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Electron lifetime and transport time for inverse-power-law electron-impurity scattering potentials
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We examine, in weakly disordered metals, the conditions governing the existence of the electron life-

time and the transport time. We show that the potential does not need to be integrable for these two
quantities to exist. We also study scattering potentials of the form r ' + ' and show that the problem
should shift from the short-range universality class to the long-range universality class when the parame-
ter o. becomes smaller than —(D —1)/2, where D is the dimensionality.

I. INTRODUCTION

We recently showed' that the electrical conductivity o.

of a weakly disordered metal (the Drude part plus the
weak-localization correction calculated to first order in
perturbation) can be expressed in terms of only two pa-
rameters, the elastic lifetime of the electrons ~ and the
transport time r„(in the absence of inelastic or spin-orbit
scattering). These lifetimes were calculated within the
Born approximation. It was pointed out that 0 can thus
be obtained for an arbitrary scattering potential V(r), as
long as this potential is integrable, more precisely as long
as the calculation of ~ and ~„ is feasible. Under these
conditions, it was shown that the problem belongs to the
same universality class as the problem involving a short-
range potential, although the precise structure of the po-
tential does not appear in the problem.

In the present paper, we examine this point more close-
ly and we show that a supposedly long-range potential
may still yield a result belonging to the short-range
universality class.

II. GENERAL CONDITIONS ON
THE SCATTERING POTENTIAL

should exist, i.e., V ( r) must be integrable since V

(q =0)=f V(r)d r Ho. wever if we are only interested

in the existence of r and r„, V (q =0) may well be singu-
lar although integrals involving V(q) relevant for the ex-
istence of ~ and ~„are well defined. More precisely, Eqs.
(1) impose that

2kF

J V (q)q dq =finite quantity, in 3D, (3a)
0
2k~

V'(q)
+1—(q /4kF)

=finite quantity, in 2D .

(3b)

These two conditions insure the existence of ~ ' in 3D
and 2D. If (3a) and (3b) are satisfied, then the corre-
sponding integrals for r,, '[ —f V q dq in 3D, and
—f V (q)q dq/Ql —(q /4kF) in 2D] are also finite

quantities. In other words V (q ~0) may be singular but
~ and ~, still exist.

Potentials which are themselves well behaved are of no
interest here since they will yield well-behaved expres-
sions for ~ and ~„. Instead, in the following, we will ex-
amine potential forms V(r) which are singular under cer-
tain conditions.

Within the Born approximation, ~ and ~„are expressed
as angular integrals of the square of the Fourier trans-
form of the potential:

'=2nN(0)ni f V (q)dQ f dQ, (la)

rt, '=2nN(0)nl I V (q)(1 —cos8)dQ f dQ . (lb)

III. YUKAWA TYPE OF POTENTIALS

We examine here two Yukawa types of potentials

EkF7
V, (r)-e /r,
V2(r) -E

' V, (r),
(4)

0&q &2kF . (2)

Therefore, in principle, V (q) and thus V(q) must be well
defined in the above q range. In particular, V (q =0)

N(0) is the density of states at the Fermi level, nI the im-

purity density, q = k' —ki with k' and k the electronic
momenta before and after scattering on the impurity, 0 is
the scattering angle between k' and k, and d Q is the an-
gular element of integration [fdQ=2~ i /I (D/2) as
recalled in Ref. 1];D is the dimensionality restricted here
to D =3 and D =2. Since ~k~ = ik'~ =kF, kF being the
Fermi momentum, one has q =2kzsin(8/2), so that

where c, is a parameter which may be varied between 0
and ~. The Fourier transforms are straightforward:

V, (q)-(q'+E'kP)"-D'",

V2(q)-E 'V, (q) .

