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Recent experimental observations of terahertz radiation produced by the ultrafast optical excitation of
surface depletion layers of GaAs and InP have generated a lot of interest but its physical origins are still
not fully understood. The source of the radiation is believed to be either the time-dependent transport
current produced by the optically generated carriers in the depletion field, or the displacement current
due to creation of polarized electron-hole pairs. We show that, in general, both mechanisms must be in-

cluded. The ultrafast optical generation in a dc field is shown to result in the creation of carriers in tran-
siently localized states that evolve into delocalized states, causing transport current in the process. By
calculating the dipole moments of these localized states, we are able to determine the time-dependent po-
larization and photocurrent including both transport and displacement contributions. We find that the
displacement contribution comes mainly from the virtual carriers while the real carriers are responsible
for the transport current. The competition between transport and displacement current leads to a non-
trivial dependence of the overall signal on the dc field strength, the excitation duration, and the detun-

ing. In particular, we predict a sign reversal of the signal at sufticiently high detunings in agreement
with recent experimental findings.

I. INTRODUCTION

Recently, several experimental groups have demon-
strated that the ultrafast optical excitation of bulk semi-
conductors and semiconductor microstructures subjected
to a dc electric field produces submillimeter electromag-
netic radiation. ' There are two general mechanisms
for such electromagnetic transients. Originally, this ra-
diation was assumed to result from the acceleration of
photoexcited carriers in the electric field in the surface
depletion region. The rapid changes in the number of
carriers, due to the ultrashort excitation pulse, should
lead to a transport photocurrent that changes rapidly in
time and emits electromagnetic radiation. However, this
explanation is incomplete since the radiation is also
present in quantum-confined structures ' where the
transport current is suppressed. In such structures, the
optical excitation causes transitions between electronic
states that are polarized by the dc field, and the creation
of electron-hole pairs in states with a nonzero dipole mo-
ment produces a displacement current proportional to
the transition rate. The changing displacement current
produces the observed radiation.

While there is no reason why the "polarized-pair" ar-
gument should not apply to the bulk case as well, ' it
faces difhculties when there are no confining barriers, as
in quantum wells, to restrict the movement of carriers
along the field. In bulk, since the stationary electron and
hole states are delocalized over the entire sample, the di-
pole moment they acquire in a dc field is proportional to
the size of the sample. This seems unphysical, but if we
place an electron-hole pair in a biased sample and wait
long enough, the electron and the hole will be pushed
against the opposite walls of the sample creating a dipole
moment proportional to its size.

This size dependence is not an artifact and should be
present at least in the steady-state limit of Refs. 4 and 6.
However, with increasing sample size it will take carriers
increasingly longer to separate (a simple estimate shows
that it would take a few picoseconds for an e-h pair in
GaAs to cross a 1-pm sample in a 1-kV/cm dc field). The
time needed to reach the steady-state limit is therefore at
least an order of magnitude greater than the excitation
duration. In addition, stationary states themselves carry
no current, so that in Refs. 4 and 6 there is never any
transport current in bulk samples which is clearly in-
correct. For the above reasons steady-state theories are
not applicable to femtosecond excitation conditions. This
applies also to the transport current calculations ' that
use the semiclassical Boltzmann equation because the
latter does not include quantum-mechanical coherence
between electronic states that is essential at times shorter
than the relaxation time. Therefore, one has to use a
more elaborate approach to the description of carrier
transport during and immediately after the femtosecond
optical excitation.

In this paper we present a theory that can treat both
transport and displacement current within the same for-
malism. We demonstrate that to get a consistent picture
of ultrafast transport phenomena, it is necessary to con-
sider the excitation process in real time. The key element
of our approach is a full time-dependent quantum-
mechanical treatment of optical transitions. For short
pulses the transition energy is not well defined, and one
can no longer use the conventional picture of energy-
conserving interband transitions. In the presence of the
dc field, the eigenstates are no longer characterized by a
single k vector. As a result, an electron in the valence
band can be optically excited into more than one state in
the conduction band, unlike the zero-field case. The final
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state after optical excitation is then a localized wave
packet formed by a coherent superposition of delocalized
states with different energies. The dipole moment of
these wave packets can be calculated and is independent
of the sample size. Its time derivative gives both the
transport and displacement currents. To simplify our
analysis of wave-packet dynamics we neglect the
Coulomb interaction (excitonic effects) and other relaxa-
tion processes.

The paper is organized as follows. Section II intro-
duces the Airy representation for electron states in a
semiconductor and presents a density-matrix approach to
the quantum-mechanical description of this system. In
Sec. III we discuss how observables such as the charge
density and the dipole moment can be calculated through
the intraband density matrix, and study several relevant
limiting cases. Section IV contains numerical results for
the dielectric polarization and its derivatives —the photo-
current and radiated signal —along with a brief discus-
sion of their dependence on the dc field and other param-
eters of the problem. Our conclusions are given in Sec.
V.

2m 2m Fgq—k g(k)+ vp(k) =i
2

fz
(2)

can be integrated directly, which yields the eigenfunction
in k space:

1 . k . Ak
g (k)= exp . —iv —+i

&2vrF F 6m F (3)

We can restore the real-space eigenfunction by per-
forming the inverse Fourier transform of (3):

1t,(x)=f dk g (k)e

1 k . . Ak
dk exp - —iv ——ikx +i

&2~F F 6m F

direction are the solutions to the Schrodinger equation:

(j2 2m ~+ (v+Fx)/=0 .
Bx

Here, a=(c, u) is the band index and v is the energy ei-
genvalue. The Fourier transform of this equation,

II. DENSITY-MATRIX FORMALISM
IN THE AIRY REPRESENTATION

In this section we introduce our model and derive the
equations that govern carrier dynamics during and after
ultrafast photoexcitation in the absence of relaxation pro-
cesses. We consider an ideal direct-gap semiconductor
with two parabolic bands c (conduction) and u (valence)
in a uniform stationary electric field F =eE acting along
the x axis. Although in realistic depletion layers the field
is nonuniform and varies on the length scale of a few mi-
crometers, we will see below that the length scales
relevant for coherent carrier dynamics are typically much
shorter so that the field can be considered uniform.

A. Eigenstates in a dc electric 6eld

Our first step will be to determine the electronic eigen-
states. In the plane perpendicular to the dc field the
eigenstates are still plane waves, and since we are not
considering any scattering processes or the Coulomb
effects, these states are completely uncoupled. However,
in the direction along the dc field the eigenstates have to
be modified. In a finite-size sample this could be done by
perturbatively correcting the plane-wave states, but we
find it more convenient to use exact eigenstates for an un-
bounded sample which can be expressed in terms of Airy
functions. Because of the need to satisfy the boundary
conditions on the walls of the sample, our treatment will
work only when the sample size is much greater than the
characteristic period of the eigenfunctions, which im-
poses a lower limit on the dc field in our theory. We will
discuss the corresponding quantitative criteria more fully
below.

