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The diagrammatic valence-bond technique is adopted to investigate one-dimensional half-filled Hub-
bard chains with long-range e -e interactions and alternating charge-transfer integrals. Exact results for
finite-size systems with different boundary conditions are carefully extrapolated to the infinite-chain lim-
it. In addition to various ground-state properties, such as bond-charge-density wave and bond-order am-
plitude, we calculate the optical gap and the corresponding oscillator strength. We introduce adiabatic
phonons able to modulate on-site energies and investigate the stability of the system with respect to site-
charge-density wave distortion. We also evaluate the response of the electronic system to the perturba-
tion induced by adiabatic phonons which modulate charge-transfer integrals, and calculate the corre-

sponding screening of vibrational frequencies.

I. INTRODUCTION

One-dimensional (1D) Hubbard chains with alternating
charge-transfer (CT) integrals have been extensively stud-
ied"? in the past few years as model systems for conjugat-
ed polymers such as polyacetylene. The alternation of
CT integrals originates from the dimerization of the un-
derlying chain and is driven by phonons which modulate
CT integrals (bond-diagonal electron-phonon (e-ph) cou-
pling). The amplitude of the resulting bond-charge densi-
ty wave (bond-CDW) and its dependence on the on-site
and intersite electron-electron (e-e) interactions have been
the focus of many papers.! ”!> On the other hand, the
same model is also relevant to a second class of com-
pounds, i.e., half-filled segregated stack CT salts such as
K-TCNQ.!® In these systems, as well as in conjugated
polymers with complex structure, electrons also couple to
phonons that modulate on-site energies (site-diagonal e-
ph coupling). This coupling favors a site-CDW distor-
tion, and the actual ground-state structure of the system
is determined by the interplay between bond- and site-
diagonal e-ph coupling and on-site and intersite e-e in-
teractions.!’ 2

In this paper we present the results of extensive di-
agrammatic valence-band (DVB) calculations?! on half-
filled 1D Hubbard chains with different strengths of on-
site and intersite long-range e-e interactions, and variable
CT integral alternation. In particular, we -calculate
ground-state properties such as energy, bond-order, and
bond-CDW amplitude for rings with periodic or an-
tiperiodic boundary conditions. In the adiabatic approxi-
mation we also calculate phonon susceptibilities, i.e., the
electronic response to site- and bond-diagonal e-ph per-
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turbation.!” "!° The finite-size results are carefully extra-

polated to the infinite-chain limit. Whereas the depen-
dence of the bond-CDW amplitude on the bond-diagonal
e-ph coupling strength and on the strength of on-site and
intersite e-e interactions compares well with the results of
the most recent calculations, we are also able to evaluate
other properties of the system such as the optical gap and
the total oscillator strength, or the perturbation of pho-
non frequencies due to e-ph coupling and the stability of
the system with respect to site-CDW formation. Finally,
in a subsequent paper?>?? we will show how these results,
together with those already obtained on systems with al-
ternating on-site energies,!® yield the complete phase dia-
gram of the half-filled 1D chain in the presence of on-site
and long-range intersite e-e interactions and on-site and
on-bond e-ph coupling.

The paper is organized as follows: In Sec. II we
present the Hamiltonian and the diagonalization pro-
cedure. In Sec. III we discuss the results of calculations
performed in the absence of intersite e-e interactions. In
Sec. IV we extend the calculation to account for intersite
e-e¢ interactions. Finite U results are compared with the
U =0 ones; the analytical solution of the corresponding
problem is sketched in the Appendix.