Then we have the following.
(i) ~hen s~ ~, V, (q) —const for any q values (in par-

ticular for q =0), and one recovers for Vz(r) a contact
potential for which r and r„are well defined (and r—:r„
in this particular case). In contrast, V, (q)~0
V, (r)~0.
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(ii) When s ~0, V2 (q =0)~0; V2(r) is integrable and
and r„(Wr ) are well behaved. In contrast,

Vi(r)~1/r; one recovers the pure Coulomb potential
which is known to be pathological. Moreover the use of
the Born approximation becomes questionable. In that
case V(q)-q in 3D and -q ' in 2D and one easily
checks that formulas (3) diverge.

Therefore Vz(r) is integrable and yields nonsingular re-
sults for ~ and ~„ for all values of c., 0~ c ~ ~; one easily
finds that ~—:~,, =const for ciao and z =~„=0—1 —1

for E~O. In contrast, V, (r) is integrable and yields
well-behaved formulas for ~ and ~„only for finite values
of c,c&0.

Note that potentials like (4) and (5), containing an ex-
ponential, are usually called "short ranged" and yield re-
sults for transport phenomena which belong to the
short-range universality class, even (4), as long as
remains finite. But when c vanishes the physical proper-
ties of problems involving (4) most likely suddenly
changes, via a plausible "Hopf bifurcation, " towards
long-range universality class behavior. In the following
section the borderline will become more precise.

"(u' —x')' ""'cos(ax)dx
0

&7r 2u I (v+ —,')J (au),
a

D)1. (11)

Therefore, (9) reads

D —1V(q)-+el
2

' (D/2) —1

2

with a & 0, u & 0, Rev & —
—,'. We note that the condition

over v is necessary in order that I (v+ —,
'

) be finite. How-
ever, the condition over a does not look necessary: for
small values of (au) indeed, J (au)-(au/2) 1/I (v+1),
so that the limit, in the right-hand side of the above ex-
pression, of (1/a ) J (au) is perfectly well defined when
a ~0.

Back to (10) we thus get
(D /2) —1

2 D —1I(r) = i/vr r J(D /2) —i ( qr )
qr 2

IV. INVERSE-POWER-LAW POTENTIALS
drX J(D/2) —1 qr +(D/2) (12)

We now turn to examine scattering potentials of the
form

V( )
{D+o) (8)

V(q)- f ~ I(r), (9)

I(„) f sinD 2geiqr cossdg—
0

1

(1—x)' ' cos(qrx)dx, x =cosg .
0

(10)

where o. is a parameter o. &0. We choose this form be-
cause in the different problem of interacting spin sys-
tems, for positive o, spin interactions of the type (8) are
called "short range" for o. ~2 and "long range" for
0&o &2.

Here we study what happens in transport phenomena
for electron-impurity scattering potentials of the form (8)
and examine what the pathological ranges (if any) are for
o.. Let us first note the conditions insuring integrability
of (8) in order to later remark that the conditions of ex-
istence of ~ and ~„are not n.ecessarily the same. If we
write that V(r) is integrable we must have

f r ~ + ~d r = finite quantity. This yields o ' [r
—r,„j= finite. There is indeed always a minimum
value of r, r;„, since the impurity always has a finite ra-
dius. However, the maximum value of r is r „=~ in
infinite systems. Therefore the conditions of integrability
of (8) are the following: o )0 in infinite systems, while
o.

& in finite systems.
Now we turn to the calculation of the Fourier trans-

form of (8),

The following integral is known:

oo 2"f x"J (ax)dx =
0 aP+1

1+v+p
2

r 1+v—p
2

(13)

o ) —(D+1)/2 for infinite systems,

o. arbitrary for finite systems .
(14)

On the other hand the condition —Rev —1 & Rep in-
sures the convergence of the integral f 0"x"J (ax)dx for
x ~0. This last condition is not necessary when applied
to (12) since we noted that there is always a minimum
value r

