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Bose-Einstein condensation of charged bosons in a magnetic field
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A critical magnetic 6eld in which charged bosons are condensed is derived, taking into account
their localization in a random potential. Positive curvature (T, —T) / near T, and a divergence or
reentry eKect, depending on the impurity concentration at low temperatures, are found.

The charged Bose liquid has been studied by several
authors and recently became of particular interest in the
context of some theories of high-temperature supercon-
ductors. For a Coulomb Bose gas the excitation spec-
trum at T = 0, the condensation temperature T, and
the dielectric properties were studied in the high-density
limit, including low-dimensional [two-dimensional (2D)]
systems. As noted by Scha&oth an ideal charged Bose
gas in a magnetic field cannot be condensed because of
the one-dimensional character of particle motion within
the lowest Landau level. We have shown that the inter-
acting charged Bose gas is condensed in a Geld lower than
a certain critical value H' because the interaction with
impurities, or between bosons broadens the Landau
levels and thereby eliminates the one-dimensional singu-
larity of the density of states. The critical field of Bose-
Einstein condensation has an unusual positive curvature
near T,o, H*(T) (T,o —T)s/2 and diverges at T -+ 0,
where T,o 3.3ln2/s/m is the critical temperature of
Bose-Einstein condensation of an ideal gas in zero field,
n is the concentration of bosons, and m is their effective
mass (5 = k~ = c = 1).

In this paper I derive the temperature dependence of
H* taking into account the localization of bosons in a
random potential. The localization drastically changes
the low-temperature behavior of the critical field. H'
saturates with the temperature lowering at some value of
the impurity concentration and at higher concentrations
the reentrance into the normal state takes place. I also
discuss a possibility for an experimental observation of
these features.

H* is determined as the field in which the first nonzero
solution of the linearized stationary Ginzburg-Pitaevskii
equation for the macroscopic condensate wave function

IPp(r) = (N ~V((r, r) ~N + 1), (N -+ oo, N/V = n =const)
appears:

�

[9' —2ieA(r)] + U; ~(r) ~ @o(r) = @go(r), (1)2m

where 2e is the charge of a boson, A(r), U;~~(r), and
p are the vector, random, and chemical potentials, re-
spectively. I assume that the particle-particle interaction
is taken into account within the Hartree approximation
and included in the chemical potential, so the main origin
of the broadening of the Landau levels lies in the impu-
rity scattering ("dirty" limit). A weak particle-particle
scattering ("clean" limit) has been discussed in Ref. 10.

4z. n; f N(e', H')de'
Z e

m [e —e' —Z(e)]
' (2)

where n; is the impurity concentration, f is the scatter-
ing amplitude in zero Geld, and

N(e, H) =
Qe —~(N + 1/2)

is the density of states for a noninteracting system with
u = 2eH*/m. The solution of Eq. (2) yields

and

Np(e, H*) =
/—+—
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(4)

E, = (u/2 —3I'p/2 / (5)

with I o ——(n; 8' f2eH*) / /2m and e = (e —~/2)/I'o.
Eq. (4) describes the energy dependence of the density of
states of the lowest Landau level (N=O) near the mobility
edge. Since the square-root singularity of the density of
states of upper levels is integrated out (see below) one can
neglect their quantization using the zero-field density of
states for ~ & ~:

N(e) = m

It does not change the major features of the tempera-
ture behavior of H*. The Coulomb scattering is weak if
the canonical RPA parameter r, = me /eon / ~jr with
eo the static dielectric constant of the host material is
small. The definition of H', Eq. (1) is identical to that
of the upper critical field H 2 of BCS superconductors
of the second kind. Therefore, H* determines the upper
critical field of bipolaronic or any "bosonic" supercon-
ductor.

