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Exact and adiabatic solutions for a spinless Peierls-Hubbard model in a finite cluster
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The exact solution of the Hubbard-Peierls model is given in a cluster of six atoms and three spinless
electrons. Phonons with wave vector k =m are retained and quantum mechanically analyzed. Energy
level and several averages are evaluated, thus determining the physical properties of the model in terms
of the parameters of the system. The regime of the distorted lattice is obtained. The exact and Born-
Oppenheimer (BO) results are compared, concluding that the BO enhances quantum fiuctuations; this
peculiar behavior is explained.

I. INTRODUCTION

It is well known that one-dimensional metals may
spontaneously break translational symmetry. In fact,
electron-electron (e-e) or electron-phonon (e-ph) interac-
tions may give rise to spin, charge, or bond waves at low
temperatures, producing an insulating phase. In particu-
lar, the low-syrnrnetry phase is called the "Peierls distor-
tion" when the role of e-ph interaction is essential. On
the other hand, quantum fluctuations are especially irn-
portant in a one-dimensional topology, thus implying the
absence of long-range order (with the possible exception
of zero-temperature case). Therefore, a mean-field treat-
ment (like the adiabatic approximation for latter dis-
placements) is not reliable in one dimension. Neverthe-
less, many papers have analyzed the Peierls distortion by
considering the lattice displacements as classical vari-
ables, ' whereas relatively few authors have considered
the lattice degrees of freedom as true quantum opera-
tors 1 1 16

The validity of adiabatic approximation rests on the
relatively long lattice vibration time, as compared with
the electronic transference time. However, the latter can
be considerably increased due to e-e interactions. In par-
ticular, in the case of a strong intramolecular Coulomb
repulsion (equivalent to a system of spinless electrons' ),
the Peierls distortion can disappear due to the effect of
quantum fluctuations. " In what follows, we shall briefIy
summarize some known results for the Peierls distortion.

A. Adiabatic results

An infinite one-dimensional system with nearest-
neighbor electronic transference is always distorted in the
absence of e-e interactions, ' no rnatter how small the e-
ph coupling is. '

In the case of a half-filled band, the effect of in-
tramolecular Coulomb repulsion, U, is to enhance Peierls
distortions if U ( [Bandwidth]; while a further increase
in U inhibits the bond wave (BW) state [4,6].

'

For an arbi-
trary band filling and small U, the wave vector of the
Peierls distortion corresponds to 2kF, while a large U
leads to a 4kF distortion.

We now consider the effect of a nearest-neighbor
Coulomb interaction, G. For a half-filled band, in the
case G (—,'U, the BW is enhanced by G, while, for
G) —,'U, an intramolecular charge wave (CW) is stabi-
lized. ' The effect of second-neighbor Coulomb repul-
sion is opposite to G. For the case of [CH]„, it has been
claimed that the Peierls distortion proceeds mainly from
the e-e interaction, while the e-ph coupling plays a minor
role.

In the case of a —,'-filled electronic band and U~ 00 (or
equivalently, a half-filled band of spinless electrons), a
small G enhances the BW state compared with the G =0
case, while a larger G tends to inhibit BW. For G )2t a
CW may appear if G prevails over e-ph interaction; also,
coexistence between a CW and a BW becomes possi-
ble. ' For a finite (but large) repulsion U, a period-4
spin wave appears superposed on the period-2 BW; the
spins rest on the bonds.

B. The efFect of phononic quantum fluctuations

Most knowledge of nonadiabatic behavior is due to
Monte Carlo simulations" ' for moderately large clus-
ters and low temperature. A few studies use exact diago-
nalization of small (two sites) clusters. ' ' All of these
works consider a half-filled band, which leads to a
period-2 BW (dimerized lattice).

A system of (spin —,') noninteracting electrons is always
dimerized, including the case of an infinitesimal e-ph cou-
pling. "' This behavior holds for two different cases:
the molecular crystal and the Su-Schrieffer-Heeger (SSH)
(Ref. 2) models. In the first case, electrons are coupled to
intramolecular vibrations, while in the SSH model the e-
ph coupling is due to the variations in the intermolecular
distances, which change the electronic transfer energy.

A system of noninteracting spinless ferrnions is dimer-
ized only if the e-ph coupling S surpasses a critical
value, "' say S)S, . Obviously S, increases with the
phonon frequency.

When the intramolecular repulsion U is introduced in
the SSH model, and the phonon frequency is small, a first
increase in U enhances the BW, while a further increase
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inhibits it. For larger phonon frequencies, an increase in
U aIways reduces the dimerization. ' The effect of
nearest-neighbor repulsion has seldom been studied in the
nonadiabatic case; however, calculations for G=U/2
show a strong enhancement of the BW over the G=O
case. '

For the molecular crystal model and spin- —,
' electrons,

the effect of U is always to decrease distortion, which
disappears up to a critical value U) U, . The effect of G
is opposite to U, strongly enhancing the Peierls phase. '

In the present work we analyze the exact (nonadiabat-
ic) solution of the SSH model (intersite e-ph coupling) in
a six-site ring. Also, the first-neighbor e-e repulsion G is
included. The case of three spinless fermions is con-
sidered (which is equivalent to a —,'-filled band of spin- —,

'

electrons in the U= ~ limit' ). Therefore, the lattice
may be unstable under a period-2 BW. Accordingly, we
only retain phonons with wave vector k =m.

