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Recent experimental observations of terahertz radiation produced by the ultrafast optical excitation of
surface depletion layers of GaAs and InP have generated a lot of interest but its physical origins are still
not fully understood. The source of the radiation is believed to be either the time-dependent transport
current produced by the optically generated carriers in the depletion field, or the displacement current
due to creation of polarized electron-hole pairs. We show that, in general, both mechanisms must be in-
cluded. The ultrafast optical generation in a dc field is shown to result in the creation of carriers in tran-
siently localized states that evolve into delocalized states, causing transport current in the process. By
calculating the dipole moments of these localized states, we are able to determine the time-dependent po-
larization and photocurrent including both transport and displacement contributions. We find that the
displacement contribution comes mainly from the virtual carriers while the real carriers are responsible
for the transport current. The competition between transport and displacement current leads to a non-
trivial dependence of the overall signal on the dc field strength, the excitation duration, and the detun-
ing. In particular, we predict a sign reversal of the signal at sufficiently high detunings in agreement

15 OCTOBER 1993-1

with recent experimental findings.

I. INTRODUCTION

Recently, several experimental groups have demon-
strated that the ultrafast optical excitation of bulk semi-
conductors and semiconductor microstructures subjected
to a dc electric field produces submillimeter electromag-
netic radiation.!”® There are two general mechanisms
for such electromagnetic transients. Originally,' this ra-
diation was assumed to result from the acceleration of
photoexcited carriers in the electric field in the surface
depletion region. The rapid changes in the number of
carriers, due to the ultrashort excitation pulse, should
lead to a transport photocurrent that changes rapidly in
time and emits electromagnetic radiation. However, this
explanation is incomplete since the radiation is also
present in quantum-confined structures®* where the
transport current is suppressed. In such structures, the
optical excitation causes transitions between electronic
states that are polarized by the dc field, and the creation
of electron-hole pairs in states with a nonzero dipole mo-
ment produces a displacement current proportional to
the transition rate. The changing displacement current
produces the observed radiation.

While there is no reason why the “polarized-pair” ar-
gument should not apply to the bulk case as well,*® it
faces difficulties when there are no confining barriers, as
in quantum wells, to restrict the movement of carriers
along the field. In bulk, since the stationary electron and
hole states are delocalized over the entire sample, the di-
pole moment they acquire in a dc field is proportional to
the size of the sample. This seems unphysical, but if we
place an electron-hole pair in a biased sample and wait
long enough, the electron and the hole will be pushed
against the opposite walls of the sample creating a dipole
moment proportional to its size.
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This size dependence is not an artifact and should be
present at least in the steady-state limit of Refs. 4 and 6.
However, with increasing sample size it will take carriers
increasingly longer to separate (a simple estimate shows
that it would take a few picoseconds for an e-A pair in
GaAs to cross a 1-um sample in a 1-kV/cm dc field). The
time needed to reach the steady-state limit is therefore at
least an order of magnitude greater than the excitation
duration. In addition, stationary states themselves carry
no current, so that in Refs. 4 and 6 there is never any
transport current in bulk samples which is clearly in-
correct. For the above reasons steady-state theories are
not applicable to femtosecond excitation conditions. This
applies also to the transport current calculations”?® that
use the semiclassical Boltzmann equation because the
latter does not include quantum-mechanical coherence
between electronic states that is essential at times shorter
than the relaxation time. Therefore, one has to use a
more elaborate approach to the description of carrier
transport during and immediately after the femtosecond
optical excitation.

In this paper we present a theory that can treat both
transport and displacement current within the same for-
malism. We demonstrate that to get a consistent picture
of ultrafast transport phenomena, it is necessary to con-
sider the excitation process in real time. The key element
of our approach is a full time-dependent quantum-
mechanical treatment of optical transitions. For short
pulses the transition energy is not well defined, and one
can no longer use the conventional picture of energy-
conserving interband transitions. In the presence of the
dc field, the eigenstates are no longer characterized by a
single k vector. As a result, an electron in the valence
band can be optically excited into more than one state in
the conduction band, unlike the zero-field case. The final
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state after optical excitation is then a localized wave
packet formed by a coherent superposition of delocalized
states with different energies. The dipole moment of
these wave packets can be calculated and is independent
of the sample size. Its time derivative gives both the
transport and displacement currents. To simplify our
analysis of wave-packet dynamics we mneglect the
Coulomb interaction (excitonic effects) and other relaxa-
tion processes.

The paper is organized as follows. Section II intro-
duces the Airy representation for electron states in a
semiconductor and presents a density-matrix approach to
the quantum-mechanical description of this system. In
Sec. IIT we discuss how observables such as the charge
density and the dipole moment can be calculated through
the intraband density matrix, and study several relevant
limiting cases. Section IV contains numerical results for
the dielectric polarization and its derivatives—the photo-
current and radiated signal-—along with a brief discus-
sion of their dependence on the dc field and other param-
eters of the problem. Our conclusions are given in Sec.
V.

II. DENSITY-MATRIX FORMALISM
IN THE AIRY REPRESENTATION

In this section we introduce our model and derive the
equations that govern carrier dynamics during and after
ultrafast photoexcitation in the absence of relaxation pro-
cesses. We consider an ideal direct-gap semiconductor
with two parabolic bands ¢ (conduction) and v (valence)
in a uniform stationary electric field F =eFE acting along
the x axis. Although in realistic depletion layers the field
is nonuniform and varies on the length scale of a few mi-
crometers, we will see below that the length scales
relevant for coherent carrier dynamics are typically much
shorter so that the field can be considered uniform.

A. Eigenstates in a dc electric field

Our first step will be to determine the electronic eigen-
states. In the plane perpendicular to the dc field the
eigenstates are still plane waves, and since we are not
considering any scattering processes or the Coulomb
effects, these states are completely uncoupled. However,
in the direction along the dc field the eigenstates have to
be modified. In a finite-size sample this could be done by
perturbatively correcting the plane-wave states, but we
find it more convenient to use exact eigenstates for an un-
bounded sample which can be expressed in terms of Airy
functions.® Because of the need to satisfy the boundary
conditions on the walls of the sample, our treatment will
work only when the sample size is much greater than the
characteristic period of the eigenfunctions, which im-
poses a lower limit on the dc field in our theory. We will
discuss the corresponding quantitative criteria more fully
below.

We disregard the effect of the dc field on the periodic
part of the crystal wave functions and consider only the
envelope, ¥, because the field-induced changes in the
periodic part are small as long as the dc fields are small
compared to the atomic fields. The eigenstates in the x
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direction are the solutions to the Schrodinger equation:

BJQ—+ ST Fx)p=0. (1)
Here, a=(c,v) is the band index and v is the energy ei-
genvalue. The Fourier transform of this equation,
2m & 9
—k a3 @)
#> 0k

can be integrated directly, which yields the eigenfunction
in k space:
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We can restore the real-space eigenfunction by per-
forming the inverse Fourier transform of (3):
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Note that (a) the eigenfunctions are now superpositions
of different k states and therefore do not correspond to a
distinct value of the wave vector; (b) they have an essen-
tial singularity as a function of the dc field and therefore
the field cannot be treated as a perturbation; (c) we do not
write explicitly the wave functions for the y-z plane—
they are plane waves exp(ik y +ik,z) characterized by
quantum numbers k,=(k,,k,). For a given k,, the
effective band gap will be El—E +(#*/2m, )k3, where
m,=m.m,/(m,+m,) is the reduced mass. We will con-
centrate on the behavior of quantities of interest in the
field direction and will therefore consider states with the
same fixed value of the perpendicular momentum.

