro-
vided by an Oxford superconductor magnetic system
(S1 I/12L-40-13). The uncertainty of the magnetic field in
the sample was estimated to be (2%. The photothermal
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ionization spectra were recorded by means of a rapid-
scan Fourier-transform spectrometer, Brucker FTS-113v.
The experiment has been described in detail in Refs. 7
and 8. The spectrometer and magnetic system have been
calibrated very accurately. The experimental error aris-
ing from inaccuracies in locating the position of the pho-
toconductivity peaks is less than 0.3 cm . We estimate
that experimental errors arising from these inaccuracies
are less than 1 cm '. The typical experimental spectra
are shown in Fig. 1, where the spectra 'at different
magnetic-field strengths and different sample orientations
are demonstrated as curves a, b, and c for transitions
from the 1s ground state to excited states of the phos-
phorus shallow donor in silicon. Figure 2 presents the
Zeeman diagram that summarizes the resultant
magnetic-field dependence of the observed P-like transi-
tions of the phosphorus donor for magnetic field parallel
to the [1,0,0] direction. The full lines are drawn for visu-
al aid. The lines related with the states in different valley
are labeled with the subscripts 3 or B.

III. THEORY
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In the effective-mass approximation, the Hamiltonian
of an electron bound to a donor center and subjected to a
magnetic field B defined by a vector potential
A=(BXr)/2 can be written as

FIG. 2. The Zeeman diagram of the phosphorus donor tran-
sitions from the 1s ground state to P-like excited states in the
wave-number region from 300 to 400 cm ' for the magnetic
field along the [1,0,0] direction.
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where Ho is the effective-mass Hamiltonian of the donor
electron at zero field, and reads using a =A' a./mme as a
length unit, and R = m~e

"/2A' K as an energy unit:

with y =m ~/m l. The eigenproblem of Ho has been
solved by Faulkner via the Raleigh-Ritz approach. The
X orthonormal functions y„l are used to set up the Her-
mitian matrix
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where $„1 (x,y, z) represents the normalized hydrogenic
wave functions, g„& (x,y, z)=R„&(ar,r)YIm(e, y), and
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a& and P are adjustable parameters. The Harniltonian
matrix element ( n'l'm '!Ho!nlm ) can be expressed
analytically.

The linear and quadratic magnetic-field terms Hl and
H2 can be written with coordinate transformation
z=q, z, q, =(y/p)'",

WaVenulT(ber(elT1 ')

FIG. 1. PTI spectra of phosphorus donors in ultrapure sil-
icon in the wave-number region from 300 to 400 cm ' for (a)
B =0, (b) B =3 T and B!![1,0,0], and (c) B =3 T and B!![1,1, 1]
at temperature T =20 K and spectral resolution 0.15 cm
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where y*=fieB/2RmtC. The last term in H, has been
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neglected in previous calculations for Si:
2
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H& and H2 can be written in the spherical coordinate as
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where (r, g, y) is the position of the electron and

(B,Os, pre) is the spherical coordinate of the magnetic
field 8. We take the [1,0,0] axis as the z direction.

The H&, term will mix states of different I's but the
same (n, l) when 8 is not parallel to the z axis. The H»
term is zero when B is parallel to the z axis. It can mix
states of different values of m. When 8 lies in a (011) or
(011) plane, H2, is invariant under the inversion and ro-
tation about the z axis, and it cannot cause the interac-
tion of levels of different parity or projection of the angu-
lar momentum. H2b is equal to zero when B is parallel to
the z axis or lies in xy plane. H2, vanishes when B is

parallel to the z axis. H2b and H2, are not invariant un-

der rotation about the z axis, so that the states of different
values of m can be mixed by them. All terms in the
Hamiltonian cannot mix states of different parities.

Straightforward but tedious operations with the prop-
erties of the R„i(r) and Y& (O, g&) yield analytical expres-
sions of the Hamiltonian matrix elements

(n'l'm'~H, ~nlm ) and (n'l'm'~Hz~nlm ). They are
given in the Appendix. These formulas can be used to set
up a Hamiltonian matrix of any desired order to investi-
gate the shallow donor levels in semiconductors for
which the EMT is valid.

IV. NUMERICAL RESULTS
FOR PHOSPHORUS IN SILICON

We choose the valleys (ellipsoids) 1, 2, 3, 4, 5, and 6 in
silicon to lie along the z, z, x, x, y, and y axes, respective-
ly, and the correction among valleys is neglected for the
magnetic field along the [1,1,1] direction, i.e. , the one-
valley approximation. For the magnetic field along
[1,0,0], because only two of the six valleys have their axis
of symmetry along the field and the other four have their
symmetry axes perpendicular to the field, the energy of
the ground state is obtained by finding the one-valley en-

ergy for each of the orientations and their weighted aver-
age (weighting them by either —', or 4). The following

parameters have been used for numerical calculations of
phosphorus in silicon:

y=0. 2079, R =19.93 meV, mg:0. 1905mo

We consider up to the principal quantum number
n =5, i.e., 29 hydrogenic wave functions for the even-
parity states. For the odd-parity states, we deal with
n =2—6, i.e., 47 hydrogenic wave functions. The 29X29
and 47 X47 Hamiltonian matrixes are solved numerically.
We assume that g is independent of m, i.e., at a given
magnetic field all states of a given parity are assigned the
same value of g for simplicity. Other parameters are
a& in the wave functions R„&(a&,r) and we assume
that a&m depends on the ~m, i.e. , a&~ =a&

~

~. There-
fore, there are 13 variational parameters for these odd-
parity states, and 10 for these even-parity states. All
variational parameters are determined by an optimization
search which minimizes the sum of the energy eigenval-
ues for different magnetic-field strengths. Our parame-
ters are functions of magnetic field B, and we consider
field-dependent wave functions.

