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Valence-bond analysis of half-filled dimerized Hubbard chains
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The diagrammatic valence-bond technique is adopted to investigate one-dimensional half-filled Hub-
bard chains with long-range e-e interactions and alternating charge-transfer integrals. Exact results for
finite-size systems with different boundary conditions are carefully extrapolated to the infinite-chain lim-
it. In addition to various ground-state properties, such as bond-charge-density wave and bond-order am-

plitude, we calculate the optical gap and the corresponding oscillator strength. We introduce adiabatic
phonons able to modulate on-site energies and investigate the stability of the system with respect to site-
charge-density wave distortion. We also evaluate the response of the electronic system to the perturba-
tion induced by adiabatic phonons which modulate charge-transfer integrals, and calculate the corre-
sponding screening of vibrational frequencies.

I. INTRODUCTION

Qne-dimensional (1D) Hubbard chains with alternating
charge-transfer (CT) integrals have been extensively stud-
ied' in the past few years as model systems for conjugat-
ed polymers such as polyacetylene. The alternation of
CT integrals originates from the dimerization of the un-

derlying chain and is driven by phonons which modulate
CT integrals (bond-diagonal electron-phonon (e-ph) cou-
pling). The amplitude of the resulting bond-charge densi-
ty wave (bond-CDW) and its dependence on the on-site
and intersite electron-electron (e-e) interactions have been
the focus of many papers. ' ' On the other hand, the
same model is also relevant to a second class of com-
pounds, i.e., half-filled segregated stack CT salts such as
K-TCNQ. ' In these systems, as well as in conjugated
polymers with complex structure, electrons also couple to
phonons that modulate on-site energies (site-diagonal e-

ph coupling). This coupling favors a site-CDW distor-
tion, and the actual ground-state structure of the system
is determined by the interplay between bond- and site-
diagonal e-ph coupling and on-site and intersite e-e in-
teractions.

In this paper we present the results of extensive di-
agrammatic valence-band (DVB) calculations ' on half-
filled 1D Hubbard chains with difFerent strengths of on-
site and intersite long-range e-e interactions, and variable
CT integral alternation. In particular, we calculate
ground-state properties such as energy, bond-order, and
bond-CDW amplitude for rings with periodic or an-
tiperiodic boundary conditions. In the adiabatic approxi-
mation we also calculate phonon susceptibilities, i.e., the
electronic response to site- and bond-diagonal e-ph per-

turbation. ' ' The finite-size results are carefully extra-
polated to the infinite-chain limit. Whereas the depen-
dence of the bond-CDW amplitude on the bond-diagonal
e-ph coupling strength and on the strength of on-site and
intersite e-e interactions compares well with the results of
the most recent calculations, we are also able to evaluate
other properties of the system such as the optical gap and
the total oscillator strength, or the perturbation of pho-
non frequencies due to e-ph coupling and the stability of
the system with respect to site-CDW formation. Finally,
in a subsequent paper ' we will show how these results,
together with those already obtained on systems with al-
ternating on-site energies, ' yield the complete phase dia-
gram of the half-filled 1D chain in the presence of on-site
and long-range intersite e-e interactions and on-site and
on-bond e-ph coupling.

The paper is organized as follows: In Sec. II we
present the Hamiltonian and the diagonalization pro-
cedure. In Sec. III we discuss the results of calculations
performed in the absence of intersite e-e interactions. In
Sec. IV we extend the calculation to account for intersite
e-e interactions. Finite U results are compared with the
U =0 ones; the analytical solution of the corresponding
problem is sketched in the Appendix.

II. MODEL HAMILTONIAN

The long-range extended Hubbard Hamiltonian for a
dimerized chain is written as

&=2r gb, —2rq g( —1)'b,

+Usa; a;~;@; +g V;.q;q
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where

b; =g (a, a;+ &
+H. c. ) /2

is the bond-order operator; a; (a; ) is the creation (an-
nihilation) operator for electrons with spin cr on site i;
and q; =z; —n; is the charge operator for the site i, z, be-
ing the charge of the vacuum site and n; the electron
number operator. The chain has alternating CT in-
tegrals, t' and t": The mean CT integral is defined by
t = ( t '+ t" ) /2, and the alternation parameter is
q&=(t' —t")/2t. U measures the repulsion of two elec-
trons on the same site, and V; the repulsion between two
electrons on sites i and j. We consider an unscreened e-e
potential: V; ~

= V/r;~, where r, is the distance between
i and j sites and V= V;;+&. In this hypothesis the gen-
eralized Madelung constant cx is 21n2 for the infinite
chain (if only nearest-neighbor interactions are included,
a=2, whereas for a Pariser-Parr-Pople —Ohno parame-
trization, ' a=1.25). In the following the strength of in-
tersite e-e interactions is measured by s, = V(a —1), and
we put &2iti =1.