II. MODEL HAMILTONIAN

The long-range extended Hubbard Hamiltonian for a
dimerized chain is written as

FH=2t3 b,—2tp S (—1)b,

+U 2 aiL“iTﬁ“i,ﬁ“i,a'*‘ E Vii9:4; (D

i>j
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where

b,=3 (ala; 41 ,+H.c.)/2

is the bond-order operator; aiTa (a;,) is the creation (an-
nihilation) operator for electrons with spin o on site i
and g; =z; —n; is the charge operator for the site i, z; be-
ing the charge of the vacuum site and n; the electron
number operator. The chain has alternating CT in-
tegrals, ¢’ and ¢t”: The mean CT integral is defined by
t=(t'+t")/2, and the alternation parameter is
@=(t'—1t")/2t. U measures the repulsion of two elec-
trons on the same site, and V; ; the repulsion between two
electrons on sites i and j. We consider an unscreened e-e
potential: V, ; =V /r;;, where r, ; is the distance between
i and j sites and V=V, ; ;. In this hypothesis the gen-
eralized Madelung constant o is 21In2 for the infinite
chain (if only nearest-neighbor interactions are included,
a=2, whereas for a Pariser-Parr-Pople-Ohno parame-
trization,! @=1.25). In the following the strength of in-
tersite e-e interactions is measured by €, =V (a—1), and
we put V2|¢|=1.

We consider the coupling of the electron with adiabatic
phonons modulating either on-site or on-bond energies.
The c?;'responding e-mv and e-Iph Hamiltonians are
(i=1)

Hem=N"'"3 0,8,V 0,3 (=Dn;, (2a)
u i
Heiw=N""'"3 Usg, V0,3 (—1)b; , (2b)

where Q, and U, are the zone-center coordinates of on-
site and on-bond phonons, o, ,, and g, /, being the corre-
sponding frequencies and e-ph coupling constants, re-
spectively. The strength of the on-site and on-bond e-ph
couplings is measured by the small polaron binding ener-
gy, asp=zugﬁ /@, and by the lattice distortion energy
€4 =>.85/w,, respectively. In the adiabatic approxima-
tion the phonon Hamiltonians are

ﬂmu =72 wﬁQi > (3a)
u
Hipn=13, 02073 . (3b)

Phonons modulating on-site energies break the elec-
tron hole and the reflection symmetry of the Hamiltonian
in Eq. (1), whereas on-bond phonons are totally sym-
metric. In the adiabatic approximation the bond-
diagonal coupling plays the same role as the alternation
of CT integrals and, in fact, in this approximation, the
bond-diagonal e-ph Hamiltonian in Eq. (2b) becomes?®?

Herppn="4€aB3 (1 )b, , @)

where

B=<§(—U%»/N

is the ground-state expectation value of the bond-CDW
amplitude. If one assumes that the alternation of CT in-
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tegrals is only due to the relaxation of bond-diagonal cou-
pled modes, then, by comparing Eq. (1) with Eq. (4),

p=e,B(2)%% . 5)

Therefore, once the electronic Hamiltonian (1) is solved,
from the B(¢) curves one can extract the corresponding
g4 value, getting information on the e-ph coupled system.
Moreover, the Herzberg-Teller approach to e-ph cou-
pling?* leads to the definition of two different phonon sus-
ceptibilities x, and X,, which describe the electronic
response to on-site and on-bond e-ph perturbation:

I(Glz(—l)‘nilF)’z

=25
=N 2 Ep—Eg ’ (6a)
. '(GIZ(—I)‘biIF)\Z
Xs= % E,—Eg > (6b)

where |G ) and |F) represent the ground and an excited
state of the electronic Hamiltonian, and Eg,E are the
corresponding energies. The on-bond phonon suscepti-
bility is simply related to the second derivative of the
ground-state energy:

3’E —
Xp=—2—3 —2v398 )
d¢ op
The stability conditions with respect to Q,, and U, relax-
ations are®®

—1
€p <Xy s

" ®)
€q <Xb .

Since Y, and Y, are purely electronic quantities, the effect
of e-ph perturbations on the system can be investigated
once a solution of the electronic problem is given.

The DVB technique,?! which fully exploits spin-
exchange symmetry, is an efficient approach to the diago-
nalization of Hubbard Hamiltonians for finite-size sys-
tems. We perform calculations on finite rings with
periodic or antiperiodic boundary conditions. Periodic
rings belong to the C(y ) , point group, showing both ro-
tational symmetry, i.e., the translational symmetry of the
infinite chain, and reflection symmetry. For these sys-
tems we only investigate 4, and A4, subspaces, which in
the infinite-chain limit correspond to the zero-wave vec-
tor states, which are symmetric ( 4;) and antisymmetric
(A4,) with respect to reflection. In antiperiodic rings the
translational symmetry is lost, but symmetric and an-
tisymmetric states are still distinguished with respect to
reflection. Moreover, both periodic and antiperiodic
rings show electron-hole symmetry: g and u states are
defined as symmetric and antisymmetric with respect to
electron-hole exchange. The ground state is found in the
A, subspace for N =4n rings, whereas it is in the 4,,
subspace for N =4n +2 rings.