It is well known that the efFective-mass approximation
fails to predict correctly the ground-state energy of shal-
low) donor. The central-cell correction, i.e., the non-
Coulomb nature of the potential in the immediate vicini-
ty of an impurity, must be considered. ' " We add phe-
nomenologically a parameter term 5 to the diagonal ma-
trix element (1S~H~1S) and assume that the parameter
5 is independent of magnetic field. This is determined by
fitting the energy of the 2Po state at zero magnetic field.
We obtain 6= —115 cm

It is not easy to choose the P-like energy levels among
the 47 eigenvalues of odd-parity states due to the strong
mixture of electronic states at high magnetic field. We
utilize the experimental results and treat the eigenvalues
which are closest to the measurement as theoretical re-
sults.

In order to estimate errors arising from the fact that a
basis set of finite size is employed, we have investigated
how sensitive energies are to basis size. The larger the
principal quantum number, the more sensitive the energy
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FIG. 3. The comparison of the calculated magnetic-field
dependence of transitions from the 1s ground state to 2P+,
3P+, and 4P+ excited states under magnetic field along [1,0,0],
with experimental observation.
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FIG. 4. The comparison of the calculated magnetic-field
dependence of transitions from the 1s ground state to 2P+, 3Po,
and 4PO excited states under magnetic field along [1,1,1], with
experimental observation.

of the state is to basis size. For example, if we consider
up to the principal quantum number n =4 for even-
parity states, the energy change of the state with n =4
(the 4S state) is about 3% and much larger than that of
1S state. Because we are interested only in the 1S ground
state, it seems that the number of basis functions for the
even-parity state can be reduced, but n cannot be less
than 3. If we consider up to principal quantum number
n =5 for odd-parity states, the energy change of 4PO is
about 2 cm ', and that of 4P is about 2.5 cm ' at
B =0 T, and they are about 2 and 3 cm ' at B = 10 T, re-
spectively. If we increase n, energy changes in 4PO and
4P are less than 1 cm '. We can obtain more accurate
results by considering additional basis functions, but the
number of parameters increases very quickly.

We compute the P-like energy levels of phosphorus in
silicon as a function of the magnetic field along the [1,0,0]
and [1,1,1] directions and up to 10 T. A comparison be-
tween the observed and calculated values is shown in
Figs. 3 and 4. Theoretical results are in good agreement
with experimental observation. Furthermore, we obtain
a better agreement with experiment than previous calcu-
lations, because the full magnetic Hamiltonian and field-
dependent hydrogenic wave functions are treated. The
discrepancies between theory and experiment approach
the experimental error. From Figs. 3 and 4, it can be
seen that the crossing of the 2P+ line with the 3P for
the magnetic field along [1,0,0], and the prevented cross-
ing of the 2P+ line with the 3PO for the magnetic field
along [1,1,1], which have been observed in many experi-

ments, ' ' are explained satisfactorily. Pajot's perturba-
tion method applied zero-field hydrogenic wave func-
tions and obtained a qualitative agreement with experi-
mental results, but the agreement is not quantitatively so
good.

V. CONCLUSION

We extend Faulkner's method and obtain analytical ex-
pressions of full magnetic Hamiltonian matrix elements
for an electron bound to a donor center and subjected to
an external magnetic field. The improved agreement be-
tween calculated and measured results is achieved using
field-dependent hydrogenic waves. Results show that the
magnetic-field dependence of transitions from ground
states to P-like excited states of phosphorus in silicon can
be explained reasonably by the EMT approximation with
field-dependent hydrogenic waves and full magnetic
Hamiltonian terms. Our formulas can be applied to cases
where the EMT approximation is valid.
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APPENDIX

In this appendix, the Hamiltonian matrix elements for
H& and H2 are evaluated analytically, using the proper-
ties of the Rnt and Flm.

Let us define the following functions:
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The Hamiltonian matrix elements (n, l, ~mH„in', 1', m'} can be evaluated conveniently. The analytic expression of
(n, l, miH2, !n', 1', m'} for B lying in a (0, 1,1) or (0, 1, 1) plane has been given by Pajot. In what follows, we give the
other matrix elements:

(n, l, m~H2b!n', l, m+I }= +CH (n, l, m;n', l, m+1) &(1+m)(1+m +1) 1+m —1

2b 2 21+1 2l —1

l+I +2
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1
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where

C~ (n, l, m, n', 1',m+2)=+y
2c

2
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"—B sin I9II(+c os' II +i sinyII ) .
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