We disregard the effect of the dc field on the periodic
part of the crystal wave functions and consider only the
envelope, tP, because the field-induced changes in the
periodic part are small as long as the dc fields are small
compared to the atomic fields. The eigenstates in the x

00 v Ak
&2~F

cos. k x+- -dk .F 6m F

1/3f2

2m„F
(5)

as well as units of energy and time:

c. —=Fl =
0 0

f2F2

2mr
70—

E,0

1/3
2m„A

F2 (6)

For further reference, we rewrite (5) and (6) using the pa-
rameters of GaAs (m„=0.061 mo):

la=37. 3 nmXF '~ (kV/cm),

c0=3.73 meVXF'

&0=167 fsXF- '"
(7)

From now on we will measure all distances, energies,
and times in units (5) and (6). In dimensionless units the
wave functions (4) become

Note that (a) the eigenfunctions are now superpositions
of different k states and therefore do not correspond to a
distinct value of the wave vector; (b) they have an essen-
tial singularity as a function of the dc field and therefore
the field cannot be treated as a perturbation; (c) we do not
write explicitly the wave functions for the y-z plane—
they are plane waves exp(ik y +ik, z) characterized by
quantum numbers k~=(k, k, ). For a given k~, the
effective band gap will be E =Eg+(A' /2m„)k~, where
m„=m, m, /(m, +m„) is the reduced mass. We will con-
centrate on the behavior of quantities of interest in the
field direction and will therefore consider states with the
same fixed value of the perpendicular momentum.

At this point it is advantageous to introduce dimen-
sionless variables. We define a field-dependent unit of
length:
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1/2

@;(x)= — P, —Ai[ —P, (x +v)]2 1
(8)

Heisenberg operators that create and annihilate electrons
in an eigenstate v of the band o.. The density matrix
(DM) is defined as

for the conduction-band electrons and
1/2

g;(x) = — P, —Ai[P, (x —v)]
2 1

(9)

for the valence-band electrons (which have negative mass,
hence the sign difference). Note that the conduction- and
valence-band states with equal v have energy difference
E . Here, P =(m /m„)' and

r

QAi(x) = —I du cos ux +
3

(10)

is the Airy function. Note that for all energies v, the
eigenfunctions (8) and (9) are in fact the same function
shifted along the x axis by an appropriate amount. Thus,
the energy dependence of the wave functions corresponds
to a shift in space.

It is easily verified that the eigenfunctions are orthogo-
nal within each band:

Idx q;*(x)q;(x)—= (q:~q;) =2'|'(v —A, ) =(1t'~f, ) .

N.~~(r) = (a, (r)alii (r) )

( a„a,i ) ( a„a,i„)

(a, a,i) (a,",a„i)
C

p s
)fc U

~Xv "vX aP
(13)

C. Equation of motion for the density matrix

where ( ) denotes the statistical average over the current
nonequilibrium state of the system.

Note that p & is not the density of holes but the inter-
band component of the DM which describes the coher-
ence between states A, and v from difFerent bands and is
related to the optical polarization. ' '" The intraband
components n & describe correlations between different
eigenstates A, , v within the same band and have no classi-
cal equivalent except for n (A, =v), which is just the num-
ber of particles in the state 1, (note that nii is the number
of valence band electrons rather than holes, cf. Eq. (33)
below).

We will also need the overlap integral of eigenfunctions
from different bands:

The density matrix obeys the general equation of
motion

(12) i =([H,g]), (14)

Strictly speaking, the above-defined Airy function
eigenstates are applicable only to an unbounded sample,
because for a finite-size sample they do not strictly satisfy
the boundary conditions. In general the solution of the
Schrodinger equation (1) should be a superposition of
Ai(x) and Bi(x) (the other Airy function that diverges ex-
ponentially at positive argument). However, for the case
where lp is much smaller than the sample size, the func-
tions Ai(x) are an excellent approximation to the exact
eigenstates because they are exponentially small at posi-
tive arguments and can be taken to be zero at one of the
walls, while at negative arguments they are oscillating
rapidly and can easily satisfy the other boundary condi-
tion as well. Since the field-dependent length lp will ap-
proach the sample size for decreasing dc

fields,

our
analysis breaks down in the limit of weak dc fields, so
that we cannot formally recover linear-response results or
other weak-field properties (the formal reason is the
above-mentioned singularity of the wave functions).
However, this is more of a technical difhculty rather than
a real limitation, because, e.g. , for a 1-pm sample the con-
dition 1. ))lp is satisfied for dc fields greater than 0.1

V/cm. Since typical depletion fields are in the kV/cm
range, our analysis should work well for relevant experi-
mental situations.

B. Density matrix in a dc electric Seld

Now we can define the density matrix using the states
(8) and (9) as a basis. Let a (t) and a (t) denote the

where the square brackets denote matrix commutator.
The Hamiltonian in (14) has the following form for the
system without interactions:

Ho=y E.,a,a.
aA,

where

(15)

E,~=E +A.+ k2, 6 ~=X— ki2

BX g~ =i(E, E&i)X —
z~ .

at
(17)

Introducing the energy matrix

C. —C, =E 6vA. av vA,

we can rewrite (17) in matrix form:

ax:~
vp p vp p

=i g E rXrP —X r Erg—:—i [%,e],
XP

(18)

(19)

which proves to be more convenient for incorporating the
interaction with the optical field. '

To take account of the optical excitation, we write the
Hamiltonian that couples the electrons to the optical field
E (t) within the dipole approximation:

are the energies of the corresponding eigenstates. Taking
the commutator in (14), we get the following equation for
the free-electron DM:
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H, , = E—(t)d= E—(t) g dgat~tii, .
aPvA,

(20)

Here, d is the dipole moment operator. Neglecting intra-
band optical transitions, we can express the dipole matrix
element as

d~=
Vg p ~VC

CV

PCVXVX

aP
(21)

E~ =E+Q=E,(+M g(t),
where we have denoted

M.~~(t) =dgE(t) . —

(22)

(23)

The equation of motion basically keeps the form (19) in
the presence of an optical field:

aNf
at

i [,E~—]

with p being the interband matrix element, and g is the
overlap factor (12). It is important to note that the dc
field breaks the wave-vector selection rule for interband
transitions. The overlap integral (12) does not have a 5-
function structure (of course in the y-z plane the wave-
vector selection rule still works). This means that inter
band light couples a given valence-band state to the whole
conduction band, making the situation very different from
the two-level system picture" of the zero-field case.

Because the interaction Hamiltonian (20) contains only
pairs of second-quantization operators, the commutator
in the equation of motion (14) can be taken exactly. To
account for the effect of the optical field on the DM evo-
lution, we only need to renormalize the energy matrix in
(19) (see Ref. 10 for details):

the polarization. The quantity in the curly brackets in
the driving term is a generalized saturation term.

If we consider only the low-excitation case here, we
can simplify it by setting n„'i =0 and n'i =5(v —

A, ), since
in a nonexcited (and undoped) semiconductor we have an
empty conduction band and a full valence band without
intraband correlations. With these assumptions, Eq. (25)
becomes

~p A, =' (Ecv EUx)pvi, +'pcUE (t)X~vi. .
at

(26)

An equation for the intraband DM can also be re-
trieved from (24) by setting a,P= c:

Bn'&

at
=i (v —

A, )n', i ip—„fdp[p eye'iE*

—X'.g ei.E j (27)

D. Solution for the density matrix
in the low-excitation limit

In the low-excitation limit, we can actually solve (27)
analytically. Representing the optical field as

(we do not write out the equation for the holes since it
has similar structure). As is seen from (27), the carriers
are created due to interaction of the field with the polar-
ization (25), and because of the above-mentioned absence
of strict selection rules for the polarization the electronic
states also become correlated within each band in a finite
range of A,

—v.
Equations (26) and (27) could have been obtained more

readily through time-dependent perturbation theory in
the optical field. However, the original equation (24) of
the density-matrix formalism is more general and can be
applied to the high-excitation case as well.