The exploitation of spin-exchange, electron-hole, and
spatial symmetry allows us to diagonalize exactly the
electronic Hamiltonian in Eq. (1) for rings up to ten sites
on a VAX 3100 station. Infinite-chain results are ob-
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FIG. 1. The bond-CDW amplitude S as a function of ¢ for
the infinite chain. The dashed curve refers to the analytical re-
sult, while the solid line shows the results of the extrapolation
on periodic and antiperiodic finite systems with N = 10.

tained by extrapolating data obtained with modified
periodic boundary conditions (MPBC; periodic boundary
conditions are assumed for 4n rings and antiperiodic ones
for 4n +2 rings) and with modified antiperiodic boundary
conditions (MABC; antiperiodic boundary conditions are
assumed for 4n rings and periodic ones for 4n +2
rings).!? In particular, unless stated differently, MPBC
and MABC results for rings up to ten sites are interpolat-
ed (using the Marquardt algorithm?®) with two polynomi-
als, y =c +d/N'+f /N, forced to the same c value,
while i and j are integers between 1 and 4. The results
obtained with the different i and j choices are then medi-
ated, whereas the lowest and highest ¢ values give an esti-
mate of the uncertainty in the extrapolated results.

In order to gain confidence in the extrapolation pro-
cedure, we have tested it for the noninteracting (U =0)
case, where exact results for the infinite chain are avail-
able. As an example, in Fig. 1 we compare the B(g)
curve calculated for the noninteracting infinite chain
(dashed line) with the extrapolated results. The agree-
ment between the two curves is excellent, also consider-
ing that finite-size extrapolations are particularly difficult
for noninteracting systems.

III. SYSTEMS WITH NO INTERSITE e-e
INTERACTIONS (¥ =0)

In Fig. 2 we report, for different U, the ¢ dependence
of the bond-CDW amplitude B. For U =12, the ampli-
tude of the bond CDW is always lower than in the U =0
case (the dashed lines in the figure). On the contrary, for
both U =4 and 2.5, there is a region where, for small ¢, B
is larger than in the noninteracting case (the uncertainties
in the extrapolated results are too large to make any
definite statement in the U =1 case). In other words, de-
pending on the ¢ value, the B(U) function either shows a
maximum at intermediate U values or displays a strictly
monotonous behavior. This behavior is strongly reminis-
cent of the U dependence of the dimerization amplitude
(@) as recently calculated®”°~ ' for various strengths of
bond-diagonal e-ph coupling. The two results are indeed
strictly related, since Eq. (5) allows us to extract from the
B(@) curves the corresponding €, values. In Fig. 3 we re-
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FIG. 2. The bond-CDW amplitude 8 as a function of ¢ for
the infinite chain. The dashed lines refer to the noninteracting
case.

port the bond-CDW amplitude () as a function of g,.
This figure clearly shows the dimerization enhancement
at small €; and intermediate U values. Our results are in
quantitative agreement with previous partial results by
Hirsch,® Hayden and Soos,!' and Waas, Biittner, and
Voit.!2
We notice that, due to the ¢ dependence of B, ¢ and ¢,
are not simply proportional [see Eq. (5)] and that, even if
the information given in Fig. 3 is already implied in Fig.
2, the curves in Fig. 3 offer a more immediate picture of
the physics of e-ph coupled systems. In particular,
whereas [ rapidly increases with ¢ near ¢ =0, the B(g;)
curves show a maximum slope at finite €; values. The
divergence of
9B 5,338
¢

