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Solutions to the multiple-component 1/r Hubbard model
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In this work we introduce a one-dimensional multiple-component Hubbard model with 1/r hopping
and on-site energy U. The wave functions, the spectrum, and the thermodynamics are studied for this
model in the strong-interaction limit U —+ ~. In this limit, the system is a special example of SU(ÃJ Lut-
tinger liquids, exhibiting spin-charge separation in the full Hilbert space. Speculations on the physical
properties of the model at finite on-site energy are also discussed.

Recent studies on low-dimensional systems have
renewed great interest in the Gutzwiller-Jastrow wave
functions. The wave functions are useful in the sense that
they may serve as good variational wave functions or
they may be exact solutions of the Hamiltonians. '

Most recently, intense research in the field of integrable
systems has shown the wave functions to be exact solu-
tions of some quantum many-particle systems. These in-
tegrable systems are characterized by the fact that the
full spectrum may even be written in terms of more gen-
eralized Jastrow wave functions, as in the cases of 1/r
Fermi or Bose gases, 1/r Haldane-Shastry spin chain,
and the 1D supersymmetric t-J model with 1/r hopping
and exchange.

The Hubbard model has been of great interest since the
discovery of high-T, superconductivity. About two years
ago, Gebhard and Ruckenstein introduced the one-
dimensional SU(2) Hubbard model with 1/r hopping and
on-site energy U (Ref. 11). The model is completely inte-
grable for arbitrary on-site energy. In the strong-
interaction limit U~ ~, it has been discovered recently
that a set of Gutzwiller-Jastrow wave functions is an ex-
act set of eigenfunctions of the Hamiltonian, ' and that
the system exhibits spin-charge separation in the full Hil-
bert space. "'

In this work, we introduce an integrable model, the
one-dimensional 1/r multiple-component Hubbard mod-
el. In the following we only discuss the strong-
interaction limit U ~ ~ . Generalizing our previous
work, we show that a set of SU(N) Gutzwiller-Jastrow
wave functions is a set of eigenstates of the system. The
full excitation spectrum and the thermodynamics are also
given explicitly in this strong-interaction case. Spin and
charge are decoupled in the full Hilbert space and the
system is a special example of SU(N) Luttinger liquids.
At the end of the work, we also discuss speculations of
further investigation of the system of finite on-site energy
U.

The Hamiltonian for the one-dimensional Hubbard
model is given by

at site i with spin component o.. The sum over o. runs
from 1 to X, where X is the number of flavors of the
fermions. We take the hopping matrix t,"
=it( —1)' J'/d(i —j ), where d (n) = (L /~)sin(n 7r/L),
and U is the on-site energy. Here, because of the special
form of the hopping matrix for the wave functions of the
system, we assume periodic boundary conditions for odd
L, or antiperiodic boundary conditions for even L.

In the strong-interaction limit U —+ ~, each site can be
occupied at most by one particle. In this limit, we work
in the Hilbert space of no double occupancy and no
multiple-occupancy. The Hamiltonian can be written in
terms of the Hubbard operators,

II= g g t,,X, 'X,' (2)
O. =1,2, . . . , N iWj

Let us denote the number of holes by Q, that of the fer-
mions of the first flavor by M&, that of the second flavor
by M2, . . . , that of the Xth flavor by MN. Following no-
tations used in previous literature, states in the Hilbert
space can be represented by spin and hole excitations
from the state full of fermions with the Nth flavor ~P &, as

e&= y e([,'], [y, I) ~b,'. ~h,'IP& .
(a, i),j a, l J

Here b, =c; c,N annihilates one Nth flavored fermion at
site i and creates one ath flavored fermion at site i for
a=1,2, . . . , (N —1), while h, =cj~ creates a hole at site
j. Here or in the following we always implicitly assume
that we work in the space of no double occupancy and no
multiple occupancy in the discussion of the strong-
interaction limit. The amplitude N([x; ], [y I ) is sym-
metric when exchanging the fermions at positions x, and
x. , and antisymmetric in the hole positions [y; I.

Let us consider the following generalized SU(N)
Gutzwiller-Jastrow wave functions corresponding to uni-
form motion and magnetization,

CG([x I [y I)=exp g J gx +Jh gy, .

a l I

d (x; —x ) Q d(x; —x~~)

H=ggt, ,c~c, +Up g n, n, a;l &J a&p;i j
l 0WO

where c; and c, are creation and annihilation operators a, i, m m &n

X Q d(x, —y ) Q d(y —y„), (4)
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L —)
( 1)n

Z
d(n)

where a,P=1,2, . . . , N 1—. The quantum numbers J
and J& govern the momenta of the fermions and the
holes. They can be integers or half integers, such that the
wave functions are periodic (or antiperiodic) for odd L
(for even L) under the translations x, ~x, +L, and

y —+y +L. For the wave functions to be eigenstates of
the Hamiltonian, the quantum numbers must be chosen
from some restricted regions, which will be specified
below.

