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Quantum interference in small magnetic particles
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We consider tunneling of a large spin between nonequivalent wells in the presence of the magnetic
field. Using coherent spin states we show that the quenching of tunneling for a half-integer spin, which

occurs at H =0, survives up to a reasonably large field. An experiment is proposed which may allow one

to observe this quenching. Oscillation of the tunneling rate on the applied field is suggested.

Recently, it has been demonstrated that the vector of
the magnetization formed by a large number of spins in
magnetic systems can coherently tunnel between the
minima of magnetic energy. Particular cases are tunnel-

ing of the magnetic moment in small ferromagnetic parti-
cles, ' tunneling of the Neel vector in antiferromagnetic
particles, quantum nucleation of magnetic domains, and
tunneling of domain walls. ' Theoretical suggestions
have led to a number of experiments ' which seem to
support the idea of magnetic tunneling. Thus, tunneling
of magnetization in solids is becoming another example
of quantum phenomena at the mesoscopic scale. "

The most distinct effect of that kind, describable in ex-
act mathematical terms, " ' is tunneling of the mag-
netic moment of a single-domain magnetic particle, M,
between two energy minima created by magnetic anisot-
ropy. In the absence of the applied field, the classical
magnetic state of the particle is degenerate, E( I )=E( ( ).
Tunneling removes this degeneracy, leading to the
ground state which is a superposition of

~ I ) and j ( ).
Although instantons of the Landau-Lifshitz equation,
used to describe this tunneling, have been known for
some time, ' one fundamental question remained
unanswered until very recently. The possibility of tunnel-
ing seemed insensitive to the value of the total spin of the
particle, S. However, the Kramers theorem dictates that
for a half-integer S the degeneracy cannot be removed in
the absence of the magnetic field, and, thus, no tunneling
should occur. A beautiful solution to this problem has
been given in Refs. 16 and 17: It has been demonstrated
that the Kramers theorem is recovered via interference of
instantons, due to the topological term in the magnetic
action.

In real experiments one will always have some weak
magnetic field which removes the Kramers degeneracy.
Is it, nevertheless, possible to detect the freezing of tun-
neling in a small magnetic particle with a half-integer to-
tal spin7 Obviously, this is a question of how large a field
is required to remove all traces of the freezing which
occurs at H=0. In this paper we show that this un-
quenching field can be sufficiently large to study the effect
experimentally, and suggest a possible experiment. We
also suggest another effect: oscillation of the tunneling

rate with the applied magnetic field.
Consider a single-domain ferromagnetic particle with

the magnetic moment M=2p~S and S&&1. The total
spin of such a particle is formed by the ferromagnetic
alignment of atomic spins. The exchange coupling, re-
sponsible for this alignment, is usually large enough to
ensure that at low temperature the only relevant dynam-
ics of S in sufficiently small particles is its coherent rota-
tion satisfying

d S 5E(S)
dt 6S

where E(S) is the magnetic energy of the particle. Let X
be the easy-magnetization axis and XY be the easy-
magnetization plane. The simplest form of the corre-
sponding magnetic energy is

S S
E =Xi —

Kii
—2p~S.H,

S S
where K~, K~~ &0 are the anisotropy constants. We will

study the situation where S initially points along the posi-
tive X axis and H is applied in the opposite direction (Fig.
1). Then Eq. (2), in spherical coordinates, is equivalent to

E(8,$)=K~cos 8+K~(1—sin Ocos P)

MH(1 —sinOc—os/),

e)'
(I

x I

FIG. 1. Single-domain particle in the magnetic field. The
field is applied along the easy X axis, opposite to the magnetic
moment of the particle.
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where a constant has been added to make the energy of
the initial state, E(m. /2, 0), equal to zero. The depen-
dence of E on (t, when S lies in the easy magnetization
plane (8=m. /2), is shown in Fig. 2. At HWO there is a
metastable state 8=rr/2, /=0 (i.e., S antiparallel to H)
and the stable state 8=sr/2, P=m (i.e., S parallel to H).
The energy barrier U between the two states exists at
H (H() —E)( /p~S,