Our aim is to determine and characterize the distorted
and undistorted regions in the parameter space. Finite-
size effects tend to reduce the BW region for our six-site
ring. Despite this shortcoming, the exact quantum-
mechanical results provide some advantages in relation to
Monte Carlo simulations, as we can obtain the energy
spectrum which allows us to evaluate the softening in
phononic frequency, and the quantum fluctuation time of
a BW. In addition, our approach demands insignificant
CPU time.

Our work is organized as follows: In Sec. II the model
is described, and its solution is formally presented using
group theory. In Sec. III we analyze the adiabatic limit,
where the Born-Oppenheimer (BO) approximation is suit-
able. In Sec. IV the numerical results are presented; the
exact quantum-mechanical calculations are compared
with the BO approximation. Finally, Sec. V summarizes
the conclusions of the work.

II. THE MODEL

We consider the generalized Hubbard-SSH model for
the spinless electrons in a six-site ring. The Hamiltonian
1s

N
H = —g [t—( —1)'u ](c,c, , +c(,c( )

1

+G y n, ,n, +~(b'b+ ,') . -
I

here cI creates an electron at site I; ni =cI cI is the associ-
ated number operator; %=6; t and G are the first-
neighbor electronic hopping amplitude and Coulomb
repulsion, respectively; b~ is the creation operator for
a phonon with momentum k =7r; and u =S(b+ b )/VN
is the lattice displacement. Finally, ~ and S are the pho-
non frequency and e-ph coupling, respectively. We shall
use t = 1 as energy scale.

The e-ph coupling proceeds from the fact that the elec-
tronic transfer energy t, » decreases as intersite dis-
tance ql

—
q& &

increases. In Eq. (1) the linear approxima-
tion is considered: t, » = t —a(q~ —q&, ) = t —( —1)'u.
This approximation, however, breaks down for large lat-
tice deformations ( —1) u ) t, since a further increase in

intersite distance leads to an increase in ~t&, &
~. In that

case our model loses physical meaning. '

Our cluster of six atoms and three electrons has 20
electronic states. We separate these states in terms of the
irreducible representations (IR's) of the associated sym-
metry group, C6„concluding that the electronic Hilbert
space splits into six subspaces of IR's; in Tinkham's nota-
tion, they are

&=A, 3A23B, B2@3E, 3E~ .

As an example, the basis for the IR's B2 and 32 are

B2 & =Q —,', [ct, (ct~+c6t)c~t —ctz(c3+c, )c~+cyclic]~0&,

(2)

~ A2, 1& =Q —,'[c,c3c5+czc4c6]~0&,

~ Az, 2& =Q—,'[c,cz(c6+c3 )+c3c4t(cz~+ct5)

+c5c6(c4, +c&)] 0&,

~ A2, 3 & =Q —,', [c,(c2 —c6)c4+cz(cd —ct, )ct~

(3)

+cyclic] ~0 &,

where ~0& is the vacuum state. By means of transforma-
tion c& —&( —1)'c&, the basis of IR A2 goes over IR B„
and also B2~3„E,~E2.

The phonon operators b and b belong to the B& IR.
Thus the e-ph coupling mixes the electronic subspaces of
IR s in pairs, giving rise to three true invariant subspaces:

&,= A, 3B, , %~=3A2B2, &3=3E)@3E~ . (4)

The eigenstates of H belonging to &2 can be expressed in
terms of the basis displayed in Eqs. (2) and (3),
'Pz=&„[P, I&~&+&J=~yj „~ A2, j &]~n & where ~n &

=(b )"~0&/&n! and E is the eigenvalue. In spite of the
superposition between two IR's of C6„appearing in Eq.
(4), a given eigenstate of H classified by only one IR of
C6„but now the symmetry operations of this group in-
volve both electronic and phononic degrees of freedom.
For example, in the case of &z, the IR of Vz may be Bz
or A2. In the first case P2„+,=0=y 2„, while for the IR
Az it holds that pz„=O=yj z„+,.

There are two important limiting cases in our model.
(i) The limit G~ ~, where the associated states are

"charge waves" (CW's). One of them is
~
CW, 1 &

=c tc 3c ~ ~
0 &; that is, electrons are in the odd

sites, while even sites are empty. The other CW state is
~CW, 2& =c',c,'c,'~0&.

In the limiting case when lattice distortion cuts off half
of the electronic transferences, say t = ~u~, the ground
state (GS) is a full dimerized BW. When t2& 2&+, =0, the
GS is ~BW, 1& =b~&bt3b~~~0&, wh—ile for tzI, 2&=0 the GS
is ~BW, 2&:bzb4b6 ~0&. —Here state &=b(c~ c+I+) &/2
links sites 1 and 1+1. States ~BW, 1& and ~BW, 2& are
not orthogonal to each other.

We project the CW and BW states over the IR's of
C6„obtaining
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CW, + &
—= [iCW, 2&+ iCW, 1&]/1/2=

i A„l),
~CW, —)—:[~CW, 2) —CW, 1) ]/V2= B,),
BW, + )—:Q—', [ ~BW, 2) + ~BW, 1 ) ]

=~-', Az, l&+V'-,'lA„»,
~BW, —)—=Q—', [~BW,2) —~BW, 1)]= Bz) .

this behavior of Eo(u) implies the following.
(i) If D (—N/[8 Eo/Bu ]{„=II)=D, (G), then Wo(u)

has positive curvature and no inQection points. There-
fore, the GS adiabatic potential has only one minimum at
Q =0.

