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Improved defect-pool model for charged defects in amorphous silicon
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We have developed an improved defect-pool model for the calculation of the density of dangling-bond
states in amorphous silicon. The results of this improved defect-pool model are contrasted with earlier
work, from which we have eliminated some errors and approximations. We show that the calculated
energy-dependent density of states depends on the specific microscopic reaction involving hydrogen, in

contrast to previous conclusions. We calculate the bulk density of states, using the best input parameters
drawn from experiment, and conclude that the best agreement with experimental results is found for a
rather wide defect pool and for a microscopic model where two Si-H bonds break for every weak bond
converted into two dangling bonds. The calculations predict that there are approximately four times as

many charged defects as neutral defects in good-quality intrinsic amorphous silicon. We argue that this
picture of the density of states is consistent with a wide range of experimental results. We show how this
important conclusion depends on the principal parameters of the defect-pool model and investigate how
the density of states would change with different parameters.

INTRODUCTION

There is now considerable experimental evidence that
the density of states in amorphous silicon is dominated by
amphoteric silicon dangling-bond states and that the den-
sity of these states is determined by a chemical equilibri-
urn process. ' The model for the defect-forming reac-
tion involves the breaking of Si-Si bonds, which are gen-
erally thought to be stabilized by diffusive hydrogen
motion through breaking and reforming Si-H bonds, '

although microscopic models that do not require hydro-
gen have been proposed. The equilibrium density of
dangling-bond states depends on the Fermi energy, which
leads to a higher density of dangling bonds is doped
amorphous silicon than undoped amorphous silicon. '

When the energy of the dangling-bond state can take a
range of values, due to the inherent disorder of the amor-
phous network, then proper consideration of the chemi-
cal equilibrium model leads to an energy shift of the peak
of the formed defects, due to the minimization of free en-
ergy. Furthermore, this energy shift is different for de-
fects formed in the different charge states (+,0, —). This
is the so-called defect pool model. ' F-or a sufficiently
wide pool, the model leads to negatively charged defects
in n-type amorphous silicon having a lower energy than
positively charged defects in p-type amorphous silicon,
even when the correlation energy is positive, a previously
puzzling result found in many experiments.

"
The genesis of the defect-pool model lies in the work of

Bar-Yam and Joannopoulos, ' who first pointed out that
the formation energy of a defect depends on its charge
state and that the difference in the formation energies de-
pends on the Fermi energy and the energy of the defect
itself. This paper predicted the essential result of the
defect-pool model, but there was a problem with the
number of potential defect sites and no obvious mecha-
nism that allowed the whole Si network to rearrange its
bonding.

Stutzmann introduced the weak-bond dangling-bond
conversion model and Smith and Wagner' identified the
weak-bond energies with the valence-band-tail states,
which are exponentially distributed in energy, giving a
further distribution of formation energies. In a separate
development, in Refs. 16—19 the importance of hydrogen
in providing a mechanism for defect equilibration was
proposed. This work was important in identifying possi-
ble microscopic mechanisms, but also in introducing ad-
ditional entropy from the hydrogen reactions and so
lowering the defect chemical potential. Strictly peaking,
hydrogen is not part of the essential defect-pool model,
but it is the only proposal to date that can provide a plau-
sible microscopic mechanism with sufficient entropy to
lower the defect chemical potential, and so give experi-
mentally measured defect densities.

Winer brought together these different aspects in a
classic paper, which defined the modern defect-pool mod-
el. He calculated the density of states in undoped and
doped a-Si:H and produced the key result that negatively
charged defects in n type material were lower in energy
than positively charged defects in p type material. How-
ever, Winer assumed that the density of states was dom-
inated by defects of only one charge state in each type of
material (negative in n type, positive in p type, and neu-
tral in intrinsic). While this can be a good approximation
in doped material, it is not a good approximation in in-
trinsic material.

Schurnm and Bauer extended this work by first consid-
ering the simultaneous formation of defects in all three
charge states, ' but only later realized the importance of
weak-bond depletion by defects of all three charge
states. Their results showed more charged defects than
neutral defects in intrinsic a-Si:H. Branz and Silver
also concluded there were more charged defects than
neutral defects, with a model having some similarities,
but expressed in terms of potential fluctuations. Howev-
er, Branz and Silver did not include weak-bond
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weak bond is broken, but the dangling bonds cannot
move apart without the involvement of hydrogen
diffusion. For i =1, one Si-H bond is broken and the hy-
drogen atom diffuses to the weak-bond site, breaking the
weak bond. The defect in the (D+Si-H) is labeled D in
the Street and Winer notation and the D defect is labeled
DH. For i =2, a second Si-H bond is broken, resulting in
a doubly hydrogenated weak-bond site and two isolated
D defects.

To calculate the defect density, we first determine a
general expression for the defect chemical potential,
which is defined as the free-energy change upon adding
one extra defect to the system. The defect chemical po-
tential for the amphoteric dangling-bond defect contains
three terms; the energy of the electron (or electrons) of
the defect, the entropy associated with the electron occu-
pancy of the defect, and the additional entropy associated
with the location of the defect on alternative hydrogen
sites. We now calculate each of these in turn.

The mean energy of the electrons in the dangling-bond
state depends on the probability of the dangling bond be-
ing in each of its three charge states. If the defect is posi-
tively charged, then the defect's electron has been re-
moved to the Fermi level, E~. If the defect is neutral,
then the defect's electron is at the defect energy, E. If the
defect is negatively charged, then an extra electron has to
be moved from the Fermi level to the defect, giving a to-
tal energy of 2E —EF+U. The extra energy U is the
correlation energy, which is needed to place two electrons
on the same defect. The mean energy of the electrons is
therefore given by

dangling-bond conversion nor did they include any hy-
drogen entropy in their model. Schumrn and Bauer con-
sidered different microscopic reactions, with zero, one, or
two Si-H bonds mediating the weak-bond-breaking pro-
cess, but concluded that the extra entropy only affected
the absolute densities of states formed and not their ener-
gy spectrum. '

In this paper, we present an improved defect-pool
model. We show that the energy spectrum of the density
of states does depend on the number of Si-H bonds medi-
ating the weak-bond-breaking reaction. We calculate the
density of states and derive a simple expression for the
energy separation of positively and negatively charged
defects. We investigate how the density of states depends
on the principal parameters of the defect-pool model. We
conclude that the best agreement with experimental re-
sults is obtained for a rather wide defect pool and for a
model where two Si-H bonds mediate the weak-bond-
breaking reaction.