_ 9B
3¢, 1—(¢/B) Py

at /B=(3B/3¢) "}, or e,=x; ! [see Egs. (5) and (7)] ac-
counts for the sudden increase of B at finite ¢, values,
which is clearly observed at large U, as well as for U =0.
The physical origin of this behavior can be understood by
realizing that whereas the regular chain is unstable with
respect to dimerization, for each U a finite ¢, is required
to obtain a non-negligible bond-CDW amplitude.
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FIG. 3. The bond-CDW amplitude 3 as a function of ¢ for
the infinite chain. The shaded regions correspond to the uncer-
tainties in the extrapolated results (circles) for finite U. The
dashed lines refer to the noninteracting case.
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The mean bond order in the ground state,
b=(3;b;) /N, is a measure of the delocalization of the
electrons along the chain. Moreover, together with S, it
determines the total oscillator strength of the CT excita-
tions,?® fop=V2(b +¢@B). This quantity is particularly
important since it is experimentally accessible and pro-
vides a useful check in the calculation of optical spectra,
where the large finite-size dependence of the Drude con-
tribution?” can easily yield to incorrect interpretations.
In Fig. 4 we present both the S(¢) and the fr(¢) curves
calculated for different U values. Apart from a few b
values presented in Ref. 28 for a N =8 system, as far as
we know this is the first reported calculation of b, and
then of fr, for chains with finite U and ¢. The =0 (no
bond-CDW) results are in quantitative agreement with
exact results obtained for half-filled Hubbard chains from
the Bethe-ansatz solution.?’ It is interesting to notice
that whereas fr increases with ¢ for any U value, b de-
creases with @ for U <2.5 and shows the opposite
behavior for U >2.5. This seemingly anomalous
behavior can be understood by realizing that for small U,
electrons are largely delocalized in the undistorted lattice
and the chain dimerization localizes them within each di-
mer. For large U, on the contrary, electrons are strongly
localized on the sites and the mean bond order increases
with @ since the increased delocalization within each di-
mer more than compensates the intradimer localization.

In Fig. 5 we report the optical gap (A) calculated for
different U and ¢ values. As expected, the optical gap
strongly increases with U, and monotonously increases
with @. In general, ¢ =1 results are not affected by extra-
polation uncertainties: At ¢ =1, the chain becomes a col-
lection of noninteracting dimers and the results are size

0.8
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FIG. 4. Top panel: the ground-state bond order b vs ¢. Bot-
tom panel: the total oscillator strength fer vs @. In both
panels, infinite-chain extrapolations are reported. Asterisks,
squares, triangles, and diamonds correspond to U =1, 2.5, 4,
and 12, respectively. The error bars are of the same order as or
smaller than the symbols. The solid line (no symbols) refers to
the noninteracting case.
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1.0

FIG. 5. The optical gap A as a function of ¢. From top to
bottom the curves refer to U =12, 4, 2.5, and 1.

independent. This also holds for A, but its value differs
from the value relevant to the isolated dimer,

A=[U+(U*+32)1"%1/2 .

In fact, the lowest electronic excitation does correspond
to an interdimer excitation®® whose energy is calculated
at

A=( U2+32)1/2_23/2 ,

in agreement with the Fig. 5 data. The calculated gap is
in good agreement with previous partial results in Refs. 6
and 14. On the contrary, the variational calculation in
Ref. 10 appears to largely underestimate the optical gap.
As suggested by Eqgs. (8), x, '(¢)and x; (¢) figures are
the phase diagrams for on-site and on-bond charge relax-
ation. In fact, putting on the ordinate axis the €, and ¢,
values, stable states are represented by points lying below
the curves.?> Since the calculation of electronic suscepti-
bilities requires the complete diagonalization of the Ham-
iltonian, the y, ! values reported in Fig. 6 are extrapolat-
ed from the results obtained for periodic rings up to eight
sites and antiperiodic rings up to six sites. The stability
of the system with respect to site-CDW distortion strong-
ly increases with U. However, for small U (U =0, 1), the
system becomes more and more stable with respect to
site-CDW distortion as the dimerization increases,