We consider the coupling of the electron with adiabatic
phonons modulating either on-site or on-bond energies.
The corresponding e-mv and e-Iph Hamiltonians are

, =N '~ g Q„g„+co„g(—1)'n, ,

&, ( h=N '~ g U,g +co„g ( —1)'b;,
V E

(2a)

(2b)

~mv 2+topQp ~

P

~mph
=

p g tv'vQ v .

(3a)

(3b)

Phonons modulating on-site energies break the elec-
tron hole and the refiection symmetry of the Hamiltonian
in Eq. (1), whereas on-bond phonons are totally sym-
metric. In the adiabatic approximation the bond-
diagonal coupling plays the same role as the alternation
of CT integrals and, in fact, in this approximation, the
bond-diagonal e-ph Hamiltonian in Eq. (2b) becomes

&, Iph= 4EqP g (
——1)'b;, (4)

where

8= (x ( —1)'b;)

is the ground-state expectation value of the bond-CDW
amplitude. If one assumes that the alternation of CT in-

where Q„and U, are the zone-center coordinates of on-
site and on-bond phonons, co„& and g„& being the corre-
sponding frequencies and e-ph coupling constants, re-
spectively. The strength of the on-site and on-bond e-ph
couplings is measured by the small polaron binding ener-
gy, s, =g„g„/co„and by the lattice distortion energy

/co„, respectively. In the adiabatic approxima-
tion the phonon Hamiltonians are

(G~g( —1)'n; ~F)
1

& Gly( 1) b; IF &
'

l

E~ —EG

(«)

(6b)

where ~G) and ~F) represent the ground and an excited
state of the electronic Hamiltonian, and EG, EI; are the
corresponding energies. The on-bond phonon suscepti-
bility is simply related to the second derivative of the
ground-state energy:

0 EG
X~= —2b

The stability conditions with respect to Q„and U, relax-
ations are

—1
Esp &&v

Since g, and gb are purely electronic quantities, the effect
of e-ph perturbations on the system can be investigated
once a solution of the electronic problem is given.

The DVB technique, ' which fully exploits spin-
exchange symmetry, is an efficient approach to the diago-
nalization of Hubbard Hamiltonians for finite-size sys-
tems. We perform calculations on finite rings with
periodic or antiperiodic boundary conditions. Periodic
rings belong to the C~&/z~, point group, showing both ro-
tational symmetry, i.e., the translational symmetry of the
infinite chain, and reAection symmetry. For these sys-
tems we only investigate 3

&
and A 2 subspaces, which in

the infinite-chain limit correspond to the zero-wave vec-
tor states, which are symmetric ( A

& ) and antisymmetric
( Az) with respect to reliection. In antiperiodic rings the
translational symmetry is lost, but symmetric and an-
tisymmetric states are still distinguished with respect to
reAection. Moreover, both periodic and antiperiodic
rings show electron-hole symmetry: g and u states are
defined as symmetric and antisymmetric with respect to
electron-hole exchange. The ground state is found in the
A&~ subspace for N=4n rings, whereas it is in the 2&„
subspace for N =4n +2 rings.