IMPROVED DEFECT-POOL MODEL

The general principle of the model is that dangling
bonds are formed by the breaking of weak Si-Si bonds
and that the density of these is determined by a chemical
equilibrium between the weak bonds and the dangling
bonds. We can consider the dangling bonds to be formed
by one of three different microscopic chemical reactions,
depending on how many Si-H bonds are involved in the
process:

WB~~(2D), i =0,
Si-H+WB~~(D+Si-H)+D, i =1,
2Si-H+ WB~~(Si-H-H-Si )+2D, i =2,

where the functions f+, f, and f are the occupancy
functions of the amphoteric dangling bond in each charge
state, i.e., occupied by zero, one, or two electrons, respec-
tively. These occupancy functions can easily be calculat-
ed from statistical mechanics and are shown to be given
b 26

where i indicates the number of Si-H bonds mediating the
weak-bond-breaking chemical reaction. Here the
parentheses indicate species which are intimately con-
nected and cannot diffuse apart. These are the same reac-
tions considered by Street and Winer. For i =0, the

(2) (e) =Elf+(E)+Ef (E)+[2E Ez+ U]f —(E), (4)

f+(E)= 1+2exp([Ez E]IkT)+exp—([2EF 2E —U]/kT)—
2 exp( [E~ E]/k T)—f (E)= 1+2 exp( [E~ E]/kT )+exp( —[2EJ; 2E —U] IkT)—

exp( [2EF 2E —U] IkT )—f (E)= 1+2 exp( [EF E]Ik T ) +exp( [—2EF 2E —U] Ik T)—

Remember that E is the energy of the arnphoteric
dangling-bond state, with the + /0 transition being at an
energy E and the 0/ —transition being at E+ U.

The electron entropy is given by the Boltzmann
definition, s = —g p, lnp, , where p, is the probability of
the system being in any one state and the summation is
over all accessible states. For the case of the dangling-
bond defect, this gives

s, = —
[f+(E)lnf+(E)+2[f (E)/2]ln(f (E)/2)

+f (E)lnf (E)j,
where the factors of 2 associated with the neutral charge
state are due to the spin degeneracy of that state. The to-
tal entropy is zero if the defect is positively or negatively
charged, i.e., f+=1 or f =1. If the defect is neutral,
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pz(E) =E~+kT lnf +(E)
=E+kT ln(f (E)/2)
=2E Ez—+ U+kT lnf (E) . (10)

Figure 1 shows a plot of pd as a function of the defect
energy, for three Fermi levels. When f+ = 1, then

pd =Ez,' when f =1, then pd =2E E„+U—; but when

f =1, then pd =E—kTln(2). This can be compared
with the expression for the neutral defect chemical poten-
tial used by Winer, pd =E.

Next, we consider the effect of hydrogen involvement
in the chemical reactions (1)—(3). In these reactions i of
the defects are swapped to hydrogen sites distant from
the original broken weak bond, where i =0, 1, or 2. The
chemical reactions (2) and (3) add extra entropy to the de-
fect chemical potential, since the defects can gain entropy
by swapping hydrogen from Si-H bonds, transferring the
defect to a distant Si-H site. There are several orders of
magnitude more hydrogen sites than there are defects, so
a large amount of entropy becomes available from the
choice of which distant hydrogen site contains the defect.
It is important to realize, however, that a defect at an en-
ergy E gains entropy only from those Si-H sites that
would also form a defect at the same energy, E.

Consider a hydrogen site (a Si-H bond) which would
form a dangling-bond defect at energy E, if the hydrogen

1.2
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0.8
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FIG. 1. The defect chemical potential (without hydrogen en-

tropy), pd, as a function of defect energy, E, for three different
Fermi-level positions. The valence-band mobility edge is taken
as the energy reference, i.e., E, =0 eV. The dashed line indi-
cates the electron energy for the neutral defect ((e ) =E).

then s = —ln —,', which makes the neutral defect twice as

likely to form than would be expected on purely energetic
gl ounds.

We can add the terms from (4) and (8) to give the de-
fect chemical potential, without hydrogen entropy,
pd=(e) kT—s„
pd(E)= f+[Ez+kT 1nf +(E)]+f [E+kT ln(f (E)/2)]

+f [2E EF+—U+kT lnf (E)] . (9)

By rearranging the occupancy functions (5)—(7), it can be
shown that the three terms in square brackets in Eq. (9)
are identical, and since f++f +f = 1, then,

atom were removed. The number of these sites is HP (E),
where H is the total concentration of hydrogen and P(E)
is the energy distribution of sites which would form de-
fects at energy E (the defect-pool function). The probabil
sty that a defect exists at any given hydrogen site is given
by pd=iD(E)I[2HP(E)], where D(E) is the density of
defects at energy E. The i/2 term comes from the fact
that for every two defects formed only i of these can swap
hydrogen from distant sites, according to the reactions
(1)—(3). The total entropy can then be calculated from
sH= —gpdln(pd), where we sum over HP(E) hydrogen
sites, with identical pd. Then, dividing by the density of
defects D (E), we get the hydrogen entropy per defect at
energy E, to be

i iD(E)
2 2HP (E)

Adding this entropy to Eq. (10) leads to a general expres-
sion for the defect chemical potential,

0 E
2 2 2HP (E)

This same result can also be deduced by applying the law
of mass action directly to each of the chemical reactions
(1)—(3), but some care is needed to avoid errors and ac-
count for the entropy and electron occupancy correctly.