At this point it is advantageous to introduce dimen-
sionless variables. We define a field-dependent unit of

length:
173
ﬁZ

W= , 5

°~ | 2m,F )
as well as units of energy and time:

o _(#e)”? _s_[2ma]”

eo=Fl,= 2m, , 7'0:8—0 I (6)

For further reference, we rewrite (5) and (6) using the pa-
rameters of GaAs (m,=0.061m,):

1,=37.3 nmXF "3 (kV/cm) ,
€0=3.73 meVXF'/3 (7)
To=167 fsX F 23,

From now on we will measure all distances, energies,
and times in units (5) and (6). In dimensionless units the
wave functions (4) become
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P (x)= T Be—7 lo Ai[ =B (x +v)] (8)
for the conduction-band electrons and
5 1/2 )
vix)=|= B,—Ai[B,(x —v)] 9)
F Iy

for the valence-band electrons (which have negative mass,
hence the sign difference). Note that the conduction- and
valence-band states with equal v have energy difference
E}. Here, B,=(m,/m,)'”> and

3

. 1 © u
Ailx)=— [“d +4
i(x) p fo u cos |ux 3 (10)

is the Airy function.” Note that for all energies v, the

eigenfunctions (8) and (9) are in fact the same function
shifted along the x axis by an appropriate amount. Thus,
the energy dependence of the wave functions corresponds
to a shift in space.

It is easily verified that the eigenfunctions are orthogo-
nal within each band:

J dx yerous(x)= (e g =2m8(v— 1) =¥l y3)
(11)

We will also need the overlap integral of eigenfunctions
from different bands:

X35 = (1) = Cyslys ) =

1
Y ). (12)

Strictly speaking, the above-defined Airy function
eigenstates are applicable only to an unbounded sample,
because for a finite-size sample they do not strictly satisfy
the boundary conditions. In general the solution of the
Schrodinger equation (1) should be a superposition of
Ai(x) and Bi(x) (the other Airy function that diverges ex-
ponentially at positive argument).” However, for the case
where [, is much smaller than the sample size, the func-
tions Ai(x) are an excellent approximation to the exact
eigenstates because they are exponentially small at posi-
tive arguments and can be taken to be zero at one of the
walls, while at negative arguments they are oscillating
rapidly and can easily satisfy the other boundary condi-
tion as well. Since the field-dependent length [/, will ap-
proach the sample size for decreasing dc fields, our
analysis breaks down in the limit of weak dc fields, so
that we cannot formally recover linear-response results or
other weak-field properties (the formal reason is the
above-mentioned singularity of the wave functions).
However, this is more of a technical difficulty rather than
a real limitation, because, e.g., for a 1-um sample the con-
dition L >>1, is satisfied for dc fields greater than 0.1
V/cm. Since typical depletion fields are in the kV/cm
range, our analysis should work well for relevant experi-
mental situations.

B. Density matrix in a dc electric field

Now we can define the density matrix using the states
(8) and (9) as a basis. Let al, (¢) and a,,(¢) denote the
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Heisenberg operators that create and annihilate electrons
in an eigenstate v of the band a. The density matrix
(DM) is defined as

N (am, t)am(t)>

( acvack ) ( ajvau}» )

<al;rvack> <a:vauk)

Ny P
(13)

14 X‘V ”3}» aff ’
where ( ) denotes the statistical average over the current
nonequilibrium state of the system.

Note that p,, is not the density of holes but the inter-
band component of the DM which describes the coher-
ence between states A and v from different bands and is
related to the optical polarization.!®!! The intraband
components nf, describe correlations between different
eigenstates A,v within the same band and have no classi-
cal equivalent except for n *(A=v), which is just the num-
ber of particles in the state A (note that n3, is the number
of valence band electrons rather than holes, cf. Eq. (33)
below).

C. Equation of motion for the density matrix

The density matrix obeys the general equation of
motion

%ﬁ [A,N]) (14)

where the square brackets denote matrix commutator.
The Hamiltonian in (14) has the following form for the
system without interactions:

A=3 epalzan (15)
ak
where
# #
£ = 2 g, = 2 (16)

are the energies of the corresponding eigenstates. Taking
the commutator in (14), we get the following equation for
the free-electron DM:

N
3 =i(e,,—€g)N® . (17)
Introducing the energy matrix
e=ef=e.,8% (18)
we can rewrite (17) in matrix form:
NP
Vngf N erf=—i[N,e], (19)

which proves to be more convenient for incorporating the
interaction with the optical field.!°

To take account of the optical excitation, we write the
Hamiltonian that couples the electrons to the optical field
E (¢) within the dipole approximation:
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fjopt: —E(t)yd=—E (1) S d%a L A, - (20) the polarization. The quantity in the curly brackets in

afvA

Here, d is the dipole moment operator. Neglecting intra-
band optical transitions, we can express the dipole matrix
element as

0 uuXm
HyeXyi O

with u being the interband matrix element, and Y is the
overlap factor (12). It is important to note that the dc
field breaks the wave-vector selection rule for interband
transitions. The overlap integral (12) does not have a -
function structure (of course in the y-z plane the wave-
vector selection rule still works). This means that inter-
band light couples a given valence-band state to the whole
conduction band, making the situation very different from
the two-level system picture'! of the zero-field case.

Because the interaction Hamiltonian (20) contains only
pairs of second-quantization operators, the commutator
in the equation of motion (14) can be taken exactly. To
account for the effect of the optical field on the DM evo-
lution, we only need to renormalize the energy matrix in
(19) (see Ref. 10 for details):

Er=+M=cP+M%(1), 22)

a5 =

hZ

(21)

af

where we have denoted
MB()=d%®E Q) . (23)

The equation of motion basically keeps the form (19) in
the presence of an optical field:

NG
ar

—i[N,éx]
=i(eq,—ep)NB—i 3 (NIMIEF—MINTF} .
rp

(24)

This is a generalization of the optical Bloch equa-
tions'®!! to include a dc electric field. Using the expres-
sion for M, Eq. (23), we can extract from Eq. (24) the
equation for the interband DM components by setting
a=c and B=v:

ava .
o HEevTE P

Fip, E() [dp(nsxs—nt,xs) . (25)
The first term in Eq. (25) represents free oscillations of
J

the driving term is a generalized saturation term.

If we consider only the low-excitation case here, we
can simplify it by setting n, =0 and n}; =8(v—A4), since
in a nonexcited (and undoped) semiconductor we have an
empty conduction band and a full valence band without
intraband correlations. With these assumptions, Eq. (25)
becomes

apvk . . cv
at —l(Ecv—evk)pvk_'_l:u‘cuE(t)Xvk . (26)

An equation for the intraband DM can also be re-
trieved from (24) by setting a,B=c:

on,
S =ilv=nS —ing [dplp,XRE?

—X5pP i E} (27)
(we do not write out the equation for the holes since it
has similar structure). As is seen from (27), the carriers
are created due to interaction of the field with the polar-
ization (25), and because of the above-mentioned absence
of strict selection rules for the polarization the electronic
states also become correlated within each band in a finite
range of A—wv.

Equations (26) and (27) could have been obtained more
readily through time-dependent perturbation theory in
the optical field. However, the original equation (24) of
the density-matrix formalism is more general and can be
applied to the high-excitation case as well.

D. Solution for the density matrix
in the low-excitation limit

In the low-excitation limit, we can actually solve (27)
analytically. Representing the optical field as

E(t)=E,f ()", (28)
we can directly integrate (26) and get the following result:
Pua()=ip XAEoFr(t,v—A—A) . (29)

Here A=w—E;=w—E, —#’k}/2m, is the detuning, and
Fy is the retarded Fourier transform of the pulse en-
velope defined as

Frt,Q)=ro [° drf(t+7)e™i. (30)

Substituting (29) for polarization in (27), we directly in-
tegrate the resulting differential equation, which gives,
after some algebra, the following expression for the intra-
band density matrix:

np(0=pq, [2E37, [ wdt’f(t')ei‘}‘_"’["“]fdp)(i';,x;’,ﬁ,{F}‘(t’, [A—p]l—A)+Fr(t',[v—p]—A)} . 31)

Equation (31) makes it clear that intraband DM depends only on the difference of its energy arguments, A —v, so that
we can set A=0 and consider n§, (¢) the function of the energy difference v. Substituting (12) for s in (31), we arrive at

mg |/"’cu|

né(t,v)=
w2 H? F

I oF o
—z-gf_twdt’f(t’)e”’["’]x [ dp Al(—p)Ai(—v—p){FA(t',p— D)+ F(t',p+v—2A0)) . (32)
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Finally, by similar steps we get the following results for
the density matrix of the holes:

h —s —
no =0, ”f’x—"i—A,A—A’ (33)

which indicates that the hole states v— A,A— A are corre-
lated in exactly the same way as states v, A in the conduc-
tion band. The reasons for this can be seen in Fig. 1. Op-
tical excitation with the photon energy ﬁa)ZEgl—i-A cou-
ples a given conduction-band state to a state in the
valence band that has matching energy eigenvalue; ac-
cording to the expressions (8) and (9) for the eigenfunc-
tions, the excess energy A shifts the valence-band eigen-
state by A /F along the dc field.

