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Excited states and the thermodynamics of a fully frustrated quantum spin chain
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A one-dimensional fully frustrated spin system called a 6 chain is considered and its excited states and
the specific heat are investigated. As in the Heisenberg antiferromagnet on the kagome lattice, the clas-
sical ground state of the system has infinite continuous degeneracies. Numerical studies of finite systems
show that the low-lying excited states have an almost dispersionless spectrum near a small energy gap.
As a result the specific heat exhibits a two-peak structure, one of which arises from these low-lying excit-
ed states.

Recent experiments on He adsorbed on graphite' and
also on highly frustrated compounds such as
SrCrsGa40&9 (Ref. 2) induced theoretical interests on the
fully frustrated quantum spin systems. ' By the term
"a fully frustrated quantum spin system, " I mean a sys-
tem whose classical ground state has infinite continuous
degeneracies. A well-known example of such a system is
the antiferromagnetic Heisenberg model (AFHM) on the
kagome lattice. As was discussed by Harris, Kallin, and
Berlinsky in detail, if one considers a typical ordered
ground state of classical AFHM on the kagome lattice,
continuous local distortions of the spin configuration
from the ground state are possible without changing the
total energy. As they are local, the degeneracy of the
ground state is somehow proportional to C where Xz
is the number of sites, though we cannot define a finite
constant C as the spins have continuous degree of free-
dom in the classical limit. If we consider the correspond-
ing quantum system, the linear spin-wave theory leads to
dispersionless zero energy modes. This kind of full frus-
tration is not restricted to two dimensions but exists also
in three dimensions. "' In general the AFHM on the
line graphs of a bipartite graph possess this property. ' It
is a quite interesting and challenging problem to study
what kind of ground state is realized in fully frustrated
quantum spin systems. There have recently appeared
several investigations on the ground state of the AFHM
on the kagome lattice. %'hether its ground state has a
long-range order or not is still an open question. It was
argued recently that for large S system, the zero energy
spin-wave modes acquire finite dispersions through the
spin-wave interaction and the existence of the long-range
magnetic order is plausible. ' The small S system seems,
however, a very good candidate for a ground state
without magnetic long-range order. '

I consider in this paper a very simple one-dimensional
quantum spin chain, called a 5 chain, which is also fully
frustrated and investigate its low-lying excited states as
well as its specific heat. It reveals that full frustration
manifests itself in the dispersionless low-lying excitations
as well as in a low-temperature peak of the specific heat.

The system considered is described by the Hamiltonian

H= gh;, (1)
i=1

where

S2j —]S2j +SPI SPj + $
+S2j —1SPj + ] (2)

(b)

FIG. 1. The 5 chain (a) and the Majumdar-Cxhosh model (b).

and S; denotes the spin with size —,
' at the site i. The sys-

tem is schematically shown in Fig. 1. In the classical ap-
proximation the ground state of the local Hamiltonian h;
is realized by the configuration of the three spins making
the angle 2'/3 to each other. If one assumes a ground
state of the total system where all the spins are laid in a
plane, one easily sees that three successive spins, i.e., S2;,
S2;+„and S2;+2 can be rotated simultaneously without
raising the energy. The zero-temperature specific heat of
the classical model is —,

' (we take as ktt = 1 throughout this

paper) per spin. This leads to the existence of two disper-
sionless zero modes in the linear spin-wave theory.

The ground state of the quantum system was con-
sidered by several authors previously. ' ' It is easily ob-
tained since the ground state of h, is realized by pairing
any two of its three spins into the singlet state. One can
immediately construct the ground state of the total sys-
tem from four independent ground states of h;. Monti
and Suto showed rigorously

(1) The system with open boundary conditions (2N + 1

spins) has 2(N + 1)-fold degenerate ground states with N
singlet pairs and one free spin. Degeneracy arises from
the freedom of position and the direction of the free spin.

(2) The system with periodic boundary conditions
(Sz~+, =S, ) has doubly degenerate ground state with N
singlet pairs.