=i (E „—8&i)Ng i g [N—rMg M„rNrg j .—
XP

E(t)=E,f (t)e'"', (28)

+i@,„E(t)fdp[n'&y'" —n' g''i j . (25)

The first term in Eq. (25) represents free oscillations of

This is a generalization of the optical Bloch equa-
tions' '" to include a dc electric field. Using the expres-
sion for M, Eq. (23), we can extract from Eq. (24) the
equation for the interband DM components by setting
a=c and P=v:

~pox = i(E, —E,i.)P ~at

we can directly integrate (26) and get the following result:

pvi. (t) ='pcUXvi. ED' (t, v A. 6) . — — (29)

F~(t, O)=r, f dr f(t+r)e (30)

Substituting (29) for polarization in (27), we directly in-
tegrate the resulting differential equation, which gives,
after some algebra, the following expression for the intra-
band density matrix:

Here b, =co E=co E —iii ki—/2m„—is t—he detuning, and
FR is the retarded Fourier transform of the pulse en-
velope defined as

n'i (t)= ~@„~ Eoro f dt'f (t')e' '(' '~ f dpyi"y"' [Fz(t', [A, —p] b)+Fz(t', [v—p] —6) j .— (31)

Equation (31) makes it clear that intraband DM depends only on the difference of its energy arguments, A, —v, so that
we can set A, =O and consider n i„„(t)the function of the energy difference v. Substituting (12) for y's in (31), we arrive at

(32)
m „~'E'

n'(t, v)=
2 2

"z f dt'f(t')e' (' 'jX fdpAi( —p)Ai( v p)[Fz(t', p b)+Fz—(t', p+——v h)j . —
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h
I

a es v—,— are corre-which indicates that the hole stat
ated in exactly the same way as states v A, ia es v, in the conduc-
ion an . he reasons for this can be seen in Fig. 1. Op-

tical excitation with the photon energ A =E +5y co =
g

cou-
p es a given conduction-band state to t t '

h
valence band that has

o a state in the
matching energy eigenvalue; ac-

cording to the expressions (8) and (9) for the eigenfunc-
tions, the excess energy 6 shift th 1s e va ence-band ei en-
state by b, /F along the dc field.

g

quation (32) is the main result f th'u o is section, and
below we will consider it in more detail. Let us first ex-
amine more closely the inner integral in (32), assuming b,

generally consists of two identical peaks (30) cen-
tered around p=A and p=A+ h hv, wit t e width of the
order of the inverse pulse duration, ~ '. These eaks are

for large p can be replaced by the asymptotic expression

(33)

Finally, by similar steps we get the following results for
the density matrix of the holes:

Ce' '
n (t, v)= cos(v&6)e

X I dt'f(t')f t' / —e
oo 2&x (37)

After integration over b, (i.e., over ki, see Sec. IV) this
reduces to the classic Franz-K ld h 1 p

'-e ys resu t for the opti-
cal absorption in electric field. Thus, Ver ion u ses

in iry eigenstates with no correlations be-
tween neighboring states. However, accordin to 7, '

ic c e s the above condition means that the
ens o picoseconds topulse has to be longer than a few t f

thou we
e considered "very long" in this . Thsense. erefore, al-

t oug we correctly recover the steady-stat tha e eory, it is
app icable to femtosecond excitatio d' ''on con iti.ons.
s t e excitation pulse becomes shorter, the peaks in

fast oscillations in (35) will be integrated out thi
g pus strated in Fig. 2(a)]. Assumin that the l

g enoug (r„))2m/b, ), and making use of (35)
and (30), one can eg t the following approximation for th
intraband DM:

or e

1
Ai( —p) = p-'"sin 2 '"+— (34)

there
The combination of Airy function t '
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erefore be approximately represented as

Ai( — )Ai( ——v =' —
p —p

—v) = —(cos[v&p] —sin[ —'p ] )
2~&p 3

~

(35)

Around p=A this product will have a fast-oscillating
component represented by the second term in (35) along
with a regular part (the first term) which at v~0 does
not oscillate at all. If the width of the F
F in (32 is

o e ouner transforms
z in 32) is small compared to the period of th fo ese ast

a ions (i.e., if w ))4' v'b, ), we can regard them as 5
unctions and Eq. (32) reduces to

p=A, , p=h, +v
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~ 1

i
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[where C stands for the prefactor in Eq. (32)].
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FICy. 1.Cx. 1. Optical excitation with the h
couples the state A, in the conduction band to the

state v in the valence band so that th da e coordinate space for the
holes is shifted by 5/F along the dc 6eld.

FIG. 2. The structstructure of the inner integral in E . (32). ( )
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unyng: the Fourier transforms (30)
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1 df (t') J dp cos(v p) 1 df (t')
77 dt' 0 v p (p —Q) 2~+~ ~ dt' (42)

As a function of v, the expression (42) is peaked at
v=O with the characteristic width I/& b,

~ ((r~, so we
can set v=0 in the exponent when evaluating the time in-
tegral in (32). Taking advantage of the fact that the in-
tegrand is proportional to 2f(t')f'(t') =d(f (t')) Idt, we
obtain for the density matrix (32)

III. CALCULATION OF THE CHARGE DENSITY
AND OTHER OBSERVABLE QUANTITIES

Once the DM is known, we can calculate various ob-
servable quantities such as charge and current densities.

A. Charge density

Ren'(t, v)t, = — f (t)g]3/2

X[1+ viV' b, i] (43)

The simplest of observable quantities is particle densi-
ty, which in terms of the field operators is defined as

(45)
Equation (43) clearly shows that the virtual carrier popu-
lation adiabatically follows the instantaneous value of the
excitation intensity (in contrast to real carriers whose
number is proportional to the time integral of the intensi-
ty), so that the virtual carriers disappear after the excita-
tion.

Later on, we will also need the Fourier-transformed
DM (39):

n'(t, g)~ „=Cf'(t) 1

( Q +(2)2
(44)

In Fig. 4 we plot the time-dependent density matrix for
6= —10 which is obtained by direct numerical evalua-
tion of (32). Figure 4 is in good agreement with the
asymptotic result (43).

According to (43), at large negative detunings there is a
transient population of virtual carriers proportional to
b,

~

' [note that the number of carriers is given by (43)
at v=O], which follows the square of the excitation en
velope. As a function of v, the width of the density ma-
trix for virtual carriers decreases as ~b,

~

', which means
that far from the gap virtual carriers become uncorrelat-
ed. We will examine the implications of this behavior in
the next section.

Thus, in this section we have demonstrated that ul-
trafast optical excitation in a dc electric field not only
creates carries in the bands, but also makes carriers in
difFerent states correlated within each band. In the next
section we will explore the role these intraband correla-
tions can play in free-electron transport.

In the basis of the Airy states (8) and (9) the field
operators have the form

g (x, t)=g g (x)u (x)a, (t), (46)

where u is the periodic part of the Bloch wave functions
for band a in the zone center, and the eigenfunctions f,
and the operators a, have been defined in Eqs. (8), (9),
and (13), respectively. Inserting this into (45), we obtain
the relation between the particle density and the DM
(13):

P(x)= g P (x)Pq(x)u (x)u~(x)(a, (t)at(i'))
o.PA, v

= g Q (x)Pq(x)u (x)u~(x)N„q~(t) .
alga, v

(47)

P (x)= g g (x)gi(x)n, i„(t),

The sum over the band indices in (47) contains two in-
terband terms whose contribution to the overall charge
density will oscillate with interband frequency in time [cf.
Eq. (16)]; this contribution leads to the interband current
that interacts with the optical field. However, over times
longer than the inverse band gap (about 0.5 fs for GaAs)
the interband terms will average to zero. Since we are in-
terested in quantities that vary in time on a much longer
time scale of the excitation envelope (typically 100 fs), we
can safely leave the interband terms out of (47). Thus,
the electron density will read

0~0

008-

- 0006'g 0.