To calculate the defect density at energy E, we now
write down the probability of converting a weak-bond
state at energy E„remembering that a weak bond forms
two dangling bonds and accounting for the depletion of
the weak-bond states by the formed defects:

D (E)= [P(E)g,(E, )
—D (E)]exp [ 2[pd (E) E—, ]/kT], —

(13)

where P (E)g, (E,) is the density of weak bonds at energy
E, that lead to potential defect sites at an energy E.

Here we adopt the common assumption that the for-
mation energy for the weak-bond to dangling-bond con-
version can be represented by the one-electron energy
differences of these states. ' This assumption neglects
ionic relaxation and multielectron contributions to the
formation energy, for which some justification has been
given. ' ' Later in this paper, we further justify this ap-
proximation from the numerical results.

It is also important to note that in (13) the energy of
both defects is E. This is correct, since the two defects
minimize their free energy independently and will, on
average, have the same energy. It is not correct to give
the defects statistically independent energies, as was done
by Schumm and Bauer, since this leads to minimizing
the free energy of a pair of defects, which could only be a
correct physical interpretation if the two defects were in-
timately paired. This may be a reasonable interpretation
for i=0, but not for the models with i =1 and 2, which
imply long-range hydrogen diffusion, leading to separa-
tion of the two defects by an arbitrarily large distance.
Essentially, the choice of minimizing the defect free ener-
gy independently or in pairs corresponds to diferent mi-
croscopic models. For the case of i =0, this corresponds
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to assuming either that the defects formed from the same
weak bond have the same energy, or that they have sta-
tistically independent energies, respectively.

The D(E) in (13) gives the density of states formed
from weak-bond states at energy E„so if there is a distri-
bution of weak-bond energies, then we must write (13) in
integral form, where the integral is over the weak-bond
energies;

P(E)g, (E, )
D(E)=

I +exp I 2[pd (E)—E, ] /k T ]
(14)

We identify the weak-bond states with the valence-
band-tail states, which are exponentially distributed in en-

«gy, "g, (E, )=N, oexp([E, E, ]/—E„o), where N, o is the
density of tail states extrapolated to the valence-band mo-
bility edge, E„and E,o is the characteristic energy of the
exponential. The integral (14) can be evaluated exactly,
but here we use the approximation that for pd &E, all
weak-bond states convert, while for pd )E, a Boltzmann
fraction of states converts, ' which leads to

2E 0
—pd(E)

D(E)=P (E)N, O exp
2Ev0 v0

(15)

The defect-pool function P(E) is assumed to have a
Gaussian distribution,

P(E)= exp
1

CT 27T

—[E E]—
20

(16)

where o. is the pool width and E is the most probable en-

ergy in the distribution of available sites for defect forma-
tion. If the expression for pd from (12) is substituted into
(15), then after suitable rearrangement we get

PkT/Evo 2

P E+P, (17)D(E)=y 2

f (E)

with

02E

[2E,O
—kT]

p
—1

l

2H

Xexp E~ —E, —pO

EO ~ ' 2Eo
(18)

p =2E,o/(2E, O+ ik T) Note that .[i /2H ]~

for i =0. These formulas express the density of states at
equilibrium, which is maintained for temperatures above
the equilibration temperature, T'. To calculate D (E) at
lower temperatures, we must use the values at T* for the
parameters in Eqs. (17) and (18). In particular, we should
replace E,o by E„*p EF by EF, and T by T', where the as-
terisk indicates the value of a temperature-dependent pa-
rameter at the equilibration temperature. D(E) is not a
function of temperature below T*, since the equilibrium
density of states is assumed to be frozen in-

The energy dependence of the density of states comes
from Eq. (17). The absolute density is given by the scal-
ing factor y, in Eq. (18). The energy dependence of the
density of states depends on i through p. Since P(E) is a
Gaussian, Eq. (17) shows a shifted Gaussian, modified by

the term containing the occupancy for neutral defects
f (E). Since f (E) is a symmetrical function with an ex-
ponential energy dependence at high and low energy, its
effect on the density of states is large, leading to extra
features in D (E) at higher and lower energy. D (E) is no
longer a simple Gaussian.

CALCULATED DENSITY OF STATES

D+(E)=D(E)f+(E),
D'(E) =D(E)f'(E),
D (E)=D(E)f (E),

(19)

at three different temperatures. The shifted Gaussian

We now calculate the density of states, using the best
available input parameters, drawn from experimental re-
sults. We take the following values for parameters:
N O=2X10 ' cm eV ', H=5X10 ' cm (i e., 10%
hydrogen content), and T =500 K. ' ' The band gap
(mobility gap) is E =1.9 eV (Ref. 30) and the intrinsic
Fermi level is set at EF—E, =1.05 eV to give a conduc-
tion activation energy of E, —EF=0.85 eV. We allow
for a temperature dependence of the valence-band-tail
slope by using the relationship E,O=E,0~@ 0~ +(kT) . '

We take E,O=O. 036 eV at T=0 K, which gives a room-
temperature valence-band slope of 0.045 eV (typical for
good quality material ) and a value of 0.056 eV at the
equilibration temperature.

The correlation energy is not known very accurately.
Early measurements of U (Refs. 33—35) relied on the as-
sumption that the energy dependence of the density of
states does not change with doping, which is clearly not
correct in a defect-pool model. Certainly from the low-
temperature dependence of the spin density, U is positive
and must be greater than 0.1 eV (Ref. 35) [recent mea-
surements give U=0. 2 —0. 3 eV (Ref. 36)]. In this paper,
we have taken the commonly used value of U=0. 2
V 20, 22

The key parameter o., the width of the defect pool, is
set at o. =0.178 eV, with i =2. This value is chosen to
give the experimentally determined energy separation be-
tween negatively charged defects in n-type a-Si:H and
positively charged defects in p-type a-Si:H, which we la-
bel b. We take the value for this energy separation as
6=0.44 eV, which is found from our recent field-effect
conductance measurements. This is in good agreement
with reported values of 0.4—0.5 eV from luminescence
measurements, ' ' photomodulation spectroscopy, and
optical absorption, " while the value for this energy
difference from photoemission measurements is 0.7
(+0.2) eV. We consider the effect of changing various
parameters of the defect-pool model later.