(ii) If D)D, (G), then WII(u) has exactly two (sym-
metric) infiection points, and negative curvature between
them. Therefore, Wo(u) has a maximum at u =0, and
two minima at u = uM.In the free-electron case G=O=S, and the GS of the

system belongs to IR A2, the same is true for t =0=6,
and for the limit G —+ (x), where the GS corresponds to a
CW. The BW states also belong to IR's A2 or Bz. It can
be shown that, even in the general case, the GS belongs to
the &z= AzBz electronic subspace. On that subspace
the Hamiltonian is

A. The adiabatic phase diagram

Figure 1 shows the adiabatic (co=0) phase diagram in
the plane (D, G). The lower part is the undistorted re-
gion, separated from the BW phase by the curve D, (G).
The upper region is the unphysical regime of large lattice
deformations; its boundary is given by t2I, 2&=0, say
uM = t. We remark on four aspects related to Fig. 1.

(i) In the limit 6~ ~ the boundary between distorted
and undistorted regimes adopts the asymptotic form
D, ( G) —

—,
' G, in agreement with the exact result for the

N —+ ~ limit.
(ii) Spurious finite-size effects are present. In fact, for

G &2t and X~~, and infinitesimal e-ph interaction is
enough to yield a BW. In contrast, our six-site ring is
undistorted for D &0.9t. This effect is due to finite—
instead of infinitesimal —separation between occupied
and empty electronic levels.

(iii) An amplification of the 6 (2t region (see the small
rectangle inside Fig. 1) shows a minimum in the critical
boundary D, (G) at G -t. Thus the BW state is especially
enhanced at this intermediate value of G.

(iv) The existence of one or two minima in Wo(u) im-
plies that the transition between BW and undistorted
phases is continuous (second order) in the present model
(SSH e-ph coupling). In contrast, in the molecular crys-
tal model (MCM), where intramolecular e-ph and e-e in-
teraction are postulated, the existence of three minima in
Wo(u) is possible, ' ' and therefore the transition to the
distorted CW phase may be discontinuous. The latter re-
sult agrees with the analysis of a four-site ring.

This difference between the MCM and SSH models can

—1/6Su
—G

1/2Su—2t
—&6Su

H[AzeBz]=

—2Su
1/6t—
1/2t—G

1/2t—
0
1/6t——2SQ

+cob b, (6)

where the order ~Bz ), ~ Az, 1 ), ~ Az, 2),
~ Az, 3) is used for

the basis vectors; we have omitted the additive constant
G+ co/2.

Using Eq. (6) and some algebra, the eigenenergy equa-
tion for OE can be cast as a tridiagonal equation for the
coefficients p„. It can be seen that p„/p„z=2S /(neo )

if n ))4(S/co) . Using this result, the tridiagonal matrix
can be suitably truncated, thus obtaining the eigenfunc-
tions of H[ AzSBz] with negligible error

III. THE ADIABATIC APPROXIMATION
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FIG. 1. The phase diagram in the co~0 limit. The lower and
intermediate regions respect the undistorted and BW regimes,
respectively. The upper region corresponds to unphysical large
lattice deformations.

Let us analyze the properties of the model in the adia-
batic limit of low phonon frequencies. For that purpose
we write the phononic part of the Hamiltonian as
co(b b+ —,')=Nu /2D+P /2M, where P=i1IN(bt
—b )/(2S ) = —i 8/Bu is the momentum operator,
D=2S Ico, and M=NI(2roS ). We initially disregard
the kinetic energy of ions, H~Ho(u) =H P /2M. Ac-—
cording to the BO approximation, the eigenvalues of
Ho(u), say W (u)=—E (u)+Nu I(2D), correspond to
the adiabatic potentials for the lattice. We are interested
in the subspace of the CxS, &z, and thus E ( u ) are the ei-
genvalues of matrix (6).

The shape of the adiabatic potential
W (u)[= W ( —u)] provides a qualitative understanding
of the lattice state. In particular, if the minimum of
W (u) lies at u =0, then the lattice is undistorted; con-
versely, if W (u) ha two symmetric absolute minima for
u =+uM&0, then the lattice is distorted, uM being the
amplitude of Peierls distortion.

We have verified numerically that the term 9 Eo/Bu
(which depends only on 6) is always negative; it has a
unique minimum at u =0, increasing monotonically as

u~ increases, and vanishing for ~u~~oo. Therefore,
Eo(u) as a single maximum at u =0, and decreases linear-
ly for u ~. Using (Il WD/Bu ) =N'/D+8 ED/au,
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be understood as follows: The e-ph coupling of MCM
leads to an intramolecular attraction between electrons. '

Thus a large intramolecular e-ph coupling leads to double
occupied or empty sites, while a large U leads to single
occupation. Both kinds of states are orthogonal to each
other and, for large e-e and/or e-ph couplings, a con-
tinuous transition between these states is ruled out.
This assertion is supported by the Hartree-Fock analysis
of the X= ~ extended Hubbard-MCM model.