To demonstrate that the wave functions are eigenstates
of the Hamiltonian, we have to consider the effect of the
hopping operator very carefully. The hopping operator
can be broken into N parts, each corresponding to the
hopping of fermions of different flavors. Let us first con-
sider the hopping operator of the Nth Aavor,
T(N) =g, & t, c;&c &"Whe. n it operates on the wave
functions, the hopping of the fermions of Nth flavor is
equivalent to the hopping of holes

T(N)C&G = —it

T(N —3), . . . , T(2), T(1), similar procedures can be car-
ried out. After adding all the effects of the hopping
operators together, the two-particle terms vanish since
positions of all the fermions and the positions of the holes
span the entire lattice. Thus the Gutzwiller- Jastrow
wave functions are found to be exact eigenstates of the
Hamiltonian, with eigenenergies given by

= —(277t/L )g[J$+J +J )+ ~ ~ ~ +J )]

where we have

(7)

JP =J~ —J~ 1+L/2,
Jh '= Jh —J~ 2+L/2, . . . ,

J' '=J —J1+L/2 .

The many-particle terms vanish, and thus our result
holds, under the conditions:

~ J„~ ~(M~)/2,

where

Xg Q F„(n) g F„(,)(n), (5)
n mXn

n& . n&F„(n ) =cos +sin cotO„L L
n~ . nm.

F„( )(n)=cos +sin cotO„(;) ',

L L

O„=m(y„—y )/L, O„(;)=rr(y„x; )/L . —

The sum can be carried out after expanding the products
and classifying terms by the number of particles involved.
In the end, only the zero-particle term and two-particle
terms are left. Many particle terms vanish, yielding the
following result:

T(N)c'G
QJ&+(2nt/L)i g g cotO„(, ) .

L
(6)

This result is valid under the condition

~ J, ~

~L/2 —[(g)+(M, +M, +

+M)v, )]/2 .

To consider the effects of other parts of the hopping
operators, we cannot use the wave functions directly,
since the hopping will involve the fermions and holes
simultaneously when they operate on the wave functions.
We can generalize the idea of the spin-rotated version
developed in the recent work of the 1/r t-J model to this
SU(N) case. For example, to deal with the hopping
operator T(N —1 ) =g;~Jc;()v, )c~()v, ), we can write
the Gutzwiller-Jastrow wave functions in terms of the
hole positions and the positions of the fermions of Aavors
excluding the (N —1)th flavor. In terms of these coordi-
nates, the wave functions can be found to be still in a
similar product form, and thus the effect of the operator
T(N —1) can be calculated in the same way as for T(N).

For the other hopping operators T(N —2),

Here the ground-state energy is given by Ep= —(2m~ t
~
/L )[L /2 —Q/2]Q.

For this multiple-component system, the spectrum can
also be written in terms of more generalized Jastrow
functions. Here, we just write down the spectrum
without getting into the detailed algebra as follows:

Q
E = (2' t /L ) g—K; + ( rrtg /L )(L + 1 ),

where K; takes values from the region (1,2, . . . , L).
Each energy level is determined by a charge configuration
such as (101010) for Q =3 and L =6, where the 1's
represent the values occupied by the charge momenta K;.
In this system, the spin and charge degrees are decoupled
from each other in the entire Hilbert space. On these
physical grounds, we see that for each charge
configuration, the degeneracy of the corresponding ener-
gy level is given by the number of the ways to distribute
the free spins among the L —Q empty values. With this
result, we find the free energy per lattice site given by

F(T,p)/L = —p — f dq 1n[N+e~(~' "'],2' (10)

where p is the chemical potential of the fermions. This
free energy has also been found to correctly reproduce
the first three terms in the high-temperature perturbation
expansion.

In summary, we have solved the multiple-component
Hubbard model in the strong-interaction limit. In this
limit, the spin degrees of freedom decouple from the
charge degrees of freedom in the entire excitation spec-
trum, and the system is a special example of the SU(N)
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Luttinger liquids in the sense of Haldane. We have
shown that the SU(N) Gutzwiller-Jastrow wave functions
are eigenstates of the Hamiltonian.

In the end, we notice that in the half filling and large U
limit, our model reduces to the SU(N) Haldane-Shastry
spin model with 1/r exchange interaction. We suspect
that our multiple-component Hubbard model of the 1/r
hopping is also completely integrable for arbitrary on-site
energy U at arbitrary filling numbers. However, we have
not found any elegant way to obtain the wave functions
and the energy spectrum for the finite on-site energy case.
It is very likely that the SU(N) system also exhibits a
metal-insulator phase transition at half filling when
changing the bandwidth and the on-site energy, as in the
SU(2) case discovered by Gebhard and Ruckenstein

about two years ago. It is also of great interest to study
the ground-state properties of the system as a function of
the interaction strength, such as the spin and charge sus-
ceptibilities and various ground-state correlators. It also
remains to find the integrability condition for the model
at the finite on-site energy.
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