Equation (32) is the main result of this section, and
below we will consider it in more detail. Let us first ex-
amine more closely the inner integral in (32), assuming A
to be positive (see Fig. 2). The quantity in curly brackets
there generally consists of two identical peaks (30) cen-
tered around p=A and p=A+v, with the width of the
order of the inverse pulse duration, 7, 1. These peaks are
multiplied by. the product of two Airy functions, which
for large p can be replaced by the asymptotic expression’

|

Ail( —p)zfﬂp z

sin [2p3/2+ R (34)

The combination of Airy functions entering (32) can
therefore be approximately represented as

Ai(—p)Ai(—p—v)=

(cos[vV/p]—sin[£p*2]) .

1-

27
(35)

Around p=A this product will have a fast-oscillating
component represented by the second term in (35) along
with a regular part (the first term) which at v—0 does
not oscillate at all. If the width of the Fourier transforms
Fp in (32) is small compared to the period of these fast
oscillations (i.e., if T, >> 47V'A), we can regard them as &
functions and Eq. (32) reduces to

nt,v)=Co(AIX—A) [ 1 ar'fHe) (36)

[where C stands for the prefactor in Eq. (32)].

Conduction band
AF

=

Valence band

\

\%

)

FIG. 1. Optical excitation with the photon energy
#iwo=E, + A couples the state A in the conduction band to the
state v in the valence band, so that the coordinate space for the
holes is shifted by A /F along the dc field.
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After integration over A (i.e., over k;, see Sec. IV) this
reduces to the classic Franz-Keldysh result for the opti-
cal absorption in electric field.” Thus, very long pulses
create carriers in Airy eigenstates with no correlations be-
tween neighboring states. However, according to (7), in
realistic dc fields the above condition means that the
pulse has to be longer than a few tens of picoseconds to
be considered ‘““very long” in this sense. Therefore, al-
though we correctly recover the steady-state theory, it is
not applicable to femtosecond excitation conditions.

As the excitation pulse becomes shorter, the peaks in
curly brackets of (32) grow wider, and at 7, ~47V A the
fast oscillations in (35) will be integrated out [this situa-
tion is illustrated in Fig. 2(a)]. Assuming that the pulse is
still long enough (7, >>27/A), and making use of (35)
and (30), one can get the following approximation for the
intraband DM:

ivt —
nc(t,v)z Ce_ COS(V‘/K)e—i(vlvi/M/A)

VA

sl

e M (37)

Ai(p )Ai(p+v)

Negative A

FIG. 2. The structure of the inner integral in Eq. (32). (a)
Positive detuning: the Fourier transforms (30) are peaked at
p=A and p=A+v where the product of the Airy functions is
oscillating according to (35). (b) Negative detuning: the prod-
uct of Airy functions is exponentially small in the region where
the Fourier transforms are peaked, so that the integral is deter-
mined by the overlap of the power-law tails (40) with the Airy
functions at positive p.
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The time integral in (37) has a finite width as a function
of v, indicating that the final states are correlated within
an energy range of the order of the inverse pulse dura-
tion. Physically this reflects the requirements of the
time-energy uncertainty principle. Note that within this
range the DM is an oscillatory function of v, and the fre-
quency of oscillations grows with time. To lowest order
in v, the product of the cosine and the exponential in (37)
produces oscillations with frequencies V' A+t¢.

This oscillatory behavior is illustrated in Fig. 3(a),
where we plot the real part of the density matrix (32) as a
function of the energy v and time ¢ (since it is even in v,
only the negative part is plotted). Figure 3 is obtained by
numerical evaluation of Eq. (32) assuming Gaussian pulse
shape for the excitation:

2

7

|

f(t)=exp (38)

[note that the full width at half maximum (FWHM) of
such a pulse is 1.6657,.] Figure 3(b) displays the Fourier
transform in energy of the density matrix:

nn,6)= [dvns,v)e (39)

versus the argument £ and time. As is seen from Fig.
3(b), initially the DM oscillates with a single frequency
VA as a function of energy, and then at positive times ac-
quires a two-mode structure with frequencies V'A+t that
is consistent with our analysis of the asymptotic expres-
sion (37).

The other interesting limiting case is for large negative
A’s. In this case the photons do not have enough energy
to cross the band gap. One would expect that at negative
detunings there will be no carriers in the bands. Howev-
er, this is true only after the excitation pulse is over (pro-
vided there is no scattering). In fact, excitation below the
band gap creates a transient population of carriers that
lasts only as long as the excitation pulse.!? Such carriers
are usually referred to as “‘virtual carriers” as opposed to
“real carriers” at positive detunings that stay in the
bands after the pulse is over.

The concept of virtual carriers can be conveniently ex-
pressed in terms of the density-matrix formalism. Con-
sider the density matrix, Eq. (32), at large negative detun-
ings [Fig. 2(b)]. In this case the pulse Fourier transforms
in curly brackets will be centered at large negative p
where the product of Airy functions in (32) is exponen-
tially small. The region p=~A (that gave the greatest con-
tribution at positive detunings) will now give an exponen-
tially small contribution to the integral over p (i.e., over

[ dp Ai(—p)Ai(—v—p)(F(t',p—A)+Fg(t',p+v—A)} = [ dp Ai —p)Ai(—v—p)l
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FIG. 3. (a) Intraband density matrix (32) for dimensionless
A=10 and dimensionless pulse duration 7,=1. It is about 27
wide as a function of energy, and the oscillatory pattern is well
described by the asymptotic formula (37); (b) Fourier transform
(39) of the density matrix (a). One sees that after the excitation
there are two dominant oscillation frequencies.

the final states). However, the integral itself will not be
exponentially small, since the Fourier transforms (30)
have slowly decreasing “tails” at large p, and the integral
is dominated by the overlap of the power-law tails with
the Airy functions.

The retarded Fourier transform (30) decreases so slow-
ly at large frequencies because it can be viewed as the
usual (from minus to plus infinity) Fourier transform of
f(2")6(r —t'), which is discontinuous at t =¢'. At large
frequencies this discontinuity dominates the integral (30).
We can write an asymptotic expression:

_ iy Ldr@

FR(t’Q)‘Qﬁw Q Qz dt

(40)

The inner integral in (32) reduces in this case to the
simple form

2fl(tl)
(p—A)?

PPN
+if (¢ )(p—A)z ]

(p—A) (p—A)?

e 1 2f°(t") | e v
~f0 deV\/ECOS(v‘/;){———Z +if (') } 41

[the integral over negative arguments is neglected since the Airy functions are negligible there, and the product of Airy
functions is replaced by (35) at positive arguments]. The real part of (41) can be evaluated:
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1 df(t dp cos(wWp) _ 1 df(t') VTA e~ vIVTAl
T fo \/p (p— A)? 2|A1372  dt’ [1+]v[V]Alle ) (42)

As a function of v, the expression (42) is peaked at
v=0 with the characteristic width 1/V'|A| << Tps SO We
can set v=0 in the exponent when evaluating the time in-
tegral in (32). Taking advantage of the fact that the in-
tegrand is proportional to 2f(¢')f'(t')=d(f*(¢t'))/dt, we
obtain for the density matrix (32)

C 1
I |A|3/2f2(t)

X[1+|v[VTA]le™

Equation (43) clearly shows that the virtual carrier popu-
lation adiabatically follows the instantaneous value of the
excitation intensity (in contrast to real carriers whose
number is proportional to the time integral of the intensi-
ty), so that the virtual carriers disappear after the excita-
tion.