The exploitation of spin-exchange, electron-hole, and
spatial symmetry allows us to diagonalize exactly the
electronic Hamiltonian in Eq. (1) for rings up to ten sites
on a VAX 3100 station. Infinite-chain results are ob-

tegrals is only due to the relaxation of bond-diagonal cou-
pled modes, then, by comparing Eq. (1) with Eq. (4),

P(2)3/2

Therefore, once the electronic Hamiltonian (1) is solved,
from the /3(g) curves one can extract the corresponding
cd value, getting information on the e-ph coupled system.
Moreover, the Herzberg-Teller approach to e-ph cou-
pling leads to the definition of two different phonon sus-
ceptibilities g, and gb, which describe the electronic
response to on-site and on-bond e-ph perturbation:
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FIG. 1. The bond-CDW amplitude P as a function of q for
the infinite chain. The dashed curve refers to the analytical re-
sult, while the solid line shows the results of the extrapolation
on periodic and antiperiodic finite systems with N 10.

tained by extrapolating data obtained with modified
periodic boundary conditions (MPBC; periodic boundary
conditions are assumed for 4n rings and antiperiodic ones
for 4n +2 rings) and with modified antiperiodic boundary
conditions (MABC; antiperiodic boundary conditions are
assumed for 4n rings and periodic ones for 4n +2
rings). ' In particular, unless stated differently, MPBC
and MABC results for rings up to ten sites are interpolat-
ed (using the Marquardt algorithm ) with two polynomi-
als, y =c+d/N'+f/NJ, forced to the same c value,
while i and j are integers between 1 and 4. The results
obtained with the different i and j choices are then medi-
ated, whereas the lowest and highest c values give an esti-
mate of the uncertainty in the extrapolated results.

In order to gain confidence in the extrapolation pro-
cedure, we have tested it for the noninteracting (U =0)
case, where exact results for the infinite chain are avail-
able. As an example, in Fig. 1 we compare the P(p)
curve calculated for the noninteracting infinite chain
(dashed line) with the extrapolated results. The agree-
ment between the two curves is excellent, also consider-
ing that finite-size extrapolations are particularly dificult
for noninteracting systems.

III. SYSTEMS WITH NO INTERSITK e-e
INTERACTIONS ( V =0)

In Fig. 2 we report, for different U, the y dependence
of the bond-CDW amplitude P. For U =12, the ampli-
tude of the bond CD%' is always lower than in the U =0
case (the dashed lines in the figure). On the contrary, for
both U =4 and 2.5, there is a region where, for small qr, P
is larger than in the noninteracting case (the uncertainties
in the extrapolated results are too large to make any
definite statement in the U = 1 case). In other words, de-
pending on the y value, the P( U) function either shows a
maximum at intermediate U values or displays a strictly
monotonous behavior. This behavior is strongly reminis-
cent of the U dependence of the dimerization amplitude
(q&) as recently calculated ' ' ' for various strengths of
bond-diagonal e-ph coupling. The two results are indeed
strictly related, since Eq. (5) allows us to extract from the
P(y) curves the corresponding Ed values. In Fig 3we re-.

FIG. 2. The bond-CDW amplitude P as a function of q& for
the infinite chain. The dashed lines refer to the noninteracting
case.

port the bond-CDW amplitude (P) as a function of sd.
This figure clearly shows the dimerization enhancement
at small cd and intermediate U values. Our results are in
quantitative agreement with previous partial results by
Hirsch, Hayden and Soos," and Waas, Biittner, and
Voit.

We notice that, due to the y dependence of P, y and Ed
are not simply proportional [see Eq. (5)] and that, even if
the information given in Fig. 3 is already implied in Fig.
2, the curves in Fig. 3 offer a more immediate picture of
the physics of e-ph coupled systems. In particular,
whereas P rapidly increases with p near y=0, the P(Ed)
curves show a maximum slope at finite ed values. The
divergence of

0.50

0.25

0.25

0.00 ~-

0.5 0.5 1.0

FIG. 3. The bond-CDW amplitude P as a function of y for
the infinite chain. The shaded regions correspond to the uncer-
tainties in the extrapolated results (circles) for finite U. The
dashed lines refer to the noninteracting case.

P 2~2 P
1 ( /P) P

acd aq
' af

at y/P=(r)P/Bqr) ', or ed=yb ' [see Eqs. (5) and (7)] ac-
counts for the sudden increase of P at finite Ed values,
which is clearly observed at large U, as well as for U =0.
The physical origin of this behavior can be understood by
realizing that whereas the regular chain is unstable with
respect to dimerization, for each U a finite c.d is required
to obtain a non-negligible bond-CDW amplitude.