Figure 2 shows the calculated density of dangling-bond
states, D (E), in a-Si:H. We believe this gives a good rep-
resentation of the density of states in good quality intrin-
sic a-Si:H. The density of states is frozen in at the equili--
bration temperature, T*=500 K. We show D(E) divid-
ed into components of different charge density, D+, D,
and D, defined by,
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FIG. 2. The calculated density of dangling-bond states,
D(E), in intrinsic a-Si:H. The density of states is frozen in at
the equilibration temperature T = 500 K and the Fermi level is
at E+=1.05 eV. The total density of states D(E) is shown di-
vided into components of D, D, and D+, at the equilibration
temperature T=500 K (a); at a typical measurement tempera-
ture T=313 K (b); and at T=O (c).

One-electron density of states

It is extremely useful to map the density of states D (E)
onto an effective one electron density -of states g (E),
which relates well to the density of states that is mea-
sured in most spectroscopic techniques with thermal
transitions, like the field effect, ' ' space-charge-limited
current analysis, " and deep-level transient spectroscopies
(DLTS). ' The occupancies of correlated dangling-
bond states are given by f+, f, and f, whereas the oc-
cupancy of one-electron states is given by the Fermi-
Dirac function. If U=O, we can write g(E)=2D(E).
Alternatively, provided U is larger than about 3kT, we

from Eq (17).is centered on the D states, while the peaks
in D (E) at higher at lower energy consist of D and D+
states, which are present even in intrinsic material. Of
course the total density of states D(E) does not change
with T, because this only depends on T*, which is fixed,
but f+, f, and f are a function of temperature. At
zero temperature, all states above EF are D, all states
below Ez —U are D, and all states in between are D .
For intrinsic a-Si:H, the position of EI; gives an equal
number of D+ and D states and charge neutrality is
maintained. EF is not temperature dependent. The total
density of defects is 4.0X 10' cm, while the density of
neutral defects is 8.3X10' at 500 K, 7.4X10' at 313 K,
and 6.2X10' at zero T.

The energy separation between the peak of the nega-
tively charged defects and the positively charged defects
is 2po /E, O=0. 64 eV, but remember this refers to the
+/0 transition energy of both states. The energy separa-
tion between the doubly occupied D state and the emp-
ty D+ state is given by 6=2po. /E, o

—U=0. 44 eV.
The relationship between EF and E is given by
E„=EF+6/2 and so the peak of the D+ states coincides
with E~.

can approximate g (E) by

g (E)=D(E+kTln(2))+D(E —U —kT ln(2)), (20)

E 10
I

10

10

10
0.8 1.2

E (eV)

1.6

FIG. 3. The effective one-electron density of states in a-Si:H,
g(E), at T=313 K, for the same D(E) shown in Fig. 2. The
components of g(E) are shown as states formed at the equilibra-
tion temperature, T*=500 K. D, states (dashed lines) are
states formed as D, Dl, states (chain lines) are states formed as
D+, and D, states (solid lines) are states formed as D .

where the kT ln(2) term comes from the spin degeneracy
of the singly occupied state. This is not exact, but it is a
very good approximation, leading only to a small error of
about exp( —U/kT) in the density.

Figure 3 shows the effective one-electron density of
states for intrinsic a-Si-H, for the same D(E) in Fig. 2,
also adding contributions from exponential conduction-
and valence-band-tail states. From Eq. (20), we see that
g(E) depends on T, even when D (E) does not. In Fig. 3,
g(E) is plotted at T=313 K. The components of g(E)
are shown in their charge state at the equilibration tem-
perature. We adopt our earlier notation, ' and label as
D, those states that are formed as D states at equilibri-
um, while D& are states formed as D+. We adopt a new
notation for the states formed as D, labeling them D, (in
Ref. 41, we labeled these states Do). This is useful, since
we can more clearly distinguish between contributions to
g (E) from the +/0 one-electron transition energies and
the 0/ —one-electron transition energies. This means
that there are six components in the total one-electron
density of states, g(E), and all of these states would be
detected in experiments where g(E) is probed by moving
the Fermi level through a frozen-in density of states.
Thus, a D,+ state means a state formed as a negatively
charged defect at equilibration, which has subsequently
lost two electrons, as the Fermi level is swept to lower en-
ergies without reequilibration of the density of states
D (E).

On a one-electron density-of-states diagram, the energy
separation between the +/0 and 0/ —transition energies
is U,a = U+2kT ln(2), and in Fig. 3 the energy separa-
tion between the D, and the D&+ levels is given by
b, '=2po /E, o U,tr=0. 4—0 eV, with EF midway between.
These are the energies that would be measured in experi-
ments with thermal transitions, which are interpreted us-
ing a one-electron density of states, like the field effect
and most spectroscopic techniques, like DLTS. Howev-
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er, experiments which probe optical transitions involving
amphoteric states can really only be interpreted using the
correct statistics, where the real energy separation be-
tween the + /0 and 0/ —transitions is U.

In Fig. 3, we observe the very interesting result that
the total density of one-electron states, g (E), is almost in-
dependent of energy (for intrinsic material with no band
bending), even though the states have been formed from a
single pool with a Gaussian width parameter 0. of only
0.178 eV. The + /0 and 0/ —transition energies are not
resolved. This gives some justification for the old pro-
cedure of modeling the one-electron density of states as
conduction- and valence-band-tail states, plus an energy-
independent density of deep states. "

Doped amorphous silicon

10

10

E 10
I

10

10

10

10

10

/
/

-/
7
(

0.8 1.2
E: (aV)

E,

18
'lO =

I I I

10

(a)::

IO
E
O
I)
tL)

LLJ
17a 10

p t

I

I
'

I

Figure 4 shows the calculated density of states D (E)
for lightly doped amorphous silicon. The equilibrium
Fermi level EF is shifted by 0.25 eV, from the intrinsic
position. There is a temperature dependence of the Fer-
mi level in doped material, due to the statistical shift to
conserve the total charge. The statistical shift consists of
two opposing terms due to charge in the tail states and
charge in the deep states. For our model, the statistical
shift nearly cancels for n-type material, giving
E~=EF —0.006 eV, at 313 K, but the statistical shift is
dominated by the deep states for p-type material, giving
E~=E~+0.021 eV. The components of D, D, and
D+, are shown at T=313 K, including this statistical
shift.