Then V(q) will thus be approximately given by

r ——
1 2D —1V(q)- &vrI

2
'. q

D+o.
2

with —Rev —1 & Rep & —,', a & 0. The condition Rep & —,
'

insures convergence of the integral when x~~. Ap-
plied to (12) it imposes that o ) (D+1)/2 for in—finite
systems where the upper bound on r, r „=~, while that
condition is not necessary in finite systems where r,„ is
finite. In infinite systems, had we required the integrabili-
ty of V(r), the condition cr )0 would have rendered
o )—(D +1)/2 automatically satisfied. But choosing to
only require r ' and r,, ' to exist rather than V(r) be in-

tegrable, leaves us with the condition

Standard tables tell us that We now have to insert (15) in formulas (3). Therefore we
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must insure that the coefficient of q in V(q) is not
infinite, i.e.,

I ——Aeo, i.e. , a&0, 2, 4. . .,
0
2

(16)

C =&el
2

1

2o+1

0r ——
2

D+cr
2

D+a
2

The cases where (16) is not fulfilled are actually not un-

physical. Indeed one has then to calculate the integral in
{12)with more care taking the lower cutoff {ro on r) pre-
cisely into account. Then switching to the new variable
R given by r = roR the integral in (12) is taken between 1

and ~ and can be expressed in terms of the difference be-
tween two known integrals: J o

—jo. The result in-

volves, instead of (15), q times a combination of Bessel
and Lomrnel functions of (qro). To simplify, in the fol-

lowing, we stick to the approximate form (15).
Putting (15) into (3) implies straightforwardly that

In 2D, we need the known integral

with Rep &0, Rev&0.
We thus get

1(p)r( )

I (p+v)

r(~+-,' )r(-,' )
2'-X(0)nzC (2kz;)

(21)

cr ) ——' (22)

1(a+—,')I ( —,') 2a+I-2nX(0)nzC (2kz;)

D —10&—
2

(17)
C is given by (20).

V. CONCLUSION

Note that (17) renders (14) automatically satisfied in
infinite systems. Equation (17) evidently excludes the
pure Coulomb potential corresponding to o.= —2 in 3D
and cr = —1 in 2D.

Finally the conditions for ~ and ~„ to exist in the case
of the scattering potential of the form (8) are given by
Eqs. (17) and (16). We note, in particular, that for

(D —1)/2 &—a & 0, the potential (8) is not integrable in
infinite systems although it still yields finite values of ~
and ~„. On the other hand, the range 0(o.(2 which
yields "long-range" interaction in spin systems, plays no
particular role here for the scattering potential (8). Equa-
tion (8) behaves as a short-range potential since it
amounts to give ~ ' and ~,, ' of the same universality
class as that short-range potentials.

Most likely bifurcation to long-range behavior would
start when (17) is no longer satisfied, i.e., when
a & —(D —1)/2 (as pointed out above, the Coulomb po-
tentials belong to such a range). For completeness, we
give the expressions for r and r„using (1) and (15), with
(16) and (17) fulfilled. In 3D,

We have shown here some important points relevant to
transport properties: (a) It is not necessary that the
scattering potential be integrable for the elastic lifetime
of the electrons and the transport time to exist, and (b)
for scattering potentials of the form r the potential
is integrable for o. &0 and ~ and ~, are well defined; the
potential is not integrable for o. (0 in infinite systems;
however, for (D —1)/2&—cr &0, r and ~„are well
defined and belong to the same universality class as that
those corresponding to short-range potentials; finally, for
a & (D —1)—/2, ~ and r„diverge; the problem then
shifts from a short-range universality class to a long-
range one. It has also been emphasized that the range of
cr for which, in ordering spin problems, spin-spin interac-
tions behaving like r are called long range
(0& cr &2), is diff'erent from the one where, in transport
phenomena, the electron-impurity scattering potential
behaves as a long-range one [cr & —(D —1)/2]. In other
words, the behavior of an interaction potential being
"short range" or "long range" depends very much on the
problem which is considered.

—-2rrN(0)nzC (2k+), a. ) —1
1 2 2 2
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