Later on, we will also need the Fourier-transformed
DM (39):

Ren®(t,v)y_, _ =

MVISL L 43)

c — 2 _ _l_____
nt,E)s, —=Cf (t)(|A|+§2)2 . (44)

In Fig. 4 we plot the time-dependent density matrix for
A= —10 which is obtained by direct numerical evalua-
tion of (32). Figure 4 is in good agreement with the
asymptotic result (43).

According to (43), at large negative detunings there is a
transient population of virtual carriers proportional to
|A| 1% [note that the number of carriers is given by (43)
at v=0], which follows the square of the excitation en-
velope. As a function of v, the width of the density ma-
trix for virtual carriers decreases as |A| ™3, which means
that far from the gap virtual carriers become uncorrelat-
ed. We will examine the implications of this behavior in
the next section.

Thus, in this section we have demonstrated that ul-
trafast optical excitation in a dc electric field not only
creates carries in the bands, but also makes carriers in
different states correlated within each band. In the next
section we will explore the role these intraband correla-
tions can play in free-electron transport.

(arb. units)

a
o
(=}
S
D)

2%
0

FIG. 4. Intraband density matrix for virtual carriers
(A=—10and 7,=1).

III. CALCULATION OF THE CHARGE DENSITY
AND OTHER OBSERVABLE QUANTITIES

Once the DM is known, we can calculate various ob-
servable quantities such as charge and current densities.

A. Charge density

The simplest of observable quantities is particle densi-
ty, which in terms of the field operators is defined as

P(x)={y (x)(x)) . 45)

In the basis of the Airy states (8) and (9) the field
operators have the form

=3 PAx)u%x)al, (1), (46)

where u “ is the periodic part of the Bloch wave functions
for band «a in the zone center, and the eigenfunctions ¢/
and the operators a , have been defined in Egs. (8), (9),
and (13), respectlvely Inserting this into (45), we obtain
the relation between the particle density and the DM
(13):

P(x)=3 ) E(x)ux)uf(x)al, (ag (1)
affAv
=3 YAOO)WE () u X x)uB(x )N (¢) . 47)
apBiv

The sum over the band indices in (47) contains two in-
terband terms whose contribution to the overall charge
density will oscillate with interband frequency in time [cf.
Eq. (16)]; this contribution leads to the interband current
that interacts with the optical field. However, over times
longer than the inverse band gap (about 0.5 fs for GaAs)
the interband terms will average to zero. Since we are in-
terested in quantities that vary in time on a much longer
time scale of the excitation envelope (typically 100 fs), we

can safely leave the interband terms out of (47). Thus,
the electron density will read
P(x)= o)i(x)n s (1), (48)

aiv

where we have replaced the product of Bloch functions
from the same band by unity that is equivalent to unit-
cell averaging. Converting to the hole density matrix ac-
cording to (33), we get

P(x)= zw (x)? +2nk(t)¢ En (Y

(49)

The first term here represents the charge density of the
filled valence band and is compensated by the positive ion
background. It is important to note that the intraband
terms contain off-diagonal (in A, v) elements of the DM.
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Thus, to describe the spatial distribution of particles, we
need to know not only the number of particles in each
eigenstate (A=v), but also the correlations between
different eigenstates.

Consider the conduction-band term in more detail:

PUx)=3 nt A—vISP(x)= S ps(x,1) (50)
Av A
where we have introduced
(51)

P(x, ) =3 n(t, Y5 (x) 3 {5 4, () + 95 (x)}
"

(the symmetrization is introduced to ensure that this
quantity is real). This way we have expressed the total
particle density as a sum over energy A of a set of func-
tions p§(x,t) (51) that depend on both coordinate and en-
ergy. The quantity (51) is the Wigner function in
coordinate-energy representation instead of a more com-
mon coordinate-momentum one'® (we cannot use the
momentum representation because the momentum is no
longer a valid quantum number). Its basic property is
that the integral over one of its arguments gives the dis-
tribution function in the other argument. The energy in-
tegral (50) gives the distribution of electrons in space,
while integrating (51) over the coordinate yields

J

phx, )= n (6, () L { W) 4 (x) ) (x)}
n

=3 n P AP s s () F P a (%)
n

A
F

1

A1l [_a
2 F

h
¢k+n

:Enc(t’n)'»bk
n

[the last line of (54) follows from Eq. (33)]. This demon-
strates that, for the holes, the coordinate space is shifted
by A /F against the field, cf. Fig. 1.

By using the density matrix we have plotted in Fig. 3,
we can evaluate the Wigner functions (51) and (54) for
positive detunings. Figure 5(a) displays the time evolu-
tion of the electron Wigner function (51) for the case of
optical excitation well above the band edge (A=10). The
pulse duration is set equal to unity in dimensionless units
(5) and (6).

This particular example can be described in purely
semiclassic terms. For a given k, and a given A, the exci-
tation can be expected to produce an equal number of
electrons with the velocities v, =+1/2A /m, correspond-
ing to the excess kinetic energy. As is seen in Fig. 5(a),
the localized electronic wave packet created by the opti-
cal excitation indeed breaks up into a pair of “particles”
that move in opposite directions. One of them is ac-
celerated in the field (and moves out of the frame at later
times), while the other decelerates, turns around at the
turning point x =0, and starts accelerating. Note that in

+yi_,
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[ dx p§(x)=3 nc(t,)L [fa’x[ P500Y§ 4 (x)
n

F Y55, (x)] J

=3 nt,m)278(n)=2mwn(t,(A—v)=0) ,
n

(52)

which is the number of particles in a given energy state
[we have used the orthogonality of the Airy eigenstates
1nj.

The translational invariance of the problem manifests
itself in the fact that changing all energies by a fixed
amount o is equivalent to shifting the coordinate by o /F.
Because the basis functions (8) and (9) possess this prop-
erty, the energy dependence of the Wigner function (51)
also reduces to a trivial translation in space:

x—Z (53)

Pi+o(X)=pj F

Owing to this translational invariance, we need to
know only one function p(x,A=0) to have a comprehen-
sive description of electron distribution.

In the same way we can introduce the Wigner function
for the holes that are connected to the electrons by the
optical transition:

A
x —=
F

—

] (54)

[

addition to the semiclassical particlelike motion we are
now able to describe also the size, shape, and location of
the electronic wave packets.

This breaking of the initial distribution into two wave
packets is closely related to the two-mode behavior of the
Fourier-transformed density matrix shown in Fig. 3(b).
To demonstrate this, let us rewrite the combination of
eigenfunctions that enters (51) in terms of Airy functions
(8):

Y=o {64, (x) T %5 (%)}
32

loygg

Ai(—B.x){ Ai(—B.[x —v])
+AI(—B.[x +v])} . (55)

Using the asymptotic expansion (38), for x >>1 and
|v| <<x we can express (55) as

15— o) (B0 () + 5 (x))

2
~ B Ai¥(—B, x)cos(vB. V' B.x ),

7Tlo€o

(56)
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so that the Wigner function in this approximation reads
2
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Fourier-transformed DM (39). The two peaks at
E=V'A+t in the latter quantity give rise to two “parti-

px,t)= %Aiz( “ch)fdvn z(t,v)eA[VB“/B_"; cles” localized at
Tig
28, ¢ T X, = (A+2VEA+1?)
=—=AiX(—B.x)n(t,E=B.V B.x ) . (57) +7 3 At
7TIO BC
Thus, the Wigner function in the above (semiclassic) m, A A M, 172 F 2
limit is just the square of the eigenfunction modulated by = Fit —_— +— EX (58)
an envelope that reproduces the time dependence of the Me my Me Me
(a) Wigner function (b) Wigner function
for electrons for the holes
W —_aml
,/\/\A, — ,wa\
% o WMW\
-
[ —— M
W, o
A |
I I I I I ]
0 20 40 0 20 40
Coordinate x (field units) Coordinate x ( field units )
(c) Charge .
distribution
I f I
0 20 40
Coordinate x ( field units )

FIG. 5. (a) Wigner function for electrons (51) at different times during the excitation ranging from —1 (bottom trace) to 7 (top)

pulse durations. Excitation parameters are the same as in Fig. 3. Electrons are created by light as localized wave packets that later
break up into two particles going in opposite directions. (b) Wigner function (54) for the holes. Note that there are regions where it
goes negative. (c) Charge density (59). Since electrons and holes are created basically around the same point in space, initially there

seems to be no net dipole moment.
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[we have switched over to dimensional units according to
(5) and (6)].