& 000
0

0 002-

o.ooa-

FIG. 4. Intraband density matrix for virtual carriers
{6=—10 and ~~ =1).

where we have replaced the product of Bloch functions
from the same band by unity that is equivalent to unit-
cell averaging. Converting to the hole density matrix ac-
cording to (33), we get

g PDx) +X" i.(t)4 4i. X n x(tW' '(i'x .

(49)

The first term here represents the charge density of the
filled valence band and is compensated by the positive ion
background. It is important to note that the intraband
terms contain off-diagonal (in A, , v) elements of the DM.
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Thus, to describe the spatial distribution of particles, we
need to know not only the number of particles in each
eigenstate (A, =v), but also the correlations between
different eigenstates.

Consider the conduction-band term in more detail:

r

f dx pi(x)=g n'(t, il) —,
' fdx[ pi(x)g~&+„(x)

P'(x)=g n'(t, A,
—v)g'(x)gati(x)—:g pi(x, t),

A, v

(50) =g n'(t, rt)2vr5(rt) =2mn'(t, (A, —v) =0),
7l

(52)

where we have introduced

p„'(x, t)—:g n'(t, il)g'(x) —,'[P' „(x)+g' „(x)] (51)

(the symmetrization is introduced to ensure that this
quantity is real). This way we have expressed the total
particle density as a sum over energy A, of a set of func-
tions p'i(x, t) (51) that depend on both coordinate and en-

ergy. The quantity (51) is the Wigner function in
coordinate-energy representation instead of a more com-
mon coordinate-momentum one' (we cannot use the
momentum representation because the momentum is no
longer a valid quantum number). Its basic property is
that the integral over one of its arguments gives the dis-
tribution function in the other argument. The energy in-
tegral (50) gives the distribution of electrons in space,
while integrating (51) over the coordinate yields

which is the number of particles in a given energy state
[we have used the orthogonality of the Airy eigenstates
(11)].

The translational invariance of the problem manifests
itself in the fact that changing all energies by a fixed
amount cr is equivalent to shifting the coordinate by cr IF.
Because the basis functions (8) and (9) possess this prop-
erty, the energy dependence of the Wigner function (51)
also reduces to a trivial translation in space:

(53)

Owing to this translational invariance, we need to
know only one function p'(x, A, =0) to have a comprehen-
sive description of electron distribution.

In the same way we can introduce the Wigner function
for the holes that are connected to the electrons by the
optical transition:

pi.(x, t) —=y n'(t, n)qi(x) —,
' [qi.+„(x)+pi. „(x)]

=X "'(t '9)A —t (x) 2 [0~—2+ (x)+0i.—t — (x)]

=yn'(t, n)it, x ———q,+„x——+pi. „x——
7l

(54)

[the last line of (54) follows from Eq. (33)]. This demon-
strates that, for the holes, the coordinate space is shifted
by 5/F against the field, cf. Fig. 1.

By using the density matrix we have plotted in Fig. 3,
we can evaluate the Wigner functions (51) and (54) for
positive detunings. Figure 5(a) displays the time evolu-
tion of the electron Wigner function (51) for the case of
optical excitation well above the band edge (b, = 10). The
pulse duration is set equal to unity in dimensionless units
(5) and (6).

This particular example can be described in purely
semiclassic terms. For a given k~ and a given 5, the exci-
tation can be expected to produce an equal number of
electrons with the velocities v =++28, /m, correspond-
ing to the excess kinetic energy. As is seen in Fig. 5(a),
the localized electronic wave packet created by the opti-
cal excitation indeed breaks up into a pair of "particles"
that move in opposite directions. One of them is ac-
celerated in the field (and moves out of the frame at later
times), while the other decelerates, turns around at the
turning point x =0, and starts accelerating. Note that in

+Ai( —P, [x+v])] . (55)

Using the asymptotic expansion (38), for x )) 1 and
~ v~ &&x we can express (55) as

—,
'

it i.=o(x) [ ij'o+.(x)+ it o—.(x) ]

2P,
Ai ( —P,x )cos( vP, QP, x ),

mloco

I

addition to the semiclassical particlelike motion we are
now able to describe also the size, shape, and location of
the electronic wave packets.

This breaking of the initial distribution into two wave
packets is closely related to the two-mode behavior of the
Fourier-transformed density matrix shown in Fig. 3(b).
To demonstrate this, let us rewrite the combination of
eigenfunctions that enters (51) in terms of Airy functions
(8):

—,
' A'=o(x) [ 0o+.(x) +Oo-.(x) I

Ai( —P,x)[ Ai( —P, [x —v])
lotto
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so that the Wigner function in this approximation reads
22P, i—vP QP x

p'(x, t)= Ai (
—p,x) dvn (t, v)e

~10

Fourier-transformed DM (39). The two peaks at
g=v'b, +t in the latter quantity give rise to two "parti-
cles" localized at

2P,
Ai ( P—,x)n'(t, g=P, QP, x ) .

77 0
(57) X+ = ( b, +2t V'b, + t ~)

Thus, the Wigner function in the above (semiclassic)
limit is just the square of the eigenfunction modulated by
an envelope that reproduces the time dependence of the

1/2
m„ —+t
m, F m„ m,

F+
m 2

(58)

a i ner unc ion
for electrons

ner unc ion
for the holes

0 20 40
Coordinate x (field units )

0 20 40
Coordinate x ( field units )

c ar e
distr i ution

l

0 20 40
Coordinate x ( field units )

FIG. 5. (a) Wigner function for electrons (51) at different times during the excitation ranging from —1 (bottom trace) to 7 (top)
pulse durations. Excitation parameters are the same as in Fig. 3. Electrons are created by light as localized wave packets that later
break up into two particles going in opposite directions. (b) Wigner function (54) for the holes. Note that there are regions where it
goes negative. (c) Charge density (59). Since electrons and holes are created basically around the same point in space, initially there
seems to be no net dipole moment.
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pi=o(x)=p"(x) —p'(x) . (59)

Note that since the electron and hole distributions are
centered around the same point in space, the charge den-
sity does not seem to be polarized by the dc field. We see
that even though the polarization of extended eigenstates
is infinite (or proportional to the sample size in a finite-
size sample), the transient localization of the real carriers
causes them to have a finite (and actually rather small) di-
pole moment in this case.

The behavior of the virtual carriers turns out to be
completely different in this respect. As illustrated by Fig.
6, their pair charge density is visibly polarized: the holes
are created much further down the field than the elec-
trons, and the Wigner functions for both electrons and
holes are stretched by the dc field. Since we know the
asymptotic form of the Fourier-transformed DM in the
limit of large negative detunings (44), we can obtain an
expression for the Wigner distribution of virtual conduc-
tion electrons by making use of (57):

[we have switched over to dimensional units according to
(5) and (6)].