In contrast with the "direct competition"' between
the e -e and e -ph interactions of MCM, the two extreme
states of the SSH model (CW and BW) have some degree
of compatibility, as conGrmed by literature. ' ' Also,
from Eq. (5), it holds that (BW,+ ICW, + &

=Q —,', and so
an important mixing between BW's and CW's is present,
allowing a continuous passage between them.

In Fig. 2 we show the four adiabatic potentials associ-
ated with the GS subspace A2+B2. We choose
G =D =2; therefore the GS corresponds to a BW. While
the adiabatic potential of the GS has two symmetric
minima, the other potentials, associated with electronic
excitations, have only one minimum.

B. The Born-Qppenheimer analysis

wo
l
I
I
I
I
I

/
I

r
/

250

neighborhood of the right minimum uM, while
g„ I ( u ) =g„R (

—u ) is strongly located on the left
minimum. According to this behavior and Eq. (A2) of
the Appendix, the wave function of the full system (e and
ph parts) can be approximated by

I+o, „&=[lfo(u~) & I(., R &+Ifo( —uM) & I(„,& jl&2 .

U

FIG. 3. The first 14 quantum levels for the lower adiabatic
potential of Fig. 2, D =6=2. The frequency is co=0.25. An
amplification is applied to the two lower doublets, in order to
resolve them in individual levels.

We restore the lattice kinetic energy and add it to the
adiabatic potential, thus obtaining the BO eigenenergy
equation; see Eq. (A6) of the Appendix. This procedure
allows one to recover (to some extent) typical quantum-
mechanical effects, such as tunneling and zero-point ener-
gy. In addition, the BO GS provides a lower bound for
the GS energy of the exact Hamiltonian.

If Wo(u) has two minima separated by a comparatively
high central barrier, say fY~ &&co, then the lower
eigenenergies of Eq. (A6) are grouped in narrow doublets.
Let us denote these energies and eigenfunctions as

Eo „=Eo„+6 „/2 and go „=[g~ R+g~ I. j/V2,

respectively; here the energy split satisfies A„«co. These
doublets persist as long as Eo „&Wo(0). The lattice
function g„R(u) is vanisingly small, except in a narrow

Adiabatic Potential

6.5—

0.0—

The state %o+„belongs to the IR A2, while +o „ lies in
Bz. In the limit of a fully dimerized lattice, t=u~, it
holds that

I fo(uM) &
= BW, 2& and

I fo( —u ) &= IBW, 1&.
In general, the "tunneling time" for going from one

minimum to the other is T„=rr/b, „:~/[Eo —„(82)

Eo „(Az)j.—In the present case (co« W~), the wave
functions go „(u) are vanishingly small inside the central
barrier; therefore, the states g„R,g„L are nearly station-
ary, and the tunneling time is much larger than the lat-
tice vibration time, T„»~/co.

According to Eq. (7), the low-lying excited energy lev-
els are basically vibrational in character. The separation
between them can be roughly associated with some
"effective" phonon frequency co„=So„+,—Eo „, which
is smaller than the "bare" one co. The effective vibration-
al time becomes m/co„. In the case of a BW, co„ is defined
as the separation between adjacent doublets.

Figure 3 shows the 14 lowest quantum levels for the
parameters of Fig. 2, D =G =2, and low frequency
(co=0.25). The barrier height is W~=0. 53, and it traps
the six lowest levels, which pair in three doublets. The
GS doublet is very narrow, m. /V'=0. 000 16. The
"effective" frequency associated with the GS shows a
20% softening with respect to the "bare" one. In the
case of Fig. 3, the exact quantum-mechanical (QM) and
BO calculations coincide to a considerable extent; the re-
sults agree with Brattsev's theorem.

-6.5
-5 u

FIG. 2. The four adiabatic potentials associated with the in-
variant subspace A&B~. The system parameters are
6 =D =2.

IV. NONADIABATIC RESULTS

In this section we study the QM solution of the model.
In particular, we characterize the GS properties by
means of various averages. In addition, a comparison be-
tween exact and BO results is given. Roughly speaking,
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the adiabatic description is qualitatively valid, and so it
shall often be used to motivate the discussion.

A. The eÃect of phononic frequency

Ap
- 0.4

1.2-

0.0
0.0 0.8

0.0
1.6

-coin(d, )
2.4—

Ap/co
-1.0

1.2— - 0.5

0.0
0.0 0.8

0.0
1.6

FIG. 4. The separation of the lower doublet
Eo(B2)—Eo( A2)—:Ao vs co. A plot of —co ln(ho) is also includ-
ed. The QM and BO results appear as dotted and continuous
lines, respectively. We fix the parameters D=G=2 in (a), and
S=0.44, G =0 in Fig. (b). In order to test the asymptotic limit
b o~co for co—+ ao, (b) shows the ratio 60/co.

The adiabatic potentials W (u) are fully determined by
fixing D and G, and their shape does not depend on the
frequency co or the ionic mass M=N/(Dco ). As the fre-
quency increases (e.g., if the ionic mass decreases), the
separation between the energy levels also increases. In
particular, in the BW region, and for a su%cient high fre-
quency, the central barrier of Wo(u) is surpassed by the
GS level; in that case the system is no longer trapped in a
minimum of the adiabatic potential, and the exchange
time between the ~BW, 1) and ~BW, 2) states becomes
comparable with the lattice oscillation time.