The meaning of (58) is quite transparent: the light
creates electrons at a distance (m,/m_.)(A/F) from the
turning point with initial velocities given by the factor be-
side ¢ in (58) (which is just enough for the particle going
against the field to reach the turning point), and then
both particles move with the acceleration F/m_, just as
one would expect semiclassically. It is interesting to note
that the holes are initially localized around
A/F—(m,/my)A/F =(A/F)m,/m,). This is exactly
where the electrons are created. Thus, the A /F shift in
the coordinate space of the holes [Eq. (54)] does not mean
that electron and hole wave packets are separated by this
distance; instead, for the real carriers our analysis corro-
borates the intuitive assumption that both electrons and
holes have to be created at the same point in space.

As the duration of the excitation pulse increases, the
Fourier-transformed DM becomes broader, so that the
wave packets in Fig. 5(a) become wider in space. Eventu-
ally, they will fill the entire sample. This corresponds to
the steady-state, cw limit of Franz-Keldysh theory.’
However, for short pulses, the transient localization evi-
dent in Fig. 5(a) will have important consequences for the
photocurrent calculation.

In Fig. 5(b) we present the time dependence of the hole
Wigner function (54). Because the holes are assumed to
be ten times heavier than electrons, the relevant range of
coordinates is no longer much greater than the energy
spread of the density matrix (said another way, to the
heavier holes the pulse effectively seems much shorter), so
the above asymptotic analysis breaks down. As a result,
it is harder to interpret Fig. 5(b) semiclassically, especial-
ly in the vicinity of the turning point. An obvious mani-
festation of the quantum nature of hole transport in this
example is the presence of negative peaks in the Wigner
function in Fig. 5(b). In semiclassics the Wigner function
can be considered a distribution function and is therefore
positive definite, which is not necessarily true in the gen-
eral quantum case. Finally, in Fig. 5(c) we plot the
charge density, defined as

Pr=o(x)=p"(x)—px) . (59)

Note that since the electron and hole distributions are
centered around the same point in space, the charge den-
sity does not seem to be polarized by the dc field. We see
that even though the polarization of extended eigenstates
is infinite (or proportional to the sample size in a finite-
size sample), the transient localization of the real carriers
causes them to have a finite (and actually rather small) di-
pole moment in this case.

The behavior of the virtual carriers turns out to be
completely different in this respect. As illustrated by Fig.
6, their pair charge density is visibly polarized: the holes
are created much further down the field than the elec-
trons, and the Wigner functions for both electrons and
holes are stretched by the dc field. Since we know the
asymptotic form of the Fourier-transformed DM in the
limit of large negative detunings (44), we can obtain an
expression for the Wigner distribution of virtual conduc-
tion electrons by making use of (57):
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Virtual carriers

t= 1.5
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t=-0.5 ,,\

t=-1.0
[ v T [ —

-20 =10 0 10 20
Coordinate x ( field units)

FIG. 6. Charge density (59) for virtual carriers. Excitation
parameters are that of Fig. 4. The carriers are visibly stretched
by the dc field and show no signs of classical motion.

2p?

PLX)s -0 = A —BX)CI (1) ‘

(IAl+B3x)*
(60)

With growing |A| the electron Wigner function becomes
increasingly delocalized and approaches the square of the
corresponding eigenfunction. Thus, the virtual carriers
differ from real carriers not only in the peculiar temporal
dependence of their density,!? but also in the way their
charge is distributed in space.

B. Dipole moment and photocurrent

We can calculate the current using its real-space
definition as a time derivative of the polarization. This
approach seems natural for the situation under study,
since here we do not have any current flowing in and out
of the sample, but instead have a redistribution of elec-
trons within the depletion layer under the action of the
laser pulse.

From the real-space point of view, the basic process is
the separation of electrons and holes in the dc field. As
charges separate, the medium acquires a dipole moment
per unit volume equal to the dielectric polarization. This
dipole moment is time dependent, and its time derivative
gives the current density.

Let us consider an interval of unit length inside the
semiconductor. We can calculate the charge distribution
over this interval by integrating pair charge density p,(x)
(59) over a finite range of A [cf. (49)] from certain A, to
Ao+ F (because the energy changes by F over a unit
length), and then determine the dipole moment of this
distribution of charges, D (t). However, since the pair
density (59) does not depend on A except for the trivial
shift in space (53), the result will simply be the dipole mo-
ment of a single pair d(¢) multiplied by the number of
states per unit interval, which is again equal to F:
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D(r)=f_+ dxxf M anpaxn
=f dxf Zdx xpy(x,t)
—f dkdk t)=Fd,_,(t) , (61)

(due to the overall neutrality of the pair, its dipole mo-
ment d, () is independent of its location in space, i.e., of
A). Note that this approach is exactly equivalent to the
usual way of calculating the polarization in conventional
dielectrics by multiplying the dipole moment of each
molecule by the number of molecules. Indeed, (61) is a
product of the dipole moment of an electron-hole pair
(““molecule”) and the number of pairs per unit length F.

If the pairs were delocalized, this calculation would
give an infinite dipole moment. For our localized pairs
the dipole moment will tend to infinity as particles
separate in the dc field, but for any finite time it will be
finite. This shows that taking the steady-state limit*$ in
fact leaves out all the essential physics of the problem,
namely, the process of creation and separation of charge
carriers during and immediately after the photoexcita-
tion.

Let us now consider the expression for the dipole mo-
ment of the pair at A=0:

dy (0= [ " "dx xp(x,)=d5(D+d (D), (62)
where we have split the pair density (59) into its electron
and hole components. Let us rewrite the dipole moment
of electrons using the representation (50):

d§ (0= [ dyxdx n(t,mys(x) X L{g5 (x

)+ (x)]
(63)

At any given 7 the integrand diverges as a function of x,
so that for an electron that occupies one of the eigen-

d°1(t)~lofdgnogz{iS(VK+t)+l6(\/7\—t)}—lofdg‘noA{%B(\/K+t)+

=(gng) X [L(VA+ 1)+ L(VA—1)?
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states the dipole moment would be infinite. However, as
we have shown, the density matrix is in fact nonzero in a
certain range of energies, so that after the integration
over 7 the oscillations in Airy functions will cancel each
other at large x, giving a finite dipole moment that results
from the above discussed transient localization of parti-
cles.

The dipole moment (63) can be conveniently expressed
through the Fourier transform (39) of the density matrix.
By using the expression (8) for the eigenfunctions along
with the integral representation (10) for the Airy func-
tion, after some algebra we get for (63)

l}
Cso(t)=E(;—fd§n‘(t,§)§2. (64)
In the same way we obtain for the hole dipole moment

I
Lom:B—‘;fdgnC(t,g)gz—loAfdgnf(z,g) . (65)
h

Thus, the pair dipole moment takes on the form
dy—o()=1y [dEn,E)E— 1A [dEn(1,E) . (66)

Note that the pair moment turns out to be independent of
the electron-hole mass ratio [we have used the definition
Ben=(m,,/m, )13 to obtain (66)].

The second integral in (66) is just 27n “(¢,7=0), which
is the total number of particles [cf. (52)], so that the
second term simply accounts for the fact that the hole
distribution is shifted by A with respect to that of the
electrons (see Fig. 1).