OO 1 1 L
0.0 0.5 go 1.0

FIG. 6. The inverse of the electronic response to site-
diagonal e-ph perturbation, x, !, as a function of . From top
to bottom the curves refer to U =4, 2.5, 1, and 0, respectively.
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whereas for large U (U =2.5), the stability of the system
decreases with ¢ (the U =12 curve, outside the figure
range, also has a negative slope). The opposite slope of
the x, (@) curves at low and high U has the same physi-
cal origin as the analogous behavior observed for the
b (@) curves. At small U, electrons are largely delocal-
ized along the chain and are therefore highly responsive
to site-CDW distortion; by increasing ¢, they localize
within the dimers and become stiffer. On the contrary, at
large U, electrons are strongly localized and dimerization
delocalizes them within each dimer, making the system
more responsive to site-diagonal e-ph perturbation.
Equation (7) allows us to calculate x, also for ten-site
periodic rings and eight-site antiperiodic rings, without
the need for complete diagonalization. In Fig. 7 we re-
port the x, !(¢) curves calculated for finite-size rings
with several U values, together with the analytical U =0
results. As in the case of A, the x, ! values calculated for
@=1 are different from the values relevant to the isolated
dimer  (x,=(I'/4)[32+U(U —T)*]/[32—(U —T)],
with T2=U?+32, i.e., x; '= 0, 47.39, 9.462, 5.196, and
4.054 for U =0, 1, 2.5, 4, and 12, respectively), suggest-
ing a large contribution to ), from interdimer excita-
tions. However, something very peculiar occurs in this
case: Whereas at ¢ =1 all the other computed quantities
are strictly independent of N and of boundary conditions,
X, is strongly N dependent, suggesting a contribution
from long-range excitations. In fact, Y, is the sum, with
alternating signs, of bond-bond polarizabilities,! and
nonlocal contributions are expected to be important par-
ticularly for small U values (notice that in Fig. 7 the
U =0 curve relevant to the four-site periodic ring is not
shown as Yy, = in this case). Due to the large N
dependence of Y, the usual extrapolation procedure has
been slightly modified. In particular, the extrapolated
X5 ! values reported in Fig. 7 and, with the corresponding
uncertainties, in Fig. 8 are obtained as described at the

0.0 0.5 ] 0.5 1.0

FIG. 7. The inverse of the electronic response to bond-
diagonal e-ph perturbation (y, ') vs ¢ for finite-size rings.
Squares, triangles, diamonds, and stars refer to four, six, eight,
and ten sites, respectively. Long- and short-dashed lines join
points relevant to MPBC and MABC, respectively; the solid
lines correspond to the N = oo extrapolations for finite U and to
the analytical result for U =0.
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FIG. 8. The inverse of the electronic response to bond-
diagonal e-ph perturbation (Y; !) vs @: infinite-chain extrapola-
tions. The dashed lines refer to the noninteracting case.

end of Sec. I, but with the exponents of the interpolating
polynomials ranging from 1 to 8.

In the Herzberg-Teller approach,?* x, is directly relat-
ed to the screening of the phonon frequency. If only one
mode is coupled to the electron, its frequency () is given
by

2_ 02
2—(1—)_2& =€4Xp > 9)

where o is the phonon frequency in the absence of e-ph
perturbation. As for many other properties, the screen-
ing of the phonon frequency shows a nonmonotonous
behavior at small g; values. As shown in Fig. 9, it first
decreases with increasing U and then increases. On the
contrary, for large €,, the screening increases with U.
Our results are in qualitative agreement with the result
reported in Ref. 32 for ¢=0.1, but are not in agreement
with the variational results in Ref. 10, and in fact for
U =2.5, we calculate much larger screening. Moreover,
an overall increase of the screening with €, is only ob-
served in the high U (U >4) and high ¢; (¢;>0.5) re-
gions.