Figure 5 shows the one-electron density of states, for
lightly doped material, at T=313 K, but with the equi-
librium (T*=500K) components D„D„and D/, indicat-
ed. Note that in n-type material, the peak position of the
D, states remains the same, but the peak position of the
D, and Dh states is shifted to a higher energy, compared
to their position in intrinsic material. The density of D,
states is also decreased. In p-type material, the position
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Q4E 0.8 1.2
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FIG. 5. The effective one-electron density of states, g(E), for
lightly doped a-Si:H. The Fermi level is shifted by 0.25 eV from
its position in intrinsic a-Si:H; n type (a) and p type (b). The
components of g (E) are shown as states formed at the equilibra-
tion temperature, T*=500 K.

E
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of the Dh states remains the same, while the D, and D,
states move to lower energy. However, the energy sepa-
ration of the D, state in n-type material from the D&+

state in p-type material is still given by
5'=2po. /E, o

—U,&=0.4 eV. This is a different picture
than we presented previously, ' by extending the Winer
model, where the position of all D„D„and D& com-
ponents remained the same and the energy shift between
D, and D&+ was 2o /E, o

—U.
Figure 6 shows the Fermi-level dependence of the equi-

librium density of D„D„and D& states integrated over
energy. The total density of states D„, increases ex-
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FIG. 4. The calculated density of dangling-bond states,
D(E), in lightly doped a-Si:H. The equilibrium Fermi level EF
is shifted by 0.25 eV from its position in intrinsic a-Si:H; n type
(a) and p type (b). The density of states is frozen in at T =500
K. The D,D,D+ components and EF are shown at T=313
K.

'lO

0.8 1.2
Ep' (eV)

E

FIG. 6. The density of D„D„and Dz states (formed at the
equilibration temperature), as a functon of the Fermi-level posi-
tion at equilibration, EF .
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ponentially as the Fermi level is displaced from midgap
and is dominated by D, states for n-type material and by
Dz states for p-type material. When the total density of
states is dominated by one type of defect (D, for n type
and Ds for p type), then the Fermi-level dependence of
the total density of states can be determined, from Eq.
(17), to be given by

'l0

D, —exp(pE~/E. o)

Dh -exp( pEF/E—o)

(21)

(22)

Thus the density of states increases exponentially with
the shift in Ez, with a characteristic energy of
E„o/p=E, o+ikT/2. For the parameters in our model,
this characteristic energy is 99 meV, which is in excellent
agreement with the experimental results of Pierz, Fuhs,
and Mell' for n-type a-Si:H. For p-type a-Si:H, Pierz,
Fuhs, and Mell' find a lower characteristic energy due to
the additional effect of E,o increasing with impurity dop-
ing. This latter effect is also observed for higher levels of
n-type doping and is presumed to be due to extra disorder
in the presence of dopant atoms.

The key result in Fig. 6 is that charged defects out-
number the neutral defects, even for intrinsic amorphous
silicon, with the ratio of charged to neutral defects at
equilibrium, (D, +Dh )/D, =3.9.

EFFECT C)F DEFECT-PQQL PARAMETERS

We now consider the effect of altering the input param-
eters of the defect-pool model, in particular on the calcu-
lated ratio of charged to neutral defects. Figure 7 shows
the calculated equilibrium ratio of charged to neutral de-
fects, as a function of the width of the defect pool, o., for
various choices of the other fixed parameters. For our
original choice of the other fixed parameters (bold line in
Fig. 7), the density of charged defects exceeds the density

0.0 0.2 0.4
D„'—D, (eV)

0.6 0.8

FIG. 8. Calculated charged to neutral defect ratio, at the
equilibration temperature, [D, +Dh ]/D„plotted against the
one-electron energy separation, Dz —D, , at 313 K, for
different choices of fixed parameters. For each curve, E~, E,o,

U, and i are fixed at the same values as in Fig. 7 and o. is varied.

of neutral defects, for o. greater than 0.12 eV. Micro-
scopic models which decrease the value of i lead to higher
ratios, while reducing E,o also leads to higher ratios.
However, increasing U leads to lower ratios. For U=0.4
eV, and the same values for the other parameters, then
the ratio of charged to neutral defects is reduced to 0.9.

Figure 8 shows the same results in Fig. 7, but plotted
as a function of the one-electron energy separation,
6'=D&+ —D, , at 313 K. For each curve, E~, E,o, U,

and i are fixed and o. is varied. The results show that for
U =0.2 eV, the ratio of charged to neutral defects
remains approximately constant at about 4, for any corn-
bination of parameters that keep the energy separation
Dh+ —D, =0.4 eV. The ratio of charged to neutral de-

fects does depend on U, even for a given energy separa-
tion, DI,

+ —D, . For U=0.4 eV and maintaining a 0.4-

eV energy separation for D&+ —D, , the ratio of charged
to neutral defects is nearer to 2.