At positive detunings we can also make some general
statements about the first term, since we know the struc-
ture of the Fourier-transformed DM (39) [see Fig. 3(b)].
If we replace the two peaks of (39) at V' A+t by two &
functions (which is the same as assuming that the two
wave packets in Fig. 5 are very tightly localized), then the
dipole moment (66) can be estimated as

18(VA—1)}

Al=Iyn(t,n=0)t? (67)

This corresponds to a semiclassical situation when well-defined particles move in the dc field with constant acceleration.
Note that the oscillations in the DM with the frequency V'A tend to compensate the displacement contribution given by
the second term in (66). This is in line with the observation made after Eq. (58) that excitation above the band gap
creates electrons and holes around the same point in space. However, this cancellation occurs in leading order only.
The Fourier-transformed DM is not exactly a combination of two 8 functions [and it only has this two-mode structure
at sufficiently large times after the excitation; see Fig. 3(b)]. In general, in addition to the semiclassic (transport) terms
(67), the total dipole moment (66) will contain additional (displacement) terms.

To gain further insight into the evolution of the pair dipole moment (66) we have to treat it more rigorously. Using
the well-known properties of the Fourier transform, (66) can be rewritten as

2,¢
dy—o(t) =271, %7—) —An<(t,n=0) (68)
n 7n=0

The second derivative of the density matrix that enters (68) can be evaluated by differentiating the expression (32).
After some cumbersome but straightforward transformations, we arrive at the following result for d:
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2moly g, |2E3
dkzo(t)=~§°2—°——”—jp2—°— [' ar—ey2fa) [ dp Ai(—p)2ReFg (1, p—A)
t ' ’ :2 ’
+[' arf) [ dp(p—A)AiA(—p)2ReFy(t',p—A)
t ’ ’ + a ’
—tf_wdt £t [ dp A —p)2$ImFR(t ,p—A)
=C,{d,+d,+d;)} . (69)

The first term in (69) is the semiclassic result for the di-
pole moment. Indeed, let us rewrite it using (32):

d\(=1l, " dr’(:—t')zzw—a”—(’a—’t—ffo—) . a0

This expression can be easily understood in semiclassic
terms: this is the dipole moment of the classical particles
that are being created by the excitation pulse. The
derivative in (70) is the generation rate, and Eq. (70) sim-
ply means that each of the particles created between ¢’
and t'+dt’ will have gained a dipole moment /,(t —¢t')?
by the time ¢. The integral in (64) just sums up the contri-
butions of all such groups of particles created at different
times in the past.

The remaining two terms in (69) represent quantum
corrections to the classical result (70). We will refer to
them as ‘““displacement terms” to distinguish them from
the “transport” term (70).

In the next section we will study the relative impor-
tance of these terms numerically. However, for virtual
carriers we can also obtain an analytic result for the di-
pole moment either by evaluating (69), or by directly in-
tegrating the charge density (60):

. Cl,
~ 4VTA

Note that (71) decreases very slowly as the frequency is
tuned away from the band gap.

To summarize, the results of this section allow us to
calculate time-dependent density of photoexcited parti-
cles and predict the resulting changes in the dielectric po-
larization of the medium. Based on these results, in the
next section we will evaluate experimentally relevant
quantities and discuss some unusual features that arise
under femtosecond excitation conditions.

d(t)y .,

. (71)

IV. RESULTS AND DISCUSSION

In the preceding sections, we considered the behavior
of carriers for a fixed perpendicular momentum k,. How-
ever, in general, all states with different k, will contribute
to the quantities of interest, so we have to carry out the
summation over all perpendicular momenta. Because we
have neglected Coulomb effects and relaxation processes
that could couple states with different k,, this summation
is simple.

A. Density of photoexcited carriers

The first quantity we want to calculate is the total den-
sity of the photoexcited particles. This is proportional to
the optical absorption. Equation (52) states that the
number of particles occupying a given eigenstate is given
by the intraband density matrix at coincident energy ar-
guments. This quantity implicitly depends on k|, since A
is different for different perpendicular momentum states:

wid_ K

2m ° 2my

A=fiwo—E;=fo—E, — (72)
Here we define Ag=#iw — E, to be the “real” detuning.

To get the volume density of particles, we have to sum
up (52) over all eigenstates. There are F eigenstates per
unit length in the field direction, so the summation over
energy index A is performed simply by multiplying (52)
by the dc field, while the summation over perpendicular
momentum quantum numbers is, according to (72),
equivalent to integration over A:

2 [dF(A)

2m
ﬁZ

A, 2 A
= [ 0 aaFa)="2"e [ dAF(A) .

ﬁ2
(73)

Here we have switched to integration over the dimen-
sionless energy; the factor of 2 accounts for the spin.
Thus, the total number of particles is

2m A
N(t)=Fﬁ—zoeof_0 2mn(t,v=0)d A

A
=cy [ [ arrun [ dpAi(—p)
X2ReFg(t',p—A). (74)
The prefactor in (74) is given by

2
lue IPES

4¢
9 I3 9 —1.57X 10" cm 3 IF /3 |

T

mo

Cw ra

(75)

We have used GaAs parameters (m,=0.061, u,, =0.7
nm) to get the numerical factor. The numerical factors
are calculated for dc field F measured in kV/cm and the
optical intensity I in MW/cm?.

The power-law dependence of the density prefactor Cy
(75) on the dc field F does not mean that the density will
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have the same F dependence since the integrals in (74)
also implicitly depend on the dc field through our field-
dependent units of measurements (5) and (6). To see how
this implicit field dependence compensates the power-law
prefactor, let us consider (74) in the limit of long pulses,
where we can rewrite the integrals as

A
[0 [ arfn [dp Ai(—p)2ReFg(t',p—A)
~i %o 2( — t 1 p20
~— [ _daAR=n) [ drfi)

z#\/_A_Of_twdt’fz(t'). (76)

The integral of Airy function squared was taken using the
square-root asymptotics (35). In this equation A is di-
mensionless, and as the energy unit (6)
go=(#2/2m,)'*F?/? increases with growing field, dimen-
sionless detuning will decrease, so that the factor v Ay in
(76) will in fact scale with the field as F~!/3. Likewise,
the time integral also depends on the field, because with
increasing field the time unit (6) diminishes, making the
pulse longer in dimensionless units. Thus, the time in-
tegral will scale with the field as 1/7,< F?/3, so that on
the whole (75) scales with the field as F!/3, exactly com-
pensating the field dependence of the prefactor.

Figure 7 illustrates this behavior. The particle density
as a function of detuning is largely field independent, al-
though at higher fields Franz-Keldysh oscillations appear
on top of the square-root density of states. The same is
true for virtual carriers, whose density evolution is illus-
trated in Fig. 8. According to (43), for the virtual car-
riers _the integral over A in (74) will scale as
1/vV|A] /SOOCF'/3, which again cancels the field depen-
dence of the prefactor.

B. Dielectric polarization

Applying a similar treatment to our result for the di-
pole moment (69), we get the following expression for the

(=)
— T T T T T
o L F= 1 kV/cm g
— — — F=10
P N F=50
‘E o L 1
‘:rU
E
S |
>
5
g
o ]
[=]
- e ) s
-100  -50 0 50 100 150 200

Detuning (meV)

FIG. 7. Particle density (74) at ¢t =300 fs as a function of de-
tuning in different dc fields. Here and in the subsequent figures
we assume a pulse of 100-fs duration with the peak intensity of
0.1 MW/cm? and evaluate (74) numerically. Growing dc field
just redistributes spectral weight (Franz-Keldysh oscillations),
so that the density stays practically constant.
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Virtual
carriers

’/Nl,
I

FIG. 8. Time dependence of virtual carrier density obtained
by numerical evaluation of (74) at negative detunings. Note that
as the excitation frequency is tuned closer to the band gap, the
density increases sharply and does not go to zero after the pulse
is over, so that the transition from virtual to real carriers is
rather abrupt.

dielectric polarization P which is the dipole moment of a
unit volume:

8y
P(1)=Cp [ " dAWd,+d,+d;), an
where d; denote the dimensionless integrals in (69), and
2
413 | m,
CPZCNIO=—7T_ —‘hT |:u'cu|2E(2)
=9.34X1071° C/cm*IF 273 (78)

is the same prefactor (75) multiplied by the length unit /,.
As seen from Eq. (70), the first (transport) term of (77)
will scale with the field as 1/731 g, < F>/3. This gives a
linear dc field dependence with the prefactor (78). It is
instructive to rewrite (70) in dimensional units:

29N

1
Ptr(t)=?°fdt’(t—t ) ar’ N
0

— :F EPYAV)
fdt—zmo(t Rl

(79)

which makes the physical interpretation of this term
clear: it describes acceleration of classical particles in the
dc field and is therefore linear in F.