The meaning of (58) is quite transparent: the light
creates electrons at a distance (m„/m, )(b, /F) from the
turning point with initial velocities given by the factor be-
side t in (58) (which is just enough for the particle going
against the field to reach the turning point), and then
both particles move with the acceleration F/m„just as
one would expect semiclassically. It is interesting to note
that the holes are initially localized around
b /F (I„/m—I, )6/F =(b /F)(m„/m, ). This is exactly
where the electrons are created. Thus, the b, /F shift in
the coordinate space of the holes [Eq. (54)] does not mean
that electron and hole wave packets are separated by this
distance; instead, for the real carriers our analysis corro-
borates the intuitive assumption that both electrons and
holes have to be created at the same point in space.

As the duration of the excitation pulse increases, the
Fourier-transformed DM becomes broader, so that the
wave packets in Fig. 5(a) become wider in space. Eventu-
ally, they will fill the entire sample. This corresponds to
the steady-state, cw limit of Franz-Keldysh theory.
However, for short pulses, the transient localization evi-
dent in Fig. 5(a) will have important consequences for the
photocurrent calculation.

In Fig. 5(b) we present the time dependence of the hole
Wigner function (54). Because the holes are assumed to
be ten times heavier than electrons, the relevant range of
coordinates is no longer much greater than the energy
spread of the density matrix (said another way, to the
heavier holes the pulse effectively seems much shorter), so
the above asymptotic analysis breaks down. As a result,
it is harder to interpret Fig. 5(b) semiclassically, especial-
ly in the vicinity of the turning point. An obvious mani-
festation of the quantum nature of hole transport in this
example is the presence of negative peaks in the Wigner
function in Fig. 5(b). In semiclassics the Wigner function
can be considered a distribution function and is therefore
positive definite, which is not necessarily true in the gen-
eral quantum case. Finally, in Fig. 5(c) we plot the
charge density, defined as

Virtual carriers
t= 1.5

t= 1.0

0.5

t= —0.5

t= —1.0

I I

—20 —10 0 10 20
Coordinate x ( field units )

FIG. 6. Charge density (59) for virtual carriers. Excitation
parameters are that of Fig. 4. The carriers are visibly stretched
by the dc field and show no signs of classical motion.

p'(t, x)~ „= Ai ( p, x)Cf —(t)2pc 2 2

7T o ( b, +p, x)

(60)

With growing 6 the electron Wigner function becomes
increasingly delocalized and approaches the square of the
corresponding eigenfunction. Thus, the virtual carriers
differ from real carriers not only in the peculiar temporal
dependence of their density, ' but also in the way their
charge is distributed in space.

B. Dipole moment and photocurrent

We can calculate the current using its real-space
definition as a time derivative of the polarization. This
approach seems natural for the situation under study,
since here we do not have any current Aowing in and out
of the sample, but instead have a redistribution of elec-
trons within the depletion layer under the action of the
laser pulse.

From the real-space point of view, the basic process is
the separation of electrons and holes in the dc field. As
charges separate, the medium acquires a dipole moment
per unit volume equal to the dielectric polarization. This
dipole moment is time dependent, and its time derivative
gives the current density.

Let us consider an interval of unit length inside the
semiconductor. We can calculate the charge distribution
over this interval by integrating pair charge density pi(x)
(59) over a finite range of X [cf. (49)] from certain A,o to
A,o+F (because the energy changes by I' over a unit
length), and then determine the dipole moment of this
distribution of charges, D(t). However, since the pair
density (59) does not depend on A, except for the trivial
shift in space (53), the result will simply be the dipole mo-
ment of a single pair d(t) multiplied by the number of
states per unit interval, which is again equal to I':
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+ oo A,0+F
D(t)= f dx x f dA, pz(x, t)

A,0+F= f dX f "dx xp(x t)
A,0+F=f dk. d~(t)=Fdic„,{t),
0

(61)

(due to the overall neutrality of the pair, its dipole mo-
ment dz(t) is independent of its location in space, i.e., of
A, ). Note that this approach is exactly equivalent to the
usual way of calculating the polarization in conventional
dielectrics by multiplying the dipole moment of each
molecule by the number of molecules. Indeed, (61) is a
product of the dipole moment of an electron-hole pair
("molecule" ) and the number of pairs per unit length F.

If the pairs were delocalized, this calculation would
give an infinite dipole moment. For our localized pairs
the dipole moment will tend to infinity as particles
separate in the dc field, but for any finite time it will be
finite. This shows that taking the steady-state limit ' in
fact leaves out all the essential physics of the problem,
namely, the process of creation and separation of charge
carriers during and immediately after the photoexcita-
tion.

Let us now consider the expression for the dipole mo-
ment of the pair at A, =O:

d&(t) = f dx xpi(x, t) =d~(t)+d~~(t), (62)

{63)

At any given g the integrand diverges as a function of x,
so that for an electron that occupies one of the eigen-

where we have split the pair density (59) into its electron
and hole components. Let us rewrite the dipole moment
of electrons using the representation (50):

d„'(t)= f drtxdx n'(t, 17)@'~( x) X —,
' Iijji+„(x)+xg „(x)I .

states the dipole moment would be infinite. However, as
we have shown, the density matrix is in fact nonzero in a
certain range of energies, so that after the integration
over g the oscillations in Airy functions will cancel each
other at large x, giving a finite dipole moment that results
from the above discussed transient localization of parti-
cles.

The dipole moment (63) can be conveniently expressed
through the Fourier transform (39) of the density matrix.
By using the expression (8) for the eigenfunctions along
with the integral representation (10) for the Airy func-
tion, after some algebra we get for (63)

d;, (t)= ', fdgn'(t, g)g'. (64)

In the same way we obtain for the hole dipole moment

Io
di„o(t)= fdgn'(t, g)g lob, f dg—n'(t, g) .

Ph

Thus, the pair dipole moment takes on the form

dz 0(t)=lo f dg'n'(t, g)g lob, f dgn'—(t, g) .

(65)

(66)

Note that the pair moment turns out to be independent of
the electron-hole mass ratio [we have used the definition
P, h =(m, I, Im„)' to obtain (66)].

The second integral in (66) is just 2~n'(t, i)=0), which
is the total number of particles [cf. (52)], so that the
second term simply accounts for the fact that the hole
distribution is shifted by 6 with respect to that of the
electrons (see Fig. 1).

At positive detunings we can also make some general
statements about the first term, since we know the struc-
ture of the Fourier-transformed DM (39) (see Fig. 3(b)].
If we replace the two peaks of (39) at &6+t by two 5
functions (which is the same as assuming that the two
wave packets in Fig. 5 are very tightly localized), then the
dipole moment (66) can be estimated as

d"(t)=l, f dg n, g'[ ,'5(&A+t)+ —,'5(&b, ——t)] l, f dgn, b, P—(5V 6, +t)+ ,'5(&A t)I——
=(lono) X [—,'(v'b, + t)2+ —,'(&6—t)' —b ] =lan'(t, i)=0)t' . (67)

This corresponds to a semiclassical situation when well-defined particles move in the dc field with constant acceleration.
Note that the oscillations in the DM with the frequency &b, tend to compensate the displacement contribution given by
the second term in (66). This is in line with the observation made after Eq. (58) that excitation above the band gap
creates electrons and holes around the same point in space. However, this cancellation occurs in leading order only.
The Fourier-transformed DM is not exactly a combination of two 5 functions [and it only has this two-mode structure
at sufficiently large times after the excitation; see Fig. 3(b)]. In general, in addition to the semiclassic (transport) terms
(67), the total dipole moment (66) will contain additional (displacement) terms.