This qualitative description is well illustrated in Fig.
4(a), which shows a plot of Eo(82) —Eo( Az): ho= rr/5'— —
versus frequency. The same parameters of Fig. 2 are
chosen, G=D=2. The exact QM (dotted line) and BO
(continuous line) calculations are compared. In order to
amplify the low frequency behavior, a plot of —coin(b, o)
is also included.

For low frequencies, the tunneling time is roughly
governed by vr/7 =ho- WMexp[ —cW~/co], where the
constant c -4 in the case of Fig. 4(a). The doublet width
remains very narrow, even for moderately high frequen-

cies co. For example, at co=0.48'I, the tunneling time
corresponds to some 10000 lattice vibrations; decreasing
to seven lattice vibrations for frequencies as large as twice
the barrier height. Indeed, for large enough co both times
nearly coincide, and the distinction between the BW and
the undistorted lattice becomes ambiguous.

The comparison between exact and BO results shows
that the latter approximation works quite well in the
low-frequency region (for example, 5]3o kQM
=0.00006co=0. 1bBo at co=0.25). The error slowly in-
creases with ~, so that A~~ —4&M=0. 18=0.256Bo for
frequencies as high as co = 1.

A major conclusion of Fig. 4 (supported by many other
numerical calculations) is the fact that the BO prediction
for the tunneling time is always less than the exact QM
calculations. This is a surprising result, as one might ex-
pect that exact QM calculations should emphasize the
tunneling effect in comparison to the somewhat "semi-
classical" treatment of BO. However, this peculiar
behavior is consistent with the analysis of the Appendix,
where the QM problem appears as the solution of the BO
Schrodinger equation under the proviso that the kinetic
energy is modified by a "gauge field"
P /2M +[IP+A—(u)] /2M=P /2M+ VN~, with
P=( —i)t)/Bu. Thus the nonadiabatic (NA) corrections
to the BO approximation are embodied in V NA. The di-
agonal part of this operator is responsible for the zeroth-
order correction due to the nonadiabatic effects; it de-
pends only on u, I VN~] = (Bf /Bu ~t)f /Bu )/2M
= V (u). However, instead of doing perturbation
theory over V, we have included this operator exactly
by adding it to the Born-Oppenheimer Hamiltonian
H Bo, thus obtaining a "modified" adiabatic potential
W (u)~W (u)+V (u)=W (u).

This "modified adiabatic potential" can also be ob-
tained by using the trial function

) = 1 du lu )
~f (u) )g (u), and minimizing the energy

average with respect to g (u). Therefore, the GS energy
associated with the potential W (u) is an upper bound
for the exact (QM) energy of the GS,
Eo o )Eo o(QM) )Eo o(BO) (the last inequality is the
Brattsev theorem).

Our numerical calculations for the low-energy levels
confirm that the diagonal part of the nonadiabatic pertur-
bation, Vo o(u) has a dominant role in accounting for the
BO errors. In fact, replacing Wo(u)~ Wo(u) and using
D =6 =2, co =0.5, the GS energy error decreases 40
times and the tunneling time error decreases four times;
while, for the highly nonadiabatic case D =G =2, cu = 1.4,
the GS error decreases by a factor 10.

In particular, the fact that the BO calculation for the
GS gives a shorter tunneling time than the QM result,
7Bo (9 QM can be qualitatively understood in terms of
the nonadiabatic correction to the BO potential, Vo o(u),
which is always positive and has a maximum at u =0.
This implies that the "corrected" adiabatic potential
Wo(u) has a more impenetrable barrier in comparison to
that of Wo(u). Thus the tunneling time for the "correct-
ed" potential is longer than the BO result. We also note
that the inequality Vo o(u) )0 gives a qualitative explana-
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tion of the Brattsev theorem.
Beyond numerical results, it is easy to convince oneself

that the off-diagonal corrections coming from VNA are
small for the low-energy BW states; the latter one under
the proviso W (0)—Wo(uM)»co Va. Also, by using
qualitative arguments, it can be seen that off-diagonal
corrections produce a "compression" in the adiabatic
doublet E0 o

—ED &, thus making an additional contribu-
tion that increases V'&M in comparison to 'Tao.

Figure 4(b) shows the width of the lower doublet b,o

versus co for a fixed e-ph coupling, S=0.44, and G=O.
This figure represents a collection of otherwise equivalent
systems, but with different ionic masses. The dotted and
continuous curves correspond to QM and BO calcula-
tions, respectively. 60 shows a steeper rise with co in Fig.
4(b) in comparison to Fig. 4(a), as is apparent by compar-
ing the logarithmic curves. This behavior is due to the
decrease of D=2S /co as co increases (S is now fixed);
thus the central barrier of the adiabatic potential O'M

also decreases with co, disappearing at co=0.4. For that
value of m, the curves show an infIection point.