1.0

1 - 1 1 1 1
%0 05 & 05 1.0

FIG. 9. Screening of the bond-diagonal phonon frequency as
a function of the strength of bond-diagonal e-ph coupling (g4).
The hatched regions correspond to the uncertainties in the ex-
trapolated results (circles) for finite U. The dashed lines refer to
the noninteracting case.
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IV. THE EFFECT OF INTERSITE e-e
INTERACTIONS

Figure 10 shows the B(¢) curves calculated for U =4
and several g, values. For not too large €, increasing in-
tersite e-e interactions have an effect similar to that of de-
creasing U (cf. Fig. 2), favoring dimerization in the low-¢
region.’> On the contrary, large intersite e-e interactions
(Va>>U) strongly suppress dimerization. The B(¢)
curves reported in Fig. 10 are transformed with the help
of Eq. (5) into the B(¢) curves reported in Fig. 11 (the
€,=2.23 curve is not reported in the figure since in this
case appreciable dimerization is observed only for
€4 >>1). For Va values of the order of or slightly larger
than U (g, =1-+1.23), a large increase of the bond-CDW
amplitude is observed in a wide €; range, in good agree-
ment with recent results.>!2 It is interesting to notice
that dimerization is largely favored in the U ~ Va region,
i.e., the region where in the absence of e-ph coupling the
site-CDW —bond-CDW interface is expected.'>!® This is
not surprising since at the interface electrons are largely
delocalized (several states with different electronic distri-
butions have similar energies) and are therefore highly
responsive to e-ph perturbation.

The charge delocalization at U=Va is also clearly
pointed out by the b(¢) curves reported in Fig. 12. The
bond order increases with €., reaching the maximum at
€, =1.11-1.23 (see the inset in Fig. 12) with approxi-
mately the same values as in the noninteracting case (cf.
Fig. 4). For Va>>U (g,=2.23), b drops to very small
values. Moreover, for both €, =0 and 2.23, b slightly in-
creases with @, suggesting that the electrons, largely lo-
calized on the sites, are delocalized within the dimers
with increasing dimerization. On the contrary, at inter-
mediate g, values, b decreases with ¢, indicating that di-
merization localizes within the dimers the highly delocal-
ized electrons of the regular chain.

The optical gap A, reported in Fig. 13 for U =4 and

0.50

0.25

025

0.25

oo b T T 225
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FIG. 10. The bond-CDW amplitude S as a function of ¢ for
the infinite chain with U =4 and several €. values. The dashed
lines refer to the noninteracting case.
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FIG. 11. The bond-CDW amplitude 8 as a function of the
strength of bond-diagonal e-ph coupling (g;) for the infinite
chain with U=4 and several €, values. The shaded regions cor-
respond to the uncertainties in the extrapolated results (circles).
The dashed lines refer to the noninteracting case.

different €., monotonously decreases with €, (the
€,=2.23 curve, not reported in Fig. 12, actually lies on
the x axis). The lowering of the optical gap is obviously
related to the increased instability of the system with
respect to site-CDW distortion, as indicated by the
X, (@) curves reported in Fig. 14 (notice that for
€. =2.23, the curve lies on the x axis, i.e., the system is
unstable with respect to site-CDW formation even in the
absence of site-diagonal e-ph coupling). As already ob-
served for Fig. 6, systems with largely localized electrons

*
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FIG. 12. The ground-state bond order b as a function of ¢,
calculated for the infinite chain with U =4 and several €.: cir-
cles, squares, triangles, diamonds, stars, pluses, and asterisks
refer to £, =0, 0.45, 0.89, 1.00, 1.11, 1.23, and 2.23, respectively.
The error bars are of the same order as or smaller than the sym-
bols. The inset shows the b dependence on ¢, for ¢=0.04 (cir-
cles), 0.4 (squares), and 1.0 (triangles).
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FIG. 13. The optical gap A as a function of ¢ for the infinite
chain with U =4 and several ¢.. From top to bottom the curves
refer to €. =0, 0.89, 1.11, and 1.23. The £.=2.23 curve lies on
the x axis.

(large U-Va) become, by increasing ¢, more and more
unstable with respect to site-CDW distortion (y, ! de-
creases), whereas highly delocalized systems (small U-Va)
show increased stability.

In Fig. 15 we compare the X} !(¢) curves calculated for
U =4 and several ¢, values with the U =0 curves (dashed
lines). In this case, due to large uncertainties in the ex-

-trapolated values, we report the results obtained for ten-
site periodic rings. Once more, increasing €. values up to
€.=1.23 has an effect similar to that of decreasing U,
whereas a qualitatively different result is obtained for
Va>>U (g, =2.23).