Figure 9 shows the effect of altering the parameter i on
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FIG. 7. Calcualted ratio of charged to neutral defects, at the
equilibration temperature, [D, +D/, )/D„as a function of the

width of the defect pool, o., for different choices of fixed param-

eters. The solid square indicates the choice of parameters used

in Figs. 2—6 (EF=1.05 eV, E„0=0.56 eV, U=0. 2 eV, i =2,
with o.=0.178 eV). The solid curve indicates the effect of vary-

ing o. only. The other curves indicate the effect of varying one

other parameter, as labeled.
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FIG. 9. Calculated density of dangling-bond states, D (E), for
the model with different values of i (number of Si-H bonds medi-

ating the weak-bond breaking reaction); o. is adjusted to main-
tain the energy separation Dh+ —D, . The D, D, and D+
components are shown at T= 313 K.
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the density of states D (E). In contrast to the conclusions
of Schumm and Bauer, ' altering p changes the eneIgy
spectrum of the density of states, as well as their absolute
density. In Fig. 9, we adjust the value of o. to keep the
energy separation of the D and D+ states constant.
This leads to a reduction of o. to 0.158 eV for i =1 and
0.134 eV for i =0. The total density of states is reduced
dramatically, by changing i, with D„, values of 1.6X 10'
cm for i =1 and 2.9X10' cm for i =0, compared to
4.0X 10' cm for i =2. The ratio of charged to neutral
defects does not change significantly and the calculated
density of spin active defects (D ), at T=313 K, is
2.4X10' cm for i =1 and 5.3X10" cm for i =0,
compared to 7.4X10' cm for i =2. The number of D
states for i =2 is much closer to the number of spins
found experimentally in good quality intrinsic a-Si:H.

Furthermore, we argue that i must equal 2, if the sys-
tem attains true chemical equilibrium. For any situation
where an i =1 reaction occurs, then an i =2 reaction
must also be possible, as both depend on the diffusion of
hydrogen. The i =2 reaction will completely dominate
the resulting density of states, as shown in Fig. 9. Since
the calculated density of defects for i=2 gives a good
agreement with experiment, we take this as good
justification for the defect formation energies being given
by the one-electron energy differences' and that lattice
relaxation energies are indeed negligible.

The alternative is that i =0, and then the only way that
large enough defect densities can occur is if there is a
very large local lattice relaxation energy or if the dan-
gling bonds can diffuse to different Si sites, without hy-
drogen motion, giving entropy from the choice of Si
sites. ' However, there is little experimental evidence for
this view and significant evidence for the role of hydrogen
and so we adopt the hydrogen model, with i =2.

DENSITIES OF STATES FOR DIFFERENT POOLS

Although we believe the density of states shown in
Figs. 2—6 gives the best picture of the density of states in
good quality amorphous silicon, the results do depend on
the choice of two critical parameters, which are not well
established by independent experimental results, namely,
o and U. Nevertheless, we believe the improved defect-
pool model to be valid, regardless of the choice of these
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FIG. 11. One-electron density of states for lightly doped ma-
terial with a narrow pool, o.=0.15 eV.
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parameters. Therefore, in this section we calculate the
density of states for two different choices of o. and U to
highlight the effect that these different choices would
have on the results. We use the same values for the other
input parameters and keep i =2, since the above argu-
ments for i =2 are generally valid.

Figures 10 and 11 show the one-electron density of
states, calculated for o.=0.15 eV and U=0. 2 eV. For
this value of o., the total number of defects in each charge
state is identical, in intrinsic material, which means that
the ratio of charged to neutral defects is 2 (Fig. 12). Note
that in Fig. 10 the peak density of the D, states is slightly
higher than the D, or D& states, since the peak shapes are
different. The energy separation between D, (in n type)
and Dh+ (in p type) would be 0.22 eV, which is less than
found experimentally.

Figures 13—15 show the equivalent diagrams for the
case where o. =0. 1 eV and U=0. 4 eV. In this situation,
the +/0 and 0/ —transitions are resolved on a one-
electron density of states, which is dominated by the D,
states in intrinsic material. This situation is interesting,
because it shows that for these parameters we essentially
obtain the old picture of the density of states in intrinsic
a-Si:H, namely a density of states dominated by a band of
neutral defects, with their correlated states at an energy
U,z higher. The ratio of the density of charged to neu-
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Q4 0.8 1.2
E (ev)

1.6

10
E 0.8 1.2

EF (eV)

E

FIG. 10. One-electron density of states, g(E), for a model
with a narrower defect pool, o.=0.15 eV.

FIG. 12. The density of D„D„and Dz states as a function of
Fermi level, for a narrow pool, o.=0.15 eV.
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FIG. 13. One-electron density of states for a model with a
very narrow pool, o.=0. 1 eV, and a high correlation energy,
U=0.4 eV.

FIG. 15. The density of D„D„and Dh states as a function of
Fermi level, for a very narrow pool, cr=0. 1 eV, and a high
correlation energy, U=0.4 eV.

tral defects is 0.1, so the density of D, and D& states is
small in intrinsic material and their energy position is dis-
placed from their position in doped material. However, a
shift of the Fermi level by only 0.2 eV is required before
either of the D, or Dh states dominates (Fig. 15) and the
density of states still shows the exponential increase with
Fermi level, for moderate doping levels. The one-
electron density of states for doped material (Fig. 14)
shows resolved correlated bands of D, states in n-type
material and D& states in p-type material. The D, and DI,
states are at different energies, but the separation is now
less than the correlation energy U. The energy of the D,
(in n type) is 0.24 eV higher than the Dz+ (in p type),
which is clearly in contradiction to the experimental re-
sults.

COMPARISON WITH EARLIER MODELS
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FIG. 14. One-electron density of states for lightly doped ma-

terial, with a very narrow defect pool, o. =0. 1 eV, and a high
correlation energy, U =0.4 eV.

It is of some interest to pinpoint the exact differences
between our model and those of previous work. In
the original model of Bar-Yam and Joannopoulos, '

the defect formation energy for the neutral defect
was an arbitrary parameter, Fo, independent of the
defect energy. The defect formation energy for charged
defects was then expressed relative to that for the neutral

defect. The density of formed defects was calculated
from three Boltzm ann expressions of the type
D(E) =Noexp( Fo/kT—*), where No is a density of avail-
able sites, which is also a parameter. The use of this
Boltzmann expression implies there is only one defect
formed per chemical equilibrium reaction, though no mi-
croscopic reaction is specified. This leads to an energy
separation between the D&+ and the D, states of
2cr /kT* —U and to a defect density that increases with
Fermi-level shift, as exp(E~/kT').