B. The eÃect of Coulomb repulsion G

Figure 5 shows the separation between the GS,
E0 =Eo ( A z ), and the three succeeding levels

[E,=Eo(B2), E2=E, (A2), and E3=E,(B2)] in terms of
G for D=2 and co=0.5. The BO and QM results are
represented by continuous lines and small circles, respec-
tively. In the adiabatic limit, these parameters corre-
spond to a BW for 0 ~ 6 ~ 7, while for G )7 the system is
undistorted. Obviously the effect of a moderate or high
frequency is to reduce the BW region, but then the BW
boundary becomes blurred. In order to evaluate the de-
gree of dimerization, we consider the ratio between tun-
neling and vibration times, which can J'oughly be defined
as R =(E2 E, )/(Ei —E—0)=B,/bo—= "T/Vv, where co

and V'i, can be associated with the "effective" vibrational
frequency and time, respectively. In the case of Fig. 5,
R (G =0)=30. A first increase in G leads to a slight
maximum, R (G = t ) =33; from there on R decreases as G
increases. This behavior confirms (for our nonadiabatic
calculations) that a small or moderate G enhances the
BW, while a larger G inhibits the BW.

At 6=4.5 the second level surpasses the central bar-
rier of Wo(u), although the tunneling time is still appre-
ciable, R =4. At G=5.5 the GS exceeds the adiabatic
barrier, but some traces of a BW distortion persist, as
then R =2. This value of 6 is not too far from the adia-
batic (co=0) boundary of the BW region, in spite of the
relatively large value of co considered here. The per-
sistence of the BW for moderate frequencies is partially
due to the "nonadiabatic" correction of the BO potential,
which reinforces the central barrier responsible for di-
merization.

The inequality 'T&M& V'Ho is confirmed by Fig.
where the BO overestimates tunneling time by 25% for
G =0. The BO error decreases as G increases; this is due
to the fact that the e-ph interaction becomes ineffective as
the Coulomb repulsion 6 increases, as then a CW ap-
pears, thus freezing electronic positions.

C. Nonadiabatic interaction among BQ levels

In order to analyze the BO deviations at high frequen-
cies, in Fig. 6 we compare the BO and QM results for the
first 11 energy levels belonging to the IR's A2 (left) and

Bz (right). We do that for co=1.4 and D=G=2. Each
BO level can be associated rigorously with an adiabatic
potential; in the case at hand, these potentials correspond
to Fig. 2. Accordingly, we represent each BO level by
means of the same type of line (continuous, dotted, bro-
ken dotted, or broken) used there. In spite of the high
frequency (co is 2.5 times larger than the adiabatic barrier
WM), it holds that R =3.4; therefore the system still
shows a vestige of the BW. In addition, there is an appre-
ciable softening (36%) in the phonon frequency.

According to Fig. 6, the QM and adiabatic energy lev-
els coincide to an appreciable extent below the minimum
of the second adiabatic potential. However, for higher
energies the agreement declines, especially when two en-

ergy levels of the same symmetry, but associated with
different adiabatic potentials, lie near each other. Such
"accidential" coincidence is strongly removed by the per-
turbation operator VN~ of Eq. (A5), which generates a
"repulsion" between adjacent levels of the same symme-
try. The existence of other nearby levels may, however,

4.5

A2 Levels
BO QM

x PQ

B2 Levels
BO QM

1.0

-2.5

I

G 10

FIG. 5. The separation between the GS and the three
succeeding levels, E„—E0,' n =1,2, 3 vs G for D=2 and co=0.5.
The QM calculations appear as small circles, while the BO re-
sults are plotted in a full line.

FIG. 6. The first 11 energy levels associated with the IR's A2

(left) and B& (right) for the parameters D=G=2 and co=1.4.
For each IR, both BO and QM results are shown. Each BO lev-

el is ascribed to one adiabatic potential of Fig. 2 by using the
same type of line employed there (continuous, dotted, broken
dotted, or broken) ~
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compensate for this effect if they "push" in the opposite
direction. In this highly nonadiabatic regime, the diago-
nal correction 8'o(u)~ Wo(u) only improves the GS en-

ergy.

D. order parameters for BW and CW states

Let us consider the following averages:

Qi= 2 (Cl Cl Cl+iCl+i&
1

r, =—g ((cl cl+1+H.c. ) ),2

I

72 g ( [(Cl 1Cl+Cl Cl 1)(Cl Cl+1+Cl+1Cl )

value of EB~ increases as the system goes into the BW re-
gion, decreasing when it emerges from that region. The
maximum of Azw is attained for G =2t, thus confirming
the assertion that a first increase in G enhances the BW,
while a further increase inhibits it.

On the other hand, I cw increases monotonically with
G; this is quite natural, as a CW is enhanced by large
values of G. Another remarkable feature of Fig. 7 is the
coexistence of BW's and CW's in a broad (although
blurred) region; this result agrees with the literature. '

E. Mean oscillation amplitudes

Another measure of lattice deformation is given by the
ratio

+H. c. ]) .
(X'&

, where X=b+b
(X 2)2 ' (10)

Here Q, is the charge correlation and r2 is the charge-
transfer correlation between neighboring bonds; finally,
~& is a measure of electronic delocalization. These aver-
ages are evaluated with the GS. We now introduce the
electronic order parameters ABw and I cw:

~Bw 4+~1 r2

I cw=+I —4(Qi+ri+~Bw»
which measure the strengths of BW's and CW's existing
in the system. These relations, though applicable to the
exact solution, are motivated by the Hartree-Fock
definition of BW and CW order parameters