(3) The excited states has a finite energy gap.
The ground states are essentially dimer states. The

high degeneracy of the ground states for open boundary
conditions already exhibits the effect of the full frustra-
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tion. The degeneracy is, however, proportional to the
system size and does not give rise to a residual entropy at
the zero temperature. The ground state of the periodic
boundary systems are identical to those of Majumdar-
Ghosh model (MGM)' whose Hamiltonian is given by

N
H= g (A +h +~y2) (3)

(see Fig. 1). This model is not fully frustrated in the sense
as mentioned above. We must look into excited states to
understand the peculiarity of the thermodynamic proper-
ty of the fully frustrated systems.

Low-lying excited states of finite systems with periodic
boundary conditions have been obtained by numerical di-
agonalization of the Hamiltonian. The lowest excited
state for each wave vector k is a triplet (S = 1) state and
its excitation energy 5E, is shown in Fig. 2 as a function
of k. The k dependence of 6E& for finite systems is very
weak and it decreases with increasing X. The minimum
and the maximum excitation energies are realized at
k =m. and k =0, respectively. The obtained spin correla-
tion C;J = (S;S~ ) in the excited states does not show sys-
tematic decrease with distance. For example,

~ Cz 2+2„~ in
the k=m state increases with r between r =2 and 4 for
%=10 and it is 0.0135 at r =5. On the other hand,
~C»+2„~ decreases with r down to 0.00963 at r =5 and
roughly proportional to .75 ". In the k =0 state

~ C»+2„~
has a minimum value 0.00448 at r =3 and increases again
up to 0.00875 at r =5. This irregular behavior is showing
that the lowest excited states are not strongly localized in
a few atomic distances. Extrapolating 6E& from X =6, 8,
and 10 to the infinite Xby a quadratic function of N, I
obtain 5E&=0.219 at k=m and 0.218 at k =0. The
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FIG. 2. The lowest excitation energy is shown as a function
of the wave vector for various system sizes. System sizes are in-

dicated in the figure. Lines are only to guide the eye. The inset
displays the system size dependence of the excitation energy,
where full (open) circles denotes the lowest (second lowest) exci-
tation energies at k =m and full (open) squares the lowest
(second lowest) ones at k =0. Lines in the inset show quadratic
fits in terms of X . Crosses in the inset show the variational
excitation energy 5E, z.

present result implies that the lowest excitations of an
infinite system are almost dispersionless with 6E, —=0.22.
I have also calculated the second lowest excited state,
which is singlet (S =0), as a function of k. Though the
results of finite systems show a little larger dispersion
compared to 5E„ it appears to converge to an almost
dispersionless mode with the energy identical to the
lowest excitation.

One can construct a variational excited state which is
defined by

II
j= l, i —1

g S J
g =i+n+1, N

y, J is the singlet state of S2. , and S2 and g„, is a first
excited state of the Hamiltonian of 2n spins,
H„& =gj;;+„,h~+Sz~;+„~,S2~;+„~. Let us denote
the variational excitation energy of 4„i by 6E, „. The
state for n = 1 is nothing but the state where one of the
dimers of the ground state is replaced by a triplet state
and its excitation energy 5E, , is the unity. 5E, 2 is easily
obtained as —,'. For larger n's 6E, „has been obtained nu-

merically up to n =10 and is shown in Fig. 2. It is ob-
served that g„; is a triplet and an eigenstate of
S2; &+S2; with ~$2; &+S2;~ =1. The spin correlation
C; J in P„;, however, does not show simple behavior in
terms of the distance. For example, C, z in g,o, is
0.02386 for j =1 and increases with j with a maximum
0.05052 at j =5 and then decreases to 0.00419 at j =10.
C2 2 shows a similar behavior. So the correlation be-
tween S& for S2 and those at the center of the cluster S,o
or S&2 is not negligible. Otherwise correlations between
far apart spins are weak. It is interesting that if we con-
struct the variational state with wave vector k, i.e.,

e'"1, the excitation energy is 6E„„indepen-
dent of k. This is easily deduced from the fact that g„; is
an triplet eigenstate of S2, , +S2, .