Before closing this section, we notice that we have
neglected the modulation of intersite e-e interactions due
to bond-diagonal phonons. Its inclusion makes the calcu-
lations more numerically intensive: In fact, charge corre-
lations also have to be calculated in order to extract g,
from the B(¢@) data.!! On the other hand, the linear e-ph
coupling term arising from the modulation of intersite
e-e interactions is expected to give large contributions
only in the large-¢ region (it actually vanishes at ¢=0).
The effect of quadratic (or higher-order) terms, which can
also be large in the small dimerization regime,!! can be

5.0
1]
Y
%o 0.5 . 1.0

FIG. 14. The inverse of the electronic response to site-
diagonal e-ph perturbation (x, ') as a function of ¢ for the
infinite chain with U =4 and several €, values. Circles, squares,
triangles, stars, and pluses refer to £, =0, 0.45, 0.89, 1.11, and
1.23, respectively. The €, =2.23 curve lies on the x axis.
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FIG. 15. The inverse of the electronic response to bond-
diagonal e-ph perturbation, x; !, as a function of @, calculated
for ten-site periodic rings with U =4 and several ¢.. The
dashed lines refer to the ten-site periodic ring with no e-e in-
teractions.
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conveniently included into the definition of the reference
state via a renormalization of the reference phonon fre-
quency ().3!

V. CONCLUSIONS

In this paper we have described the results of DVB cal-
culations performed on a long-range extended Hubbard
model with alternating CT integrals. Calculations have
been performed on rings up to ten sites, with either
periodic or antiperiodic boundary conditions, yielding ac-
curate extrapolations to the infinite-chain limit. We have
investigated systems with variable ¢ and different
strengths of on-site and intersite e-e interactions. Apart
from the bond-CDW amplitude, we have calculated
several properties of the systems, many of them being re-
lated to experimentally accessible quantities. The optical
gap and the CT oscillator strength are directly measured
by the electronic optical spectrum, whereas the screening
of the phonon frequency can be extracted by a careful
analysis of the vibrational (Raman) spectra.3!

By assigning the alternation of CT integrals to the re-
laxation of involved phonons, the present calculations al-
low us to investigate the bond-CDW regime of a half-
filled Hubbard chain in the presence of bond-diagonal e-
ph coupling. In particular, we extract from the B(¢)
curve the corresponding strength of bond-diagonal e-ph
coupling in such a way that all the computed quantities
can be expressed as functions of €.

In a previous paper!’ we have investigated half-filled
Hubbard chains in the presence of on-site energy alterna-
tion, getting information on the site CDW of a half-filled
chain in the presence of site-diagonal e-ph coupling. In a
forthcoming paper,??2 by collecting the results obtained
for the two kinds of relaxed systems, we will be able to
construct the phase diagram of a half-filled chain, de-
scribed in terms of interacting electrons coupled to adia-
batic phonons modulating on-site and on-bond energies.
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APPENDIX: THE NONINTERACTING
ELECTRON CASE

The Hamiltonian [Eq. (1)] with no e-e interactions
(U =V;;=0) has already been solved.>* The ground-state
energy per site is

3/2
6=—2p1—¢?, (A1)
where E (x) is the complete elliptic integral of the second
type. From the energy all quantities of interest can be

evaluated as follows:

1 96 2
—__1 36_2p, A2
B Vaop (p,1,0,1), (A2)

where
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K (k,p,a,b)

_ f /2 (a cos*3+b sin*3)
0 (cos?®+p sin’3)(cos?d + k %sin?3)! /2

(A3)

is the complete elliptic integral as defined in Ref. 35.
Moreover,

___1_86’___2
b= 2 ot —ﬂ_K(qp,l,l,O) (A4)
and
3%6 YRVG)
=—2—=——K(p,1,—1,1) . A
Xb a(p2 (1 —¢?) (@ ) (AS)

To evaluate y,, we introduce in the electronic Hamiltoni-
an a term accounting for the alternation of on-site ener-
gies:

Fa=— % S (—1Va},a, . (A6)
io
The ground state energy is>¢
6=— i J7" av ATZ +2g%in’d+2cos?d | (A7)
and
Xy =— gl(i:ﬁK(qo,l,l,l) . (A8)
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