The remaining terms in the expression (69) for the pair
dipole moment have somewhat different structure that
leads to a different field dependence. Unfortunately, in
general the last two integrals in (69) can be shown to de-
pend on the particular functional form of the envelope f,
so that we are unable to derive an asymptotic expression
for these terms at positive A, although simple estimates
show them to be much smaller than the transport term
(70) for pulses with the dimensionless duration greater
than unity. However, at large negative A the integrals in
(79) can be evaluated by replacing the retarded Fourier
transform with its power-law asymptotics (40), which re-
sults in Eq. (71) for the dipole moment of virtual pairs.

Because (71) decreases only as |A| 172, the summation
over perpendicular momentum (73) will give a divergent
result. Although there are fewer and fewer virtual pairs



48 ULTRAFAST OPTICAL GENERATION OF CARRIERSIN A dc...

for high k,, the pairs become increasingly delocalized
with growing |A| [according to Eq. (60), each virtual pair
carries a dipole moment proportional to |A|]. If we im-
pose a high-8 cutoff A,, in the integral (77), the polariza-
tion caused by virtual carriers can be expressed as

C JE _
Py (==, =V B} . (80)

The divergence of this quantity is a consequence of our
simplified description of the band structure. At high k, it
can no longer be described by our simple parabolic model
with constant interband matrix element. As is often the
case with calculations of nonlinear optical susceptibili-
ties, we need to take into account the decrease in the ma-
trix element and changes in dispersion relations for the
particles as k; moves away from the zone center. Howev-
er, we can view the cutoff procedure as a way to account
for nonresonant contributions to (80) by replacing them
with a detuning-independent constant.

The cutoff may also be imposed by purely geometrical
constraints. In a finite-size sample the width of the pair
charge distribution cannot increase indefinitely, and the
maximum dipole moment per pair will be limited by the
size of the sample (in a bulk sample the cutoff distance
will be the depletion layer thickness or the absorption
length). However, recent work on conjugated polymers'*
suggests that the Coulomb attraction between the elec-
tron and the hole might be the most important factor
that limits their separation. Since the treatment of the
excitonic effects is beyond the scope of the present work,
here it seems reasonable to cut off the integral by the con-
dition that the separation between pairs (Al,, cf. Fig. 6)
does not exceed a certain critical length L. This will give
us the following expression for the virtual polarization
(80):

172

P, ()=1Cpf(1) 1£ VI (81)
0

Here we will adopt this geometrical interpretation and
consider the cutoff length as a fitting parameter. Realis-
tic values of L are of the order of a few micrometers, so
that for dc fields in kV/cm range [with the length unit (5)
of the order of a few tens of nanometers] A,, will be of
the order of a few tens (e.g., for L =1 um and F =1
kV/cm, A,, =27).

As a function of detuning, (81) is zero at A;=A,,, then
it grows as the excitation frequency approaches the band
gap, where it reaches the maximum value

L 172
Py ()=1Cpf*(1) T (82)
0

and stays practically constant at positive detunings (be-
cause for real carriers the displacement term is small).
This behavior is illustrated by Fig. 9, where we plot the
total polarization (75) and its two constituent parts:
while the transport contribution to the polarization [Fig.
9(b)] grows quadratically with time elapsed after the exci-
tation according to (74), the displacement contribution
[Fig. 9(c)] is essentially present only during the excita-
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tion, and follows the above described pattern as a func-
tion of detuning.

The most striking feature of (82) is that it depends on
the dc field in a very unexpected way. Using the expres-
sions (5) for I, and (78) for the prefactor, it is easy to see
that (82) is proportional to F 2/*F!/¢=1/v'F, which
means that the displacement contribution actually de-
creases with increasing dc field. The peak value of (82) at
t=0is
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FIG. 9. (a) Total polarization (77) for F=1 kV/cm in

nanoCoulombs/cm? for excitation parameters of Fig. 7. The
cutoff length has been set to 1 um; (b) transport contribution to
the polarization; (c) displacement contribution.
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Qualitatively, the decrease of the polarization with
growing dc field can be explained by the fact that
stronger fields will tilt the bands more, so that in absolute
units the electron-hole separation A /F decreases with the
field (cf. Fig. 1). Unlike atomic and molecular systems
where the charge separation in the dc field is limited by
the dimensions of the particles, electrons in a semicon-
ductor have an additional freedom to choose the separa-
tion distance. The dc field not only pulls the particles
apart but also restructures the electronic eigenstates, and
it turns out that for virtual carriers the net result is the
decreasing pair dipole moment with increasing field.

It is a general prediction of the perturbation theory
that in weak fields the polarization grows linearly with
the field. However, the perturbation treatment of the dc
field breaks down at very low fields. The general cri-
terion is that the magnitude of the perturbation FL
(which is the potential drop across the sample of length
L) should not exceed the interlevel spacing #2/2m,L>.
For, e.g., a 1-um sample this means that fields above 0.1
V/cm cannot be treated perturbatively. Note that this
criterion of applicability for the perturbation theory can
be rewritten as L <<l[,, which is exactly the opposite of
what is required for our approach [see the discussion
after Eq. (12)]. Therefore, at very low fields the polariza-
tion can be expected to grow linearly in the dc field with
a very large polarizability (proportional to the sample
size), and in the field range where the perturbative treat-
ment breaks down this linear growth turns into the de-
creasing dependence predicted by our nonperturbative
approach that should work as long as the dimensionless
cutoff parameter A,, =L /I, is much greater than unity.

C. Photocurrent

The unusual field dependence of the displacement term
in polarization is evident in Fig. 10, where we plot the
time derivative of the polarization (i.e., the photocurrent)
at different dc fields. For a relatively high field value of
10 kV/cm [Fig. 10(a)] the photocurrent is completely
dominated by the transport term (79)

oN
ot ’

. dP,, '
Jtr(t)=d—t‘=f_wdt'§g(t—z'> (84)
which grows linearly with time after the excitation and
follows the detuning dependence of the density (cf. Fig.
7). Note that in reality this linear growth will be eventu-
ally (at times of the order of the momentum relaxation
times that we assume to be much longer than the pulse
duration) arrested by scattering processes. The displace-
ment term is responsible for a small feature around ¢ =0
at negative detunings, but at positive detunings it is negli-
gible compared to the transport term.

Decreasing the field ten times to 1 kV/cm [Fig. 10(b)]
makes the transport term ten times smaller while the dis-
placement term grows by V10, so that they become quite
comparable. Note that the photocurrent first flows along
the field, then reverses its direction near ¢ =0, and then
flows along the field again after the transport current be-
gins to dominate at later times.

Finally, Fig. 10(c) shows an example where the dis-
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placement current dominates completely. This case ap-
proaches the limits of applicability of our analysis. At
positive times the photocurrent actually flows against the
field as virtual carriers are annihilated.

Thus, we see that as the dc field decreases, the photo-
current experiences a gradual crossover from semiclassi-
cal transport-dominated behavior to a quantum regime
where displacement current dominates. As a result, not
only does its magnitude vary nonlinearly with the field,
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FIG. 10. (a) Photocurrent at a high dc field of 10 kV/cm for
the same excitation parameters. It follows the semiclassical ex-
pression (84) very well; (b) photocurrent at a lower field cannot
be viewed as transport current alone; (c) at 0.1 kV/cm the pho-
tocurrent is completely dominated by the displacement feature.
The cutoff distance was increased from 1 to 3 um for (c), so the
field dependence of the displacement current does not quite
match Eq. (83).
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but also its temporal dependence undergoes dramatic
changes.