In general, the energy spectrum of the Hamiltonian Eq.
(1) contains discrete levels (localized states) and a con-
tinuous part (delocalized states). The density of delocal-
ized states N(e, H') BZ(e) and the lowest delocalized
energy E, [the mobility edge, N(E, H*) = 0] can be
found with the random phase ("ladder" ) approximation
for the one-particle self-energy (for details see, e.g. , Refs.
12—14):

0163-1829/93/48(14)/10571(4)/$06. 00 10 571 1993 The American Physical Society



10 572 BRIEF REPORTS 48

The first nontrivial delocalized solution of Eq. (1) appears
at p = E . Thus the critical curve H*(T) is determined
from the conservation of the number of particles n under
the condition that the chemical potential coincides with
the mobility edge:

No (e, H" )de

exp[(e —E,)/T] —1

and temperature independent Hg = $0/27r(o. The "co-
herence" length (0 is determined by both the mean free
path l = (4an; f2) i and the interparticle distance:

(o —0.8(l/n) ~, (12)

Pp=vr/e is the Aux quantum. Using the asymptotics
P(x) (22:) i at temperature T ) p one obtains:

where nL, (T) is the number of localized bosons. The left-
hand side of Eq. (1) is the number of bosons on the lowest
Landau level, while the second term of the right-hand
side is the number of bosons on all upper Landau levels,
calculated with the classical density of states, Eq. (6).

The intuitive picture of interacting bosons with short-
range interaction filling up all localized single-particle
states in random potential and Bose-condensing onto the
first extended state is well known in the literature.
To calculate nl, (T) one should take into account repul-
sion between localized bosons. One cannot ignore the
fact that localization length ( generally varies with en-
ergy and diverges at the mobility edge. One would ex-
pect that the number of hard-core bosons in a localized
state near the mobility edge diverges in a similar way
as the localization length does. However, in the case of
charged bosons their number in a single-potential well
is determined by the competition between their long-
range Coulomb repulsion 4e /( and the binding en-
ergy E —e. If localization length diverges with the crit-
ical exponent v ( 1: [( (E, —e) ], one can apply a
"single-well —single-particle" approximation to calculate
nL, (T) assuming that one can place only one boson in
each potential well (see also Ref. 20). The gross features
of H*(T) as the (T, —T) ~ behavior at a suKciently
high temperature and the reentrance behavior at a low
temperature are not influenced by this approximation if
the number of bosons in a potential well is finite. Thus
localized charged bosons obey the Fermi-Dirac statistics:

where

T, = T o(1 —nL, /2n) ~ (14)

is the critical temperature in zero magnetic field renor-
malized by the localization. Thus the localization does
not change the positive (T —T) ~2 curvature of the criti-
cal magnetic field near T . I believe that this curvature is
a universal feature of a charged Bose gas, which does not
depend on a particular scattering mechanism and on ap-
proximations made. The number of bosons at the lowest
Landau level is proportional to the density of states near
the mobility edge No H/gl (H), where the "width"
of the Landau level is also proportional to the same den-
sity of states I'(H) H/QI'(H). Hence, I (H) H ~s

and the number of condensed. bosons is proportional to
H / . On the other hand this number in the vicinity of
T should be proportional to T, T(the tot—al number mi-
nus the number of thermally excited bosons). That gives
the (T, —T) ~ law for H*, Eq. (13). At low temperature
T « p the temperature dependence of H* turns to be
drastically difFerent for diferent impurity concentration.
If 0 ( nl. ( n the critical field diverges at T ~ 0:

H* = Hd, (T p/T) (1 —nl, /n)

because the number of localized states is smaller than the
number of bosons. In this case only the paramagnetic
limit restricts the value of H* if bosons are composed
from two fermions with the opposite spins. If nl. ——n the
critical field reaches its maximum at T = 0:

nl. (T) = NL, (e)d~

exp[(e —E,)/T] + 1' (8) H* Hd, (T~oln2/p) (1 —x T/8pln2) . (16)

where the density of localized states NI. (e) may be ap-
proximated in many cases by the exponential tail:

Nl, (e) = (nl, /p) exp[(e —E,)/p],
with p of the order of a binding energy of a single ran-
dom potential well and nl. the concentration of localized
states. Substitution of Eqs. (4) and (9) into Eq. (7) yields
the final expression for the critical field of Bose-Einstein
condensation:

H*(T): Hg(T 0/T)

(10)

with

And finally, if n & nl, ( 2n there is a reentrance efFect
to the normal state at temperature below some T*, so
H* =0 for T (T*,Fig. 1. Ifnl. —n«n

T* = p [(nL, —n)/nl, ln2] .