To gain further insight into the evolution of the pair dipole moment (66) we have to treat it more rigorously. Using
the well-known properties of the Fourier transform, (66) can be rewritten as

di 0(t) =2vrlo—
'd n'(t, i))

a~'
bn'(t, q=O)— (68)

The second derivative of the density matrix that enters (68) can be evaluated by differentiating the expression (32).
After some cumbersome but straightforward transformations, we arrive at the following result for d:
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2molo Ip,.l'Eo
d (t)= dt'(t —t') f (t') f dp Ai ( —p)2ReFtt (t', p 6—)

+ f dt'f (t') f dp(p b, —)Ai ( —p)2ReFz(t', p b, )—

=C„ t d, +d2+d3

t f —dt'f(t') fdpAi ( —p)2 ImFti(t', p b,)—
QO P

(69)

The first term in (69) is the semiclassic result for the di-
pole moment. Indeed, let us rewrite it using (32):

d, (t)=l, dt'(t —t')'2 rr
, 2 Bn'(t', rl=O)

00 Bt' (70)

This expression can be easily understood in semiclassic
terms: this is the dipole moment of the classical particles
that are being created by the excitation pulse. The
derivative in (70) is the generation rate, and Eq. (70) sim-
ply means that each of the particles created between t'
and t'+dt' will have gained a dipole moment lo(t —t')
by the time t The int. egral in (64) just sums up the contri-
butions of all such groups of particles created at different
times in the past.

The remaining two terms in (69) represent quantum
corrections to the classical result (70). We will refer to
them as "displacement terms" to distinguish them from
the "transport" term (70).

In the next section we will study the relative impor-
tance of these terms numerically. However, for virtual
carriers we can also obtain an analytic result for the di-
pole moment either by evaluating (69), or by directly in-
tegrating the charge density (60):

A. Density of photoexcited carriers

The first quantity we want to calculate is the total den-
sity of the photoexcited particles. This is proportional to
the optical absorption. Equation (52) states that the
number of particles occupying a given eigenstate is given
by the intraband density matrix at coincident energy ar-
guments. This quantity implicitly depends on k~, since 6
is different for different perpendicular momentum states:

2 2

2mo

A ki
A=fico —E =%co—E—

g 2m
(72)

= f dhF(b. )= E f db, F(h) .

Here we define Ao—=Ace —E to be the "real" detuning.
To get the volume density of particles, we have to sum

up (52) over all eigenstates. There are F eigenstates per
unit length in the field direction, so the summation over
energy index A. is performed simply by multiplying (52)
by the dc field, while the summation over perpendicular
momentum quantum numbers is, according to (72),
equivalent to integration over 6:

2f d kiF(b, )

Clo
d(t)~ „=

I

f'(t) .
4 b,

(71) (73)

Note that (71) decreases very slowly as the frequency is
tuned away from the band gap.

To summarize, the results of this section allow us to
calculate time-dependent density of photoexcited parti-
cles and predict the resulting changes in the dielectric po-
larization of the medium. Based on these results, in the
next section we will evaluate experimentally relevant
quantities and discuss some unusual features that arise
under femtosecond excitation conditions.

IV. RESULTS AND DISCUSSION

Here we have switched to integration over the dimen-
sionless energy; the factor of 2 accounts for the spin.
Thus, the total number of particles is

2mo ~p
N(t) =F

2 Eof 2rrn'(t, v=O)db.

=C„f ' f' dt'f(t') f dpAi ( —p)

X 2 ReF~ ( t ',p 6) . (74)—
The prefactor in (74) is given by

4EO mo IpqU I Eo
C~=

2
=1 57x10' cm II'

In the preceding sections, we considered the behavior
of carriers for a fixed perpendicular momentum k~. How-
ever, in general, all states with different k~ will contribute
to the quantities of interest, so we have to carry out the
summation over all perpendicular momenta. Because we
have neglected Coulomb effects and relaxation processes
that could couple states with different k~, this summation
is simple.

(75)

We have used GaAs parameters (m„=0.061, p„=0.7
nm) to get the numerical factor. The numerical factors
are calculated for dc field F measured in kV/cm and the
optical intensity I in MW/cm .

The power-law dependence of the density prefactor C&
(75) on the dc field F does not mean that the density will



A. V. KUZNETSOV ANDD C. J. STANTON 48

have the sam Fe de end
1 d do h d

e e
'

o measuremen
g

this implicit field de sa

g our field-

p po

where we can rewrite the
' g pu ses,

0 dr'f(t' dpAi —p 2R Fd
' — e ~(t', p b, )—

0 dbAi( —b)" d' 2tdt' j'(r')

=1, QA, f dt'f'(t') .
00

The integral of A' ion

(76)

square-root as
a o iry functionion squared was t ' gm, and as

a ion is di-
d the energ

as . Likewise

p nds on the field, beca
t(6) d

i s. hus, the time in-

pensating the fi
e scales with the field as F'

, so that on

e eld dependence of th
, exactly com-

f
e particle density

F ys oscillations a ear
density of states. Th

ua carriers whose density evolution i
ccording to (43) for

den
, w icha ain

sca e as

g

B. Diele ctnc polarization

Applying a similar t
pole moment (69)

r reatment
we get the followin

t to our result f
o owing expression for the

13
1x1O

12
Bx1o

1 2
'E 6x1o
O 12~ gx1o

12
2x1o

dielectric polarization P whic po e moment of a

P(r)=C db, (d, +d2+d3

wherere d; denote th d' '
ess ie imensionless iess mtegrals in (69), and

(77)

p mo4l
N 0

2

p ~EO

=9.34X 10 C/cm IF (78)

is the same refap e actor (75) multipl' d g

will scale h h fi ld 1
, t e first (trans

0

ependence with the rp o ( )

in dimen
t is

Ip

sional units:

P (r)(=- dt(r —r ) —'"= dt' (r t')'—
2mp Bt

FIG. 8. Timeime dependence o
by numerical e

o virtual carrier
1 evaluation of (74)

rier density obtain
at negative detunin s.

1

i y increases shar 1

c oser to the band

py
an gap, the

, so that the transitio
go to zero after the

rather abru t.
ansition from virtual t

upt.
ansitio

'
ua to real carrie'ers is

P, OO-i00 —50 0 50 i00 150

FIG. 7.

Detuning (meV)

. Particle densit
d fild H

we assume a 1

s. ere and in th

0.1 MW/cm a

g
p

just redistrib

y of

so that the densit
i utes spectral wweight (Franz-Keld s

y. rowin dc

11y constant.

(79)

which makes thee physical int p
1 f 1

erem '
maining terms in the e

rin

di 1 th

fo
at we ar

a orm of

lh h
ow t em to be

(70) for
h 11 h

h
he transport t

hM. Ho
b 1 tdb

i }I
'

perpendicular rno
, the summ

mo t (73) will g g
e ewer and fewer virtual pairs



48 ULTRAFAST OPTICAL GENERATION OF CARRIERS IN A dc ~ ~ ~ 10 841

for hi h k theg ~, pairs become increasingly delocalized
with growing

~

b,
~

[according to Eq. (60), each virtual pair
carries a dipole moment proportional to ~h~ ]. If we im-
pose a high-5 cutoff 5 in the integral (77), the polariza-
tion caused by virtual carriers can be expressed as

C
P„,(t) = f'(t)I QE (80)

The divergence of this quantity is a consequence of our
simplified description of the band structure. At high k~ it

with c
can no longer be described by our simple parabolic m d 1

onstant interband matrix element. As i f
mo e

case with cal 1wi calculations of nonlinear optical susceptibili-
e ecrease in the ma-ties, we need to take into account th d

trix element and changes in dispersion relations for the

er, we can view the cutoff procedure ase as a way to account
for nonresonant contributions to (80) by replacing them
with a detuning-independent constant.