Branz and Silver use the same model as Bar-Yam and
Joannopoulos, '" applying it more specifically to a-Si:H.
They fit the known defect densities in a-Si:H and their
temperature dependence by a suitable choice of the pa-
rameters, F0=0.3 eV and To=10' cm . This very low
density of potential defect sites leads to severe saturation
and to a resultant D (E) where the peak positions of the
D&+ states and the D, states are determined by defect
saturation. For the parameters given by Branz and
Silver (o =0.15 eV, kT*=42 meV, and U=0. 2 eV), we
calculate 2o /kT* —U=0. 87 eV, which would be the
D&+ —D, energy separation without defect saturation.
With defect saturation, Branz and Silver find the energy
separation to be about 0.5 eV. In our model, defect sat-
uration will only occur for the lowest energy D, states
and is masked by the valence-band-tail states. We there-
fore have neglected defect saturation in going from Eq.
(14) to (15), in the present calculations.

In the models of Bar-Yam and Joannopoulos' and
Branz and Silver, there is no weak-bond dangling-bond
conversion, no microscopic mechanism for the defect for-
mation process, and no specific hydrogen entropy contri-
bution to the defect chemical potential. If hydrogen were
involved, then it would be implicitly included in the I'o
tenn.

Winer was the first to incorporate weak-bond
dangling-bond conversion and to explicitly include hy-
drogen entropy in the microscopic defect formation
chemical reaction. Winer calculated the defect density
assuming only one type of defect to be important for each
type of material, D in intrinsic, D in n type, and D + in

p type. The defect chemical potential contained only one
energy term in each case and no electron entropy. Hy-
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drogen entropy was included, but it was calculated in-
correctly, assuming each defect gained entropy from all
Si-H sites, rather than those only at the same energy.
There was also an error in the calculation of the density
of D states in n-type material, because the energy scale
was changed to re Acct the 0/ — transition energy,
without also changing the energy scale of the defect
chemical potential in a consistent way [see Ref. 20, Eq.
(19), and the following sentence]. The density of D,
states was therefore underestimated. In the Winer mod-
el, i =1, and the increase of the density of defects with
Fermi level goes as exp(E+/[E, o+ kT*/2 j ).

Schumm and Bauer ' extended the Winer model, by in-
troducing the simultaneous formation of D„D„and D&
states. The simplest extension is to consider three in-
dependent chemical reactions, for the formation of dan-
gling bonds in each charge state, from the same weak-
bond states. The main error in this approach is that de-
pletion of the weak-bond states by dangling bonds in the
other charged states was ignored. We call this model the
EW model (extended Winer). It is the model we used in
our earlier work ' and is essentially the same as the
"approach-I" of Schumm and Bauer. ' One consequence
of this model is that the energy position of each of the
D„D„and DI, states is fixed and the absolute density of
D, states is independent of the Fermi level. The problem
with this model is that there is an inconsistency between
the charge state and the occupancy of the state, which
have to be treated separately. '

In a later paper, Schumm and Bauer corrected for the
depletion of weak bonds by defects in all three charge
states. However, they considered that the two dangling
bonds should have statistically independent energies,
which leads to only half the energy shift of the + /0 tran-
sitions of the D, and D, states. As previously discussed,
we believe this is only correct if the defects are intimately
paired. Schumm and Bauer included hydrogen entropy,
but concluded that the energy spectrum of the density of

states did not change, thus the hydrogen entropy was in-
cluded within a numerical scaling constant. We call
this model the SB model (Schumm and Bauer).

Figure 16 shows the calculated ratio of charged to neu-
tral defects that would be calculated according to the
procedures of the EW and SB models. Using the same
parameters as proposed by Winer, we calculate an ener-

gy separation Dh+ D;—=2a2/E, o
U=—0.5 ev and a

charged to neutral defect ratio of 5.7. The discrepancy
with Winer's own conclusion is due to the error in the
calculation of the D, states. This model actually predicts
more charged defects than our model. The curve for the
SB model is actually quite close to our model, but this is
due to the approximate cancellation of two differences.
The energy separation between D&+ —D, according to
the SB model is a /E, o U, —compared to
2po /E„o U,s, in o—ur model. For Schumm and Bauer's
choice of parameters, ' with i =2, E,o=0.045 eV, and
T*=500 K (kT=0.043 eV), then 2p= 1, and so the shift
is similar. With o. =0.165 eV, the SB model gives
D&+ —D, =0.4 eV and a ratio of charged to neutral de-
fects of 3.4.

DISCUSSH3N

In this section we compare the results of our model
with other experimental results and show that the density
of states we present is consistent with a wide range of ex-
periments. An excellent discussion of the experimental
evidence for charged defects has been given by Branz and
Silver. Here we repeat some of these arguments and
present some new ones.

Figure 17 shows the calculated temperature depen-
dence of the spin density. Above the equilibration tem-
perature this is given by D in a strongly temperature-
dependent D (E), but below the equilibration temperature
the density of spins is only a weak function of tempera-
ture given by the temperature dependence of D, within a
fixed D (E), as shown in Fig. 2. Above the equilibration
temperature, we find that D has an activation energy of
0.39 eV, which is in good agreement with 0.35 eV, found
by McMahon. Earlier measurements of the spin densi-
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FICi. 16. Calculated charged to neutral defect ratio, at the
equilibration temperature, as a function of the width of the de-
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FIG. 17. Calculated temperature dependence of the spin den-

sity, D, in undoped a-Si:H, above and below the freeze-in tem-
perature, T*.
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FICx. 18. The calculated thermal modulation electron-spin
density, defined by TM=(D(7 =3QQ) D(Q=IQQ) )/200D(Q=IQQ) as
a function of the width of the defect pool, for different values of
the correlation energy, U. The solid square indicates the result
for the choice of parameters in Figs. 2—6.

ty above the equilibration temperature, which find a
lower activation energy, are probably subject to sys-
tematic errors, due to the method of rapid quenching.