If the number of localized states is large, nI. ) 2n Bose
condensation is impossible: T = 0 according to Eq. (14).
Deriving Eq. (10) for H* I expand the exponent in the
left-hand side of Eq. (7) and assume that the scattering
amplitude f in Eq. (2) is energy independent. Minor fea-
tures of the ultralow (T (( I', ) temperature behavior of
H* depend on these assumptions. In this temperature
region one can expect T / behavior of H* instead of
T ~ as in Eq. (15). These features depend also on the
shape of the localized levels distribution Nl. (e) and on the
vertex corrections to the ladder approximation. However,
the major features like the divergent behavior at T ~ 0
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FIG. 1. Temperature dependence of the critical mag-
netic field of Bose-Einstein condensation [iu units of
Hs(Tcp ln 2/p) l

] for the different relative number of local-
ized states nI, /n and p/T, p = 0.2.

for the marginal case v = 1. In metal oxides the small-
ness of r, is guaranteed by the large value of the static
dielectric constant ep 10 —10 assuring that ( is
field independent.

The hypothesis of charged bosons is very attractive for
high-T oxides in view of an extremely short coherence
length ( 10 A.) in these materials and of many other
anomalous properties (for difFerent manifestations of the
Bose-liquid behavior of superconducting oxides see re-

for the low impurity concentration and the reentry effect
for the suKciently large concentration (nI. ) n) are inde-
pendent of the model and approximation made. My con-
sideration is self-consistent if the localization length ((e)
and the localization exponent v are field independent. In
general, the magnetic field tends to change the localized
state. So v might increase with H and the assumption of
v & 1 might fail before H' is reached. However, this is
not the case under consideration because the localization
length ((e) in the relevant energy region E, —e I'p re-
mains smaller than the inagnetic length (2eH')
Taking for simplicity n; = n and the scattering ampli-
tude in zero field f equal to the screening radius, one
obtains using the definition of the coherence length (p,
Eq. (12), and I p, Eq. (5):

(/( ~ r7/4 ( I

cent review papers ' ). Some microscopic models show
that charged bosons, formed by strong electron-phonon
or (and) electron-electron exchange interaction might be
responsible for the puzzling thermodynamic and kinetic
properties of high-T oxides: small and large bipo-
larons, spin bipolarons, local pairs, and holon pairs
have been suggested. An upward curvature of H 2 near
T has been observed in practically all superconduct-
ing oxides, including cubic ones. Reversible dc mag-
netization measurements on single crystals of YBaCuO
(Ref. 27) proved that this curvature is a truly thermo-
dynamic property. Magnetization measurements on sin-
gle untwinned crystals indicate that this upward cur-
vature depends on the quality of the sample. However,
while some authors apply our theory to explain the ob-
served anomalous temperature dependence of H, 2 [see
for example Ref. 29 (YBa2Cu40s) and a more recent
paper (YBa2CusOr)] the restricted temperature and
magnetic-Geld interval, available for measurements, and.
also the significant broadening of the resistivity transition
in high-T copper-based oxides induced by the magnetic
field make any definite conclusion practically impossi-
ble. One should add the reversibility problem and the
uncertainty due to the vortex lattice melting. It seems
one can overcome all these difhculties with "low-T" ox-
ides measuring the transition in a magnetic field for a
wide temperature range starting from mK level up to T .
Such a study has recently been reported in Ref. 31. Re-
sistively determined H, 2 values from T/T, = 0.0025 to
T/T, = 1 in a T = 20 K single crystal of T12BazCuOs
follow a temperature dependence that is in good quali-
tative agreement with the type of curve shown in Fig. 1
for nI, /n 1. For low enough T, the melting seems to
be impossible and the transition is relatively sharp. If
the system is a "bosonic" superconductor one should see
pronounced unusual features of H 2, Fig. 1.
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