10 686 ANNA PAINELLI AND ALBERTO GIRLANDO

The mean bo
6=( b )/S is

ond order in the ground t t,sac,
, is a measure of the delocalization of the

electrons alonong the chain. Moreover, together with P, it
determines the total oscillator stren th of th CT
ions, fcr = 2(b +yP). This quantity is particularly

important since it is experimentally accessible and pro-
vides a useful check in the calculation of o ti 1n o op ica spectra,
w ere the large finite-size dependence of the Drude con-
tribution can easil y yield to incorrect interpretations.
In Fig. 4 we present both the P(y) and the f&&(y) curves
calculated for different U values A fa ues. part rom a few b
values presented in Ref. 28 for a N =8 s stea = system, as far as
we now t is is the first reported calculation of b d

fci, for chains with finite Uand y. The =0 (no
o, an

& results are in quantitative agreement with
exact results obtained for half-filled Hubbard chains from

is interesting to noticet e Bethe-ansatz solution. It is
'

t at whereas fci increases with q& for any U value, b de-
creases with y for U & 2. 5 and shows the o osite

behavior can be understood by realizing that for small U,
electrons are largely delocalized in the undistorted lattice
and the chain dimerization localizes them within each di-
mer. For lar e Ug, on the contrary, electrons are strongly
localized on the sites and the me b d d
with sine

ean on or er increases
wit y since the increased delocalization within each di-
mer more than compensates the intradimer localization.

different U
n Fig. 5 we report the optical gap (b, ) calculated fae or

stron 1 i
ent U and y values. As expected the o

'
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FIG. 5. The o tical ap
'

g p 6 as a function of y. From top to
bottom the curves refer to U = 12, 4, 2.5, and 1.

independent. This also holds for 6, but its value differs
from the value relevant to the isolated dimer,

h=[U+(U +32)' ]/2 .

In fact, the lowest electronic excitation does correspond
to an interdimer excitation whose energy is calculated

( U2+32)1/2 23/2

in agreement with the Fig. 5 data. The calculated gap is
in good agreement with previous partial res lt

' R f . 6
On the contrary, the variational calculation in

Ref. 10 appears to largely underestimate the optical gap.
As suggested by Eqs. (8), g, '(y)and gb '(y) figures are

the phase diagrams for on-site and on-bo d h
a ion. n act, putting on the ordinate axis the c., and c,&

values, stable states are represented by points 1 in b 1

ince the calculation of electronic suscepti-
bilities requires the complete diagonalization of the Ham-

ues reported in Fig. 6 are extrapolat-
e ~

ed from the results obtained for periodic rings u to ei h
antiperiodic rings up to six sites. The stability

of the system with respect to site-CDW distortion strong-
y increases with U. However, for small U ( U =0, I, the

system becomes more and more st bl
'

ha e wit respect to
site-CDW distortion as the dim

' t'imerization increases,
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FIG. 4. To
tom

p panel: the ground-state bond order b . 8er vs y. ot-
om panel: the total oscillator strength &~ vs

pane s, infinite-chain extrapolations are reported. A
s uares tria

p r e . sterisks,q, triangles, and diamonds correspond to U=1n o = , 2.5, 4,
, respectively. The error bars are of th e same or 'er as or

smaller than the symbols. The solid line (no symbols) refers to
the noninteracting case.

0.0
0,0

FIG. 6. The invere se of the electronic response to site-
diagonal e-ph perturbation, g, ', as a function of y. From top
to bottom the curves refer to U =4 2.5 1 , an 0, respectively.
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whereas for large U ( U) 2.5), the stability of the system
decreases with y (the U =12 curve, outside the figure
range, also has a negative slope). The opposite slope of
the y, '(p) curves at low and high U has the same physi-
cal origin as the analogous behavior observed for the
b(y) curves. At small U, electrons are largely delocal-
ized along the chain and are therefore highly responsive
to site-CD'W distortion; by increasing p, they localize
within the dimers and become stiffer. On the contrary, at
large U, electrons are strongly localized and dimerization
delocalizes them within each dimer, making the system
more responsive to site-diagonal e-ph perturbation.