The cutoff may also be imposed by purely geometrical
constraints. In a finite-size sample th 'd h f
c arge distribution cannot increase indefinitel, and the
maximum dipole moment per pair will be limited by the
size of the sample (in a bulk sample the cutoff distance
wi e t e depletion layer thickness or the br e a sorption
eng ). owever, recent work on conjugated ol mers'

su ests thatgg s a the Coulomb attraction between the elec-
tron and the holee ole might be the most important factor
that limits their separation. Since the treatment of the
excitonic effects is beyond the sco f thope o e present work,
here it seems reasonable to cut off the integral by the con-

ition that the separation between pairs (b, l cf. F' 6
does notnot exceed a certain critical length L. This will give
us the following expression for the virtual polarization

1/2

Pd;, (t)= ,'Ct,f (t)—1S P P (81)

' 1/2

P„,(t) =-,'CI, f'(t) t. (82)

and stays practically constant at positive detunin s ~b-
or rea carriers the displacement term is small).

e unings ~ e-

This behavior is illustrated by Fi . 9 h
o a po arization (75) and its two constituent parts:

while the transport contribution to the polarization 'F'
~ g s quadratically with time elapsed after the exci-

za ion
L ig.

r ing o ), the displacement contribution
Fig. 9 c ] is essentially present only during the excita-

Here we will adopt this geometrical interpretation and
consider the cutoff length as a fitting parameter. Realis-
tic values of L are of the order of fo a ew micrometers, so
that for dc fields in kV/cm range [ 'th th 1 h
of the order o

wi e engt unit (5)
o t e order of a few tens of nanometers] b, will be of
the order of a few tens (e.g. , for L =1 pm and F =1

As a function of detuning, (81) is zero at 6 = b, then0 m, t en

g as the excitation frequency approaches the band
gap, where it reaches the maximum value

~ ~

tion, and follows the above describ dcri e pattern as a func-
tion o detuning.

The most striking feature of (82) is that it depends on
the dc field in a very unexpected U
sions (5) for lo and (78) for the prefactor, it is easy to see
that (82) is proportional to F F' = I/v'F, w ic
means that thea e displacement contribution acttta/ly de-
creases with increasing dc geld. Th k I
t =Ois

e pea va ue of (82) at

1/2
Pm (t)= 1C

dlS 2 P
0

=2.41X10 C/cm IF

(83)

2.0—

).5—E

].p—
0
O

.„- p.~-
l3
O

0-

2.0—
AJ

E

G ].0—
O

O
p

O
O

0-

Tran

p 20-
CU

E p)g-

p. 1 p—
O

O
p pg

O
O

o~gQ—

3is& acernent

FIG. 9. a( ) Total polarization (77) for E=1 kV/cm in
nanoCoulombs cms/cm ~or excitation parameters of Fig. 7. The

~ ~

ransport contribution tocutoff length has been set to 1 pm' (b) tr
t e polarization; (c) displacement contribution.



10 842 KUZNETSOV AND C. J. STANTON 48

Qualitativel y, the decrease of the
growing dc field can b

e polarization with

stronger fields will tilt h
can be explained b

units the electron-h 1

i t e bands more

'
e by the fact that

- o e separation 6 F
, so that in absolut e

h th h
n i e atomic and m

separation in the d
h d' ' f ho e particles, electr

' ' n-
d to h dd't'i ional freedom to

d, Thdfi
apart but also restr t

e c field not onl uy pulls the particles

0

ructures the electr
it turns out that f

ronic eigenstates a d
or virtual carriers t

, an

decreasing pair d' 1ipo e moment with in
'ers t"e net result is th e

It '
1 d'pre iction of the

th t i k fi ld he s t e polarization gows ea y wt
eory

field breaks do
ver, t e perturbatio

own at very low fiel
ion treatment of th d

terion is that thee magnitude of the
(hh th „ot t 1

I 3
r

p

crite ' f 1 bl f
e reated perturbativel .

p o yii y or the ert
& o, which is exactl

ht dfo r
yo po

c e to grow linearl in

size), and in the field r
iza i ity (pro orti

y
p ional to the sam le

e e range where the
mp e

ment breaks down th' 1

e perturbative treat-

creasing dep d
is in ear row

en ence predicted by our e
g wth turns into th d-

hh h ld
k' ' "'"'""""""'"'

cutoK
u work as ion as th

o is much greater than unity

C. Photocurrent

12o—

1Oo-
OJ

E 8P-
6p

4p-
2P-

F = 10 kV/crn

12-
1o-
8-E

6-
4

L

2

F = 1 kV/cm

placement current d
h th 1

ominates corn le

positive times the h
i s o applicabilit

'
i y of our analysis. At

field as virtual carrie
e p otocurrent actualla y fIows against the
rriers are annihilated.

us, we see that as the dc field p

cal tr

'
nces a gradual crossover fr

ransport-dominated b
r rom semiclassi-

wheere displacement cur

' ae e avior to a quantum regime

onl
current dominates. A

ny oes it agnt d
'

u e vary nonlinearly with the field 7

The unusual fiel"eld dependence of the dis
i entinpi. 10'd

d
' ' f h e polarization (i.e. p

'g

dominated by the
p current is completel

e transport term (79)
eey

dP„ ax
(r r'—

mo Br
(84) 20-

0. 1 kV/c rn

which grows linearl
folio

ear y with time after the
ows the detuning d d

e excitation and

7.
g ependence of the

No h i li h' 1 g

mes that we assum t be o e much lo
entum relaxation

duration) arrested b s
nger than the pulse

men
e y scattering ~rocesse

ent term is respon 'bl
sses. The displace-

at negative detunin s
en nsi e for a small feeature around t =0

g g-nings, ut at positive de
e transport term.

1-

Decreasin the fi

1 o b
parable. Note that the h

y become quite

the fi ld th
e p otocurrent

Ao lo th fi ld
ses its irection

e e again after the tr
en

1a ater times.
e-

Finally, Fig. 10(c) shows an exc s ows an example where the dis-

cu 10-
E
O

o

C
(D 1o-

c3

FIa. 10. a(a) Photocurrent at a hi
the same excitati

a a igh dc field of 10 kV/ f
a ion parameters. It follows t

be view
to

'ewed as transport c
photocurrent at a

current alone (c
lower field cannot

current is completel d
) at 0.1 kV/cm the h-

e e y dominated b the
ep o-

p

field
ce was increased from 1 to

ea ure.

e d dependence of the dis lacem
match Eq. (83).

e displacement current does not quite



48 AFAST OPTICAI GEENERATION OF CARRIE RS IN A dc. . . 10 843

but aalso its temporal de enden
changes.

ependence undergoes dramatic
8—

B. Terahertz radaation11 SlgA8

3
sing Sz

47TE6pc I'p

t'+ —AP —j t' —AI)II—
C

~o S z dj(t')sind

47TE'AC ~P d t
(85)

where t'= t —r j—p/c and b,P=cos& —co—oslo. At small b.P
comes proportional to

current density.
o the derivative of the

To study this crossover phenomenon
'

h b he avior of time de
'

, e

current This quantiquantity is more releva
since in terahertz r d

ant experimentall

b 1 d to b
current.

o the derivative of the

Optical excitation p d
h h

pro uces time-
ic, accordin to

i1 in

g
ec romagnetic radia

'
g

It„ th t th t t o d th
S 'nd'h hat t e detector is lo g

a
'

e rp, y a direct soluti
quatlons one can t h r ec

field of the radiat d
ge t e followin r

ia e signal at the detector.