(Cl Cl+1) +i+ ( 1) ~BW

and

cl + icl + 1 ) —,
' [ 1 + ( —1 )'I cw ]

In the limiting case of a net CW or BW, the corre-
sponding order parameter attains its maximum value,
1"cw= 1 or ABw = 1, respectively; in addition, ~&

=
4 in

the last case.
Figure 7 shows the dependence on G of both order pa-

rameters. We choose D = 1.08 and co=0.04; thus the sys-
tem lies slightly inside the BW region when 0& G &3.2,
being in the CW region for a larger G. Accordingly, the

1.0

0.5

0.0
G 10

FIG. 7. The electronic order parameters A&~ and I c~ vs the
Coulomb repulsion G for D = 1.08 and co=0.04.

where averages are taken over the GS. In contrast to the
electronic parameters I c~ and h~~, this magnitude is a
direct measure of lattice deformations. In fact, let us re-
turn to Eq. (7); in the case of a small co, the phononic
functions $0 ii and go I can be obtained by means of two
unitary operators over the "bare" phonon vacuum ~0),

~go il ) =exp[uM(b —b)&N /2S]

Xexp[af(b ) —b I]~0) =0201~0),

where exp(a ) = u o is the new zero-point oscillation ampli-
tude, and 0, is the associated dilatation operator (con-
nected with the change in the "effective" phonon fre-
quency co~B). The operator 02 shifts the positions in
uM. The "left" state go I is obtained by changing
uM~ —uM in Eq. (11).

It holds that [0201] XO201 =u OX+uM, where the
signs + and —correspond to the states go s and go L, re-
spectively. Combining this relation with Eqs. (7) and
(11), and assuming a negligible overlap between the states
go I and go s, it follows that (X ) = uM + u o and

(X ) =uM+6u u +3u
Introducing these expressions in Eq. (10), we conclude

the following. (i) If the lattice is essentially undistorted,
then uM «uo and A'-3. (ii) In the case of a strongly
dimerized lattice, u~ ))uo and %'-1. Indeed, the
preceding discussion becomes meaningless in the inter-
mediate regime between undistorted and BW states, as
large anharmonic effects then appear.

Figure 8(a) shows % versus G for D = 1.08, and
co=0.04 (the same parameters of Fig. 7). Accordingly,
the behavior of A( G) is consistent with Fig. 7, as a BW is
apparent for 0& G &2.5, where %&2. The maximum in
b Bw corresponds to the minimum in W G) at G = 1.2. A
further increase in G leads to a fast convergence of A' to-
ward the undistorted limit %=3. Figure 8(a) also in-
cludes a plot of the ratio between the tunneling and the
lattice vibration times, R =V'/"Ti, . This plot shows a
good correlation with A, showing a sharp maximum just
at the minimum of g(. At its maximum, R =26, the BW
is rather well established. For G —+(x), R ~1, in agree-
ment with the spectrum of an harmonic oscillator. The
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perature; for TAO; however, quantum tunneling contrib-
utes to the breaking of long-range order. '

(b) The appearance of a tiny central maximum in the
adiabatic potential may be enough to stabilize a BW dis-
tortion. For example, a central barrier as small as
8'~ =

—,'co may yield a tunneling time as large as five lat-
tice vibrations. Thus, despite the fact that the BW is
somewhat inhibited in a spinless system, " ' our calcula-
tions show that relatively high frequencies are compatible
with BW distortions.

(c) In contrast with the MCM, which present first order-
phase transitions, ' ' the present (SSH) model exhibits
second order-phase transitions.

(d) For small or moderate frequencies, the BO and QM
results agree to a considerable extent, especially if a
"nonadiabatic" correction is introduced in the BO poten-
tial, Wo(u) —&Wo(u). This is especially true for low-
energy states.

(e) The BO calculation overestimates the tunneling
effect, giuing a shorter tunneling time than the exact QM
results. This is a surprising conclusion, as tunneling is a
typical QM effect. We give an explanation of this result.
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asymptotic limits of W and R are rapidly reached once
the GS energy Eo surmounts the central barrier of adia-
batic potential.

Figure 8(b) represents A versus co for G=D =2 [the
same parameters of Fig. 4(a)]. In the low-frequency re-
gime, the distorted limit (%=1) is attained, as the system
parameters lie in the BW region. When co increases, %'
also increases, reaching the intermediate value A-2
when the second energy level Ei surmounts the central
barrier of the adiabatic potential. The undistorted limit
%=3 is slowly reached as co~~.

V. SUMMARY AND CONCLUSIONS

The effect of nonadiabatic behavior in a Hubbard-
Peierls system has been studied by means of a finite (six-
site) ring. The exact QM solution of the eigenenergy
problem was obtained, and contrasted with the BO ap-
proximation for the same cluster; therefore, QM and BO
results are equally afFected by finite-size efFects, thus vali-
dating the comparison. Our main conclusions are the fol-
lowing.