Equation (7) allows us to calculate yb also for ten-site
periodic rings and eight-site antiperiodic rings, without
the need for complete diagonalization. In Fig. 7 we re-
port the gb '(q&) curves calculated for finite-size rings
with several U values, together with the analytical U =0
results. As in the case of 6, the yb

' values calculated for

y = 1 are different from the values relevant to the isolated
dimer (gb =(I /4)[32+ U( U —1 ) ]/[32 —

( U —1") ],
with I =U +32, i.e., yb

'= ~, 47.39, 9.462, 5.196, and
4.054 for U =0, 1, 2.5, 4, and 12, respectively), suggest-
ing a large contribution to gb from interdimer excita-
tions. However, something very peculiar occurs in this
case: Whereas at y=1 all the other computed quantities
are strictly independent of X and of boundary conditions,
yb is strongly N dependent, suggesting a contribution
from long-range excitations. In fact, gb is the sum, with
alternating signs, of bond-bond polarizabilities, ' and
nonlocal contributions are expected to be important par-
ticularly for small U values (notice that in Fig. 7 the
U =0 curve relevant to the four-site periodic ring is not
shown as gb = ~ in this case). Due to the large X
dependence of yb, the usual extrapolation procedure has
been slightly modified. In particular, the extrapolated
yb values reported in Fig. 7 and, with the corresponding
uncertainties, in Fig. 8 are obtained as described at the

3.0

1.5

Xg

0.0 0.5

FIG. 8. The inverse of the electronic response to bond-
diagonal e-ph perturbation (y& ) vs y: infinite-chain extrapola-
tions. The dashed lines refer to the noninteracting case.

co 0
CO

=~ahab (9)

where co is the phonon frequency in the absence of e-ph
perturbation. As for many other properties, the screen-
ing of the phonon frequency shows a nonmonotonous
behavior at sma11 c& values. As shown in Fig. 9, it first
decreases with increasing U and then increases. On the
contrary, for large c&, the screening increases with U.
Our results are in qualitative agreement with the result
reported in Ref. 32 for y=0. 1, but are not in agreement
with the variational results in Ref. 10, and in fact for
U =2.5, we calculate much larger screening. Moreover,
an overall increase of the screening with c.& is only ob-
served in the high U ( U )4) and high Ez (E& )0.5) re-
gions.

end of Sec. I, but with the exponents of the interpolating
polynomials ranging from 1 to 8.

In the Herzberg-Teller approach, yb is directly relat-
ed to the screening of the phonon frequency. If only one
mode is coupled to the electron, its frequency (0) is given
by

1.0
U=1 2.5

b 0.5

o.o '~
0.0 1.0

0.5

FIG. 7. The inverse of the electronic response to bond-
diagonal e-ph perturbation (gb ) vs y for finite-size rings.
Squares, triangles, diamonds, and stars refer to four, six, eight,
and ten sites, respectively. Long- and short-dashed lines join
points relevant to MPBC and MABC, respectively; the solid
lines correspond to the N = ~ extrapolations for finite U and to
the analytical result for U =0.

0,0 0.5

FIG. 9. Screening of the bond-diagonal phonon frequency as
a function of the strength of bond-diagonal e-ph coupling (cz).
The hatched regions correspond to the uncertainties in the ex-
trapolated results (circles) for finite U. The dashed lines refer to
the noninteracting case.
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K(k,p, a, b)

m. /2 (a cos 6+b sin 8)
(cos 8+p sin 8)(cos 8+k sin 8)'/

(A3)

1 B6' 2
b = —— = K(y—, 1, 1,0)

2 at
(A4)

is the complete elliptic integral as defined in Ref. 35.
Moreover,

APPENDIX: THE NONINTKRACTING
ELECTRON CASK

B'e 4&2
yb = —2 = K(tp, 1, —1, 1 ) .

By ~(l —y )
(A5)

The Hamiltonian [Eq. (I)] with no e einter-actions
( U = V, =0) has already been solved. The ground-state
energy per site is

To evaluate y„we introduce in the electronic Hamiltoni-
an a term accounting for the alternation of on-site ener-
gies:

(2)3/2
E(1—qP), (A 1)

(A6)

where E (x) is the complete elliptic integral of the second
type. From the energy all quantities of interest can be
evaluated as follows:

The ground state energy is

~/26'= ——f d8 +2' sin 8+2cos 8
7T —n /2 4

(A7)

where

K(@,1,0, 1),1 BD 2y
e2 B&= (A2)

B'6' &2g„=—4
2

= K(tp, 1, 1, 1) . (AS)
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