'
g result for the elect

'
ec ric

E)
C)

C3

FIG. 11. The rhe radiated signal (85) dis la s b
displacement contribut'

isplays both transport and
'

u ions cuto6'length is 1 pm)

Foror the purposes of the numerical
h S=3

but since these facte actors are different for P
ac is choice is in oj g

o magnitude.
in

'
ive

Figure 11 dis 1
'

p ays the terahertz
moderately stron fieldg e of 3 kV/cm ver

z signal (85) for a

a ive etunings onl
g

p
e virtual carriers is

temporal wave form f 11

is present, and its

excitation inten 't
tern rm o ows the secon

si y in accordance w', i
n derivative of th

negative near thr e center of the excit
ce with (80), so that it

'

d b g p
re a so appears a transport contribution

E„(t)~ P t = , f' dt(t —t)'~=
mp dt

(86)

which is positivep 've and grows with A.

tion
tl h' h oit' di ive etuning the tran

th d'

chhanges sign at t =0.
e isplacement onne, and the signal

g.
getunin at t =

ver point moves closer to th be and edge.

f ()2V I'
k3

'm at0 V1p

Figure 13 shows how the tern oral
'h h fild A 1 fi

1, th 'thwi increasing I' the
ad 11 o t h
Although our th

sa es t e negative part of the curve.
ur eory does not inclu

ff tthec t ese predictions quantitatiuely thei a suey,

F=
F=

i kV/cm
2 kV/cm
3 kV/cm
5 kV/cm

4 kV/cm

3 kV/cm

2 kV/cm

1 kV/cm—

t, — 0

I I

-200 -150 -100 -50 0 50
Detuning (meV)

100 150 200

FIG. 12. The si ne signal at the center of the
experiences a sign rreversal at some

e pulse vs detunin It

creases with the field.
e critical detuning that de-

I I

—200 —150—100 -50 0 50 10 50 100 150 200 250 30
Time (fs)

300

FICx. 13. Fiield dependence of the terno e temporal wave form of the
ain t e crossover from

does no
e avior is evident. Th

oes not go to zero at later times be
hh eory.

a enng



10 844 A. V. KUZNETSOV AND C. J. STANTON 48

above described qualitative picture of competition be-
tween transport and dispIacement currents is quite general
and seems to be consistent with the experimentally ob-
served changes in wave forms of the signal with increased
detuning. '

V. CONCLUSIONS

In this paper, we have considered the ultrafast pho-
toexcitation of carriers in a bulk semiconductor in a dc
electric field. Such a field will arise naturally in the sur-
face depletion region, even without an applied external
field. We have formulated a density-matrix approach
based on an Airy function representation' that allows us
to incorporate two important features. (1) In a dc electric
field, the eigenstates are not characterized by a single k
vector. As a result, unlike the zero-field case, optical
transitions are possible between an electron in the valence
band and more than one state in the conduction band. (2)
For femtosecond pulses, the transition energy is not well
defined, and one can no longer use the conventional pic-
ture of energy-conserving interband transitions. This for-
malism allows us to treat both particle current and dis-
placement current and their respective contributions to
the radiated field.

The main results of our work can be best formulated in
the language of traditional wave-particle dilemma of
quantum mechanics: it is impossible to understand the
behavior of carries under femtosecond excitation condi-
tions assuming them to be either perfectly localized parti-
cles or completely delocalized waves. Instead, one has to
treat carriers as localized wave packets formed out of
delocalized stationary states (the Airy functions), and the
size and shape of these wave packets proves crucial to the
determination of observable quantities such as the photo-
current.

Our formalism reproduces the classical motion of the
particles in the dc field and also determines the quantum
corrections to the classical picture. Using an Airy repre-
sentation' has enabled us to get most of our results
analytically. Our results suggest that real carriers (exci-
tation far above the band gap) behave more or less like
classical particles and are responsible for transport
current, while virtual carriers (excitation far below the
band gap) largely determine the displacement part of the
current and behave like delocalized "waves. " This
different behavior of real and virtual carriers indicates
that the conventional viewpoint' of virtual carriers hav-
ing exactly the same properties as the real ones is inappli-
cable. We also find that there is an intermediate regime
(excitation close to the band gap) where both transport
and displacement contributions are important, so the
above statements about real and virtual carriers are true
only asymptotically (at large positive and large negative
detunings, respectively).

Within our simple two-band model we are able to cal-
culate only the resonant part of the polarization and had
to use a cutoff procedure to get rid of the contributions of
virtual carriers in states that are far from the excitation
energy. The accurate calculation of these nonresonant
contributions requires the knowledge of the full band
structure and is beyond the scope of the present work.

The geometrical cutoff that we use here is a simple way to
resolve the divergence problem without complicating the
model but has the disadvantage of introducing a cutoff
parameter that is not very well defined.

Note that our results for the virtual carriers cannot be
viewed as a nonlinear optical polarization at zero fre-
quency induced by the optical field and the dc field
P' '=y' ' E(co)~ F (optical rectification) ' even though
the polarization adiabatically follows the optical field, be-
cause the relevant dc fields cannot be treated perturba-
tively, and in our nonperturbative formalism the polar-
ization is not proportional to the dc field. The real car-
riers also cannot be described in the language of non-
linear optics because they do not follow the excitation
adiabatically (the concept of "dynamic nonlinearities"'
would be more appropriate here).

In general there can be a nonlinear-optical contribu-
tion to the experimentally measured signal that is not in-
cluded in our theory. Technically, it would stem from
the distortion of periodic parts of crystal wave functions
by the dc field that was left out here because for typical
dc fields it is very small (simple estimates show that the
relative contribution to the dipole moment due to this
band-structure distortion is of the order of
pF /E —10 ). In noncentrosymmetric crystals like
GaAs and InP there would also be a nonzero g' ' term
describing the optical rectification proper: a static dielec-
tric polarization adiabatically following the optical exci-
tation. This term should be independent of the dc field
and is highly anisotropic, unlike the electronic contribu-
tion that was calculated here. It is much harder to esti-
mate without the detailed knowledge of crystal wave
functions, but experiments suggest that it is important at
least in the high-excitation regime where the depletion
field should be screened out by the huge number of pho-
tocarriers. Indeed, the orientational dependence of the
signal observed in some experiments ' is a characteristic
signature of the bulk y' ' contribution.

Apart from this nonlinear-optical contribution, there
are also a number of other factors that should be included
in the theory before it can be quantitatively compared
with the experiments. Excitonic effects can be expected
to alter the density of states around the band gap and can
significantly change the behavior of carriers in this spec-
tral range. The inclusion of scattering processes is also
crucial to achieve the correct description of the signal at
later times (in our theory the transport signal stays con-
stant after the excitation which is unphysical). More-
over, we do not consider screening of the dc field by the
photocarriers, so that our results can be expected to work
only in the extreme low-density limit. However, we be-
lieve that the free-electron case has to be properly under-
stood before one can start incorporating these phenome-
na into the theory of transient photocurrent, and the
present work constitutes a first step in this direction.
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