D. Terahertz radiation signal

To study this crossover phenomenon in more detail, let
us examine the behavior of time derivative of the photo-
current. This quantity is more relevant experimentally,
since in terahertz radiation experiments! > the signal is
believed to be proportional to the derivative of the
current.

Optical excitation produces time-dependent current in
the medium which, according to Maxwell’s equations,
should emit electromagnetic radiation. Assuming that
the excitation pulse is incident on the sample at an angle
¢, that the penetration depth z is much smaller than the
spot size S, and that the detector is located at an angle ¢
and at a distance r,, by a direct solution of Maxwell’s
equations one can get the following result for the electric
field of the radiated signal at the detector:

S S
’ 3 =
t'+ A(ﬁ} _]{t A¢

j
sing Sz
E S1)= =
("o ) 47T660C o A¢
sin 2, di(t’
~ ¢ostdJ(t) ’ (85)
¢—o, deec® ro  dt
where t'=t —ry/c and A¢=cos¢p—cosd,. At small A¢

this indeed becomes proportional to the derivative of the

current density.
: . J

d2
Etr(t)“za

P ()
which is positive and grows with A. As a result, at
sufficiently high positive detuning the transport contribu-
tion compensates the displacement one, and the signal
changes sign at # =0.

This crossover effect is illustrated in Fig. 12, where we
plot the signal versus detuning at  =0. As the dc field
grows the crossover point moves closer to the band edge.
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FIG. 12. The signal at the center of the pulse vs detuning. It
experiences a sign reversal at some critical detuning that de-
creases with the field.
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FIG. 11. The radiated signal (85) displays both transport and
displacement contributions (cutoff length is 1 pm).

For the purposes of the numerical calculations below
we have set S =3 mm, z =1 um, r,=10 cm, and e=12.3,
but since these factors are different for different experi-
mental setups, in fact this choice is intended to just give
the right order of magnitude.

Figure 11 displays the terahertz signal (85) for a
moderately strong field of 3 kV/cm versus the detuning
and time. At negative detunings only the displacement
signal caused by the virtual carriers is present, and its
temporal wave form follows the second derivative of the
excitation intensity in accordance with (80), so that it is
negative near the center of the excitation pulse. As the
detuning becomes positive, alongside this displacement
contribution there also appears a transport contribution:

£

FON_F

N(1), (86)

mo

[
Figure 13 shows how the temporal wave form evolves
with the field. At low fields the displacement signal clear-
ly prevails, then with increasing F the transport signal
gradually compensates the negative part of the curve.
Although our theory does not include a number of fac-
tors that can affect these predictions quantitatively, the
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FIG. 13. Field dependence of the temporal wave form of the
signal (85). Again the crossover from displacement to
transport-dominated behavior is evident. The transport signal
does not go to zero at later times because there are no scattering
processes in the theory.
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above described qualitative picture of competition be-
tween transport and displacement currents is quite general
and seems to be consistent with the experimentally ob-
served changes in wave forms of the signal with increased
detuning.!?

V. CONCLUSIONS

In this paper, we have considered the ultrafast pho-
toexcitation of carriers in a bulk semiconductor in a dc
electric field. Such a field will arise naturally in the sur-
face depletion region, even without an applied external
field. We have formulated a density-matrix approach
based on an Airy function representation!® that allows us
to incorporate two important features. (1) In a dc electric
field, the eigenstates are not characterized by a single k
vector. As a result, unlike the zero-field case, optical
transitions are possible between an electron in the valence
band and more than one state in the conduction band. (2)
For femtosecond pulses, the transition energy is not well
defined, and one can no longer use the conventional pic-
ture of energy-conserving interband transitions. This for-
malism allows us to treat both particle current and dis-
placement current and their respective contributions to
the radiated field.

The main results of our work can be best formulated in
the language of traditional wave-particle dilemma of
quantum mechanics: it is impossible to understand the
behavior of carries under femtosecond excitation condi-
tions assuming them to be either perfectly localized parti-
cles or completely delocalized waves. Instead, one has to
treat carriers as localized wave packets formed out of
delocalized stationary states (the Airy functions), and the
size and shape of these wave packets proves crucial to the
determination of observable quantities such as the photo-
current.

Our formalism reproduces the classical motion of the
particles in the dc field and also determines the quantum
corrections to the classical picture. Using an Airy repre-
sentation'> has enabled us to get most of our results
analytically. Our results suggest that real carriers (exci-
tation far above the band gap) behave more or less like
classical particles and are responsible for transport
current, while virtual carriers (excitation far below the
band gap) largely determine the displacement part of the
current and behave like delocalized “waves.” This
different behavior of real and virtual carriers indicates
that the conventional viewpoint!? of virtual carriers hav-
ing exactly the same properties as the real ones is inappli-
cable. We also find that there is an intermediate regime
(excitation close to the band gap) where both transport
and displacement contributions are important, so the
above statements about real and virtual carriers are true
only asymptotically (at large positive and large negative
detunings, respectively).

Within our simple two-band model we are able to cal-
culate only the resonant part of the polarization and had
to use a cutoff procedure to get rid of the contributions of
virtual carriers in states that are far from the excitation
energy. The accurate calculation of these nonresonant
contributions requires the knowledge of the full band
structure and is beyond the scope of the present work.
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The geometrical cutoff that we use here is a simple way to
resolve the divergence problem without complicating the
model but has the disadvantage of introducing a cutoff
parameter that is not very well defined.

Note that our results for the virtual carriers cannot be
viewed as a nonlinear optical polarization at zero fre-
quency induced by the optical field and the dc field
P®=x3E (w)|?F (optical rectification)*® even though
the polarization adiabatically follows the optical field, be-
cause the relevant dc fields cannot be treated perturba-
tively, and in our nonperturbative formalism the polar-
ization is not proportional to the dc field. The real car-
riers also cannot be described in the language of non-
linear optics because they do not follow the excitation
adiabatically (the concept of “dynamic nonlinearities”!?
would be more appropriate here).

In general there can be a nonlinear-optical contribu-
tion to the experimentally measured signal that is not in-
cluded in our theory. Technically, it would stem from
the distortion of periodic parts of crystal wave functions
by the dc field that was left out here because for typical
dc fields it is very small (simple estimates show that the
relative contribution to the dipole moment due to this
band-structure distortion is of the order of
uF/E,~ 107%). In noncentrosymmetric crystals like
GaAs and InP there would also be a nonzero y'?’ term
describing the optical rectification proper: a static dielec-
tric polarization adiabatically following the optical exci-
tation. This term should be independent of the dc field
and is highly anisotropic, unlike the electronic contribu-
tion that was calculated here. It is much harder to esti-
mate without the detailed knowledge of crystal wave
functions, but experiments* suggest that it is important at
least in the high-excitation regime where the depletion
field should be screened out by the huge number of pho-
tocarriers. Indeed, the orientational dependence of the
signal observed in some experiments*? is a characteristic
signature of the bulk y'?’ contribution.

Apart from this nonlinear-optical contribution, there
are also a number of other factors that should be included
in the theory before it can be quantitatively compared
with the experiments. Excitonic effects can be expected
to alter the density of states around the band gap and can
significantly change the behavior of carriers in this spec-
tral range. The inclusion of scattering processes is also
crucial to achieve the correct description of the signal at
later times (in our theory the transport signal stays con-
stant after the excitation which is unphysical). More-
over, we do not consider screening of the dc field by the
photocarriers, so that our results can be expected to work
only in the extreme low-density limit. However, we be-
lieve that the free-electron case has to be properly under-
stood before one can start incorporating these phenome-
na into the theory of transient photocurrent, and the
present work constitutes a first step in this direction.
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