The weak temperature dependence of the frozen-in
spin density has been analyzed recently and interpreted
to give the correlation energy U. We define the thermal
modulation of the spin density as TM=(D(r —3OO}

D~—z,oo})/200Diz. ioo}, for comparison with experi-
mental results. Figure 18 shows our calculated TM
plotted against o., for different values of the correlation
energy U. We note that TM is negative for small o., but
becomes positive and increases in value, as o. increases.
TM is a function of U, but it also depends on o.. For the
density of states in Fig. 13, TM is negative. For our pa-
rameters, we predict a positive TM of 5.8 X 10 K
compared to measured positive values in the range
(1—3) X 10 K

The temperature dependence of the spin density comes
from the positive temperature dependence of U,~ togeth-
er with any effect of a changed occupancy in a noncon-
stant D (E). However, this analysis makes the important
assumption that U itself is not temperature dependent,
which is open to question. Given that U comes from
electron-electron Coulomb repulsion less any lattice re-
laxation energy, then we might expect the lattice relaxa-
tion energy to contribute a negative temperature depen-
dence to TM. Since TM is very small, only a very small
effect would make a significant contribution and so
reduce the calculated TM.

Figure 19 represents the calculated spin density (D at
313 K) as a function of the total defect density (D, ,
frozen-in at 500 K), as we alter the material quality. We
know that the density of defects increases, primarily as a
result of an increase in the disorder, which leads to an in-
crease in E„o. The problem is that we do not know exact-
ly how o- varies. In Fig. 19, we plot two extreme cases:
in one case o is constant, in the other case o. increases to
keep 6 constant. In the latter case, the energy spectrum
of D (E) remains the same and the ratio of charged to
neutral defects remains constant. However, even with
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FIG. 19. The calculated spin density, D at 313 K, as a func-
tion of the total density of frozen-in defects, D„„representative
of different quality intrinsic a-Si:H. For both curves, E+, U, and
i are constant, while E p is varied, either with constant 6 (solid
line) or constant o. (dashed line).

the most extreme assumption that o. is constant, the
departure from proportionality is small. The propor-
tionality of such a plot has been used to support the argu-
ment that the spin density measures all the defects in a-
Si:H, but the experimental data from photothermal
deAection spectroscopy, for example, are perfectly com-
patible with either plot in Fig. 19.

However, the fact that light-induced changes in the to-
tal defect density produce a disproportionality in the spin
versus total defect density is good evidence for the ex-
istence of charged defects in the annealed state. It is
now well established that prolonged illumination creates
mainly D states and therefore produces a nonequilI'bri-
um density-of-states distribution. Remember that all re-
sults discussed in this paper refer to an equilibrium densi-
ty of states. The results of Schumm, Lotter, and Bauer
can be interpreted within a defect-pool model as showing
a charged to neutral defect ratio of 4, in excellent agree-
ment with our results.

Cohen and co-workers have investigated the density of
states in a-Si:H using depletion-width modulated
electron-spin resonance (DM). ' In n-type material, the
DM signal showed spin creation consistent with
D —+D transitions, with a positive correlation energy)0.2 eV. However, in undoped a-Si:H they found a
negligible DM signal, which they interpreted as showing
zero correlation energy. ' Branz and Silver and Lee
and Schiff pointed out that a zero DM signal is to be ex-
pected in true intrinsic material, but this is only true for
small displacements of the Fermi level. Our density of
states predicts that the DM signal will be negligible for
relatively large displacements of the Fermi level through
the frozen-in density of states for intrinsic material. This
is because the total g(E) is relatively fiat and there will be
an equal number of D ~~D and D++~D transitions.
The defect-pool model, with charged defects, is therefore
consistent with these observations.

Chen and co-workers have investigated the density of
states in a-Si:H, using photomodulation spectroscopy.
Their fitting of the photomodulation spectrum (PM) leads
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to assignments of the energy positions of the defect states.
For n-type a-Si:H, they detect (in our notation) D, / and
D,+, separated by 0.25 eV, which is therefore the corre-
lation energy U. Note that the optical transition ener-
gies, not the thermal transition energies, will be observed
in this technique. In p-type material, they detect D&+

which is found 0.4 eV higher than the D, level in n-

type material. This compares well with the 6=0.44 eV
energy separation, in our model. In intrinsic material,
Chen and co-workers observe two transitions, which they
assign to D, levels (assuming these to be dominant as in a
conventional model of a-Si:H, like Fig. 13) and conclude
that the correlation energy in intrinsic material is 0.6 eV.
However, in our model, with dominant charged defects,
we would expect to see the same transition energies as ei-
ther the n- or p-type material. This is exactly what is ob-
served with the PM spectra picking out the same features
as observed in p-type material, apart from the impurity
band transitions. The interpretation of the energy sepa-
ration of these transition energies in our model is 6+0.2
eV=0.64 eV, which agrees well with the observations.
The PM results therefore support our model with a domi-
nance of charged defects in intrinsic material.

Further evidence for the presence of charged defects in
intrinsic a-Si:H is contained in some LESR (Ref. 52) and
infrared LESR (Ref. 53) measurements. However, there
are contradictory reports on the lack of any defect
(g=2.0055) LESR (Ref. 54) and even of LESR quench-

ing. ' The fact that LESR quenching can ever be ob-
served means that not all defects are converted to D
states on illumination and so there is the possibility that
some charged defects may not be detected or may be
masked by the band-tail signals.

CONCLUSIONS

The essential thesis of this paper is that the density of
dangling-bond states in amorphous silicon is determined
by a chemical equilibrium process and on this basis it is
possible to calculate, analytically, the density-of-states
distribution. The result depends on several parameters,
which can be found from experimental results. Better
precision is needed in a number of these parameters, but
using the best available data from a wide range of experi-
ments, we calculate a density of states for intrinsic a-Si:H
with approximately four times as many charged defects
as neutral defects.
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