(a) The image of a static Peierls BW is no longer appli-
cable for a nonvanishing frequency co%0, and the distinc-
tion between distorted and undistorted regimes becomes
blurred to some extent. In particular, the bond waves
[1—2, 3—4, S —6] and [2—3,4—5, 6 —1] exchange in
time. The tunneling time between these two distorted
states, Y, was evaluated; it increases exponentially as
co~0, ln('T) ~ 1/co, being still large even for moderately
high frequencies. However, in the thermodynamic limit
N —+ ~, the quantum tunneling disappears at zero tem-

APPENDIX: NONADIABATIC CORRECTIONS
TO BORN-OPPENHEIMER APPROXIMATION

Let us analyze the general problem of electron-phonon
interaction; for simplicity we consider only one lattice de-
gree of freedom, Q, conjugated to the momentum p. We
start from the general Hamiltonian

V

H =Ho( [electronic variables], Q )+ (Al)

where M is the ionic mass. For each eigenvalue q of the
position operator Q, the eigenvectors of Ho(q), say
[ ~f (q) & ], constitute a complete basis of the electronic
Hilbert space; here Ho(q) ~f (q) &

= W (q) ~f (q) &.

Thus an eigenvector of the whole Hamiltonian (Al),
H

~ VE &
=E ~'PE &, can be written as

I+E&=J" dqg Iq&lf (q)&g E(q), (A2)

Eg'z(q) = 8'(q )+ I( i ) + A (q—)2M Bq
(E(q).

=HgE, (A3)

a column vector; [gz ]
is the identity matrix,

the "gauge field" A is given by

where gE(q) is
=g,E(q), [I j E=5
[ W'] E=5 EW (q), and

where [~q &] is the position basis of lattice variables,
Q ~ q &

=q ~ q &. Using a procedure similar to that of Ref.
27, the eigenenergy equation for +E can be represented as

2



EXACT AND ADIABATIC SOLUTIONS FOR A SPINLESS. . . 10 727

{A{,p= —l(f, )
aa,(f (q)l

'
Ift{(q)) (A4)

for aAP. We can choose A =0 by means of suitable
phase factors in the basis vectors

~f ). Equation (A3) is
exact; we recast it as

1

2M pq2
+ V NA =~ BO+ V NA ' (A5)

Here VN~=[ A +pA +~A "]/2M is the nonadiabatic
perturbation. Neglecting V NA, we attain the BO approxi-
mation

(A6)

The index a is now a quantum number for the electronic
variables, and the associated electronic eigenvalue 8' (q)
plays the role of a potential for lattice displacements.
The index n numbers the "vibronic" energy levels associ-
ated with a fixed a.

The nonadiabatic perturbation V NA mixes the different
"adiabatic solutions" g „(q). This mixing is usually
small for a large ionic mass M, as the function g E(q) is
then sharply peaked around the minimum of the adiabat-
ic potential W (q), while the other magnitudes appearing
in Eq. (A5), W, Ho, and ~f ), have a smooth depen-
dence on q.

P. Lee, T. Rice, and P. W. Anderson, Phys. Rev. Lett. 31, 462
(1973).

2W.-P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B 22,
2099 (1980).

3S. Kivelson, Phys. Rev. B 2S, 2653 (1983).
4V. Waas, J. Voit, and H. Buttner, Synth. Met. 27, A21 (1988),

and references therein.
5S. Zhang, S. Kivelson, and A. Goldhaber, Phys. Rev. Lett. 5S,

2134 (1987).
S. Dixit and S. Mazumdar, Phys. Rev. B 29, 1824 (1984).

7Z. Soos and G. Hayden, Phys. Rev. B 40, 3081 (1989).
S. Mazumdar and D. Campbell, Phys. Rev. Lett. 55, 2067

(1985).
E. Gagliano, C. Proetto, and C. Balseiro, Phys. Rev. B 36, 2257

(1987).
~ J. Rossler and D. Gottlieb, J. Phys. Condens. Matter 2, 3723

(1990).
J. Hirsch and E. Fradklin, Phys. Rev. Lett. 49, 402 (1982).
E. Fradklin and J. Hirsch, Phys. Rev. B 27, 1680 (1983); 27,
4302 (1983).

~3J. Hirsch, Phys. Rev. Lett. 51, 296 (1983).

I4J. Hirsch and M. Grabowski, Phys. Rev. Lett. 52, 1713 (1984).
~5W. Schmidt and M. Schrieber, Z. Phys. B 62, 423 (1986).

L. Falicov and C. Proetto, Phys. Rev. B 39, 7545 (1989).
J. Rice and E. Mele, Phys. Rev. B 25, 1339 (1982).
Peierls distortion can be frustrated by electronic transference
beyond first neighbors; see D. Gottlieb and F. Melo, Nuovo
Cimento 10D, 1427 (1988).
J. Hirsch and D. Scalapino, Phys. Rev. B 29, 5554 (1984); 27,
7169 (1983).
G. Konig and G. Stollhoff, Phys. Rev. Lett. 65, 1239 (1990).
According to Ref. 10, the e-ph interaction reduces the lattice
parameter, thus increasing t enough to prevent this unphysi-
cal situation.

~2M. Tinkhatn, Group Theory and Quantum Mechanics
(McGraw-Hill, New York, 1964).
J.-I. Takimoto and Y. Toyozawa, J. Phys. Soc. Jpn. 52, 4331
(1983).
J. Hirsch, Phys. Rev. Lett. 53, 2327 (1984).

~P. Venegas, J. Rossler, and C. Henriquez (unpublished).
S. Epstein, J. Chem. Phys. 44, 836 (1966).
P. Levay, Phys. Rev. A 45, 1339 (1992).