Above features of excitation spectrum are quite
different from those of MGM which has equivalent
ground states. The lowest excitation energy of a finite
MGM (N =6) shows a larger dispersion with band width
-0.9 above an energy gap 0.638 for %=6.' It should
be noted that the energy gap of the 6 chain is quite small
compared to the unity, the excitation energy of the local
triplet. The above result implies that excited states has a
spatially coherent character which lowers the energy
from that of a local triplet excitation as well as a localized
character which leads to the absence of dispersion.

The peculiar feature of the excitation spectrum
clarified above should inhuence the specific heat. I have
calculated the specific heat by making use of the quantum
transfer matrix method. ' The transfer matrix has been
obtained by applying the usual checkerboard decomposi-
tion to the density matrix; e ~ is approximated by—PHe /m —]9Ho /m m[e ' e '

j where H, (H, ) is defined by taking
the summation in H over only even (odd) i. The largest
eigenvalue and its eigenvector of the transfer matrix have
been calculated by employing the power method. Then
the energy of the system is calculated by using the eigen-
vector and then the entropy by subtracting the energy
from the free energy. So the specific heat can be obtained
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in two ways, i.e., by differentiating energy and entropy
numerically. Both results agree quite well except for low
temperatures. At T &0.05 they differ by several percent
due to the finiteness of the Trotter slicing m. In Fig. 3
the overall behavior of the specific heat is shown as a
function of the temperature. The specific heat exhibits
two peaks. The. broad peak at T—=0.58 is a common
feature of the one-dimensional antiferomagnetic quantum
spin systems. ' The rather sharp peak at a lower tempera-
ture is a peculiarity of this system. The calculation has
been done for m =4-8 and the low-temperature peak
grows as well as shifts to the lower temperature with in-
creasing m. This m dependence excludes the possibility
that this peak is an artifact of the finite m effect, though
the present result appears to be not yet converged. The
peak position is at T—=0. 12 for m =8 and the peak
height is 0.18 per site. The entropy contributed by this
peak is roughly estimated to be -20 percent of the total
entropy. This result is consistent with the excitation
spectrum with -2 states accumulated at 6E-0.2. It
is also intriguing that this rate is roughly equal to 1/4,
the deficiency of the zero-temperature specific heat of the
classical model.

It has been shown above that the 6 chain has almost
dispersionless excitation modes with a very small energy
gap. From the present result one may conjecture that
both the triplet and the singlet first excited states con-
verge to the exactly dispersionless excited states with an
identical energy in the thermodynamic limit. These exci-
tations are interpreted as the zero energy spin-wave
modes which have acquired a finite energy through quan-
tum fluctuations. It is interesting to study excited states
with higher spins whether their energies also converge to
the same limiting value as N~ ~. These excitations lead
to a sharp peak of the specific heat at a low temperature.
The two-peak structure of the specific heat was discussed
previously on the kagome lattice in relation to the He
adsorbed layer. Though the previously reported result of
the twelve spin kagome cluster now seems to be an ar-
tifact due to the finite size, the fu11 frustration can lead
to a Schottky-type 1ow-temperature peak in one dimen-
sion. Although the system considered here is only a very
simple example, one might expect that the property ex-
hibited here may realize in fully frustrated systems in
higher dimensions if their ground states have no magnet-
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FIG. 3. The specific heat is shown as a function of the tem-
perature. Data obtained for the number of Trotter slicing
m =5 are used at T(1.0 and those for m =7 at T (1.0. The
inset displays the dependence of the low-temperature peak on
m. It is seen that the peak becomes sharper as m increases.
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ic order and their excitations have energy gaps. So far,
however, no fully frustrated system with exactly known
(e.g., dimer) ground state has been constructed in higher
dimensions than one. Whether the reported absence of
the low-temperature peak in the specific heat of S =

—,
' ka-

gome antiferromagnet implies the existence of a mag-
netic order or not is still to be clarified. It will be quite
interesting to investigate fully frustrated systems in two
and three dimensions both in theoretical and experimen-
tal way to see whether these properties are really ob-
served.
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