(4)

—0 e~

+ —0 e~~— (9)

The propagators (vr/2, 0!e~ ~m/2, +PH ) in Eq. (9) are
equivalent to the imaginary-time (r=it ) path integrals

In a semiclassical approximation, the 40 state is very
close to ~rr/2, 0), while the integral (8) is dominated by
the coherent states ~m /2, +PH ). This gives

To escape from the metastable state, S must rotate by the
angle (t =+PH [Fig. 2(b)], which satisfies

IE
D S ~ exp (10)

cospH = H

lr

(5)

The classical S state characterized by angles 8 and P
corresponds in quantum mechanics to the coherent spin
state, "

i8, &) = cos—0
2

' 2S
g

exp tan —e'&S ~S ),
2

(6)

w =&+,~ep~~e„) (7)

with P ' going to zero in the limit of zero temperature.
It can be calculated by inserting the resolution of the
identity in Eq. (7),

w= jdn(q, ~e~~~n)(n~e„) . (8)

(—, , $)

where S =S, iS», ~S)—is the eigenstate of S, corre-
sponding to the maximal eigenvalue S,=S. The quan-
tum Hamiltonian & corresponding to Eq. (2) does not
commute with S . This leads to a nonzero amplitude of
the underbarrier escape of S from the initial Vo level into
the excited 4„ level which is in resonance with %o [Fig.
2(b)]. In the classical limit, the V„state corresponds to
the precession of S about H, governed by Eq. (1).

The amplitude of the transition is given by the
imaginary-time propagator

over the classical S(r) trajectories connecting the
m/2, 0) and ~m/2, +PH ) states. Here IE is the Euclide-

an counterpart of the magnetic action

I=I dt[AS(cos8 1)P E(8—, $—)]

that generates Eq. (1). The first term in Eq. (11) corre-
sponds to the Berry phase' and is crucial for our con-
siderations. [For a closed S(t) path it is equal to S times
the area swept out by S on the surface of the unit sphere. ]
The path integral (10) is dominated by the instanton of
Eq. (1),' corresponding to the underbarrier rotation of S
to the escape point P=+(!)H. Together with the phase
factor generated by Eq. (11) the instanton contribution
gives

(12)

S
(13)

Due to the symmetry of the Hamiltonian (2), as are ei-
z

ther all even as = —s all odd s = —s ' S
z z z z

A similar symmetry is possessed by the coherent states:
With the help of Eq. (6) we get

where a (H) and b (H) are smooth functions of the field.
For H~O and H~H~~ exact instanton solutions of Eq.
(1) and their contribution to the path integral were ob-
tained in Ref. [1].

Let us now turn to the overlap factors ( m /2, +PH ~'ll„).
We expand

~ 4„) as

(14)

where

b =2S
(2S)!

(S—S, )!(S+S, )!
(15)

-7T 7T

As follows from Eq. (15), bs =b
z z

Now working out the overlap factors and combining
all terms in Eq. (9), we obtain for the tunneling onto an
even-symmetry +, level

FIG. 2. Magnetic energy in the easy XY plane vs polar angle
(a) H =0, (b) H+0. The wave functions associated with the

direction of S are shown schematically by the dotted curves.

S
A =a(H)e "' ' g C cos(m(()~) (16)
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for an integer S, and

S —1/2
2 =a(H)e "' ' g C cos[(m+ —,

'
)PH ]

m=0
(17)

for a half-integer S. Here C =kas bs, with S,=m for
Z Z

an integer S and S,=m+ —,
' for a half-integer S; k =2 if

S, =0 and k =4 for all S,WO. The amplitude of the tun-
neling onto an odd ~Ii„ level is zero. From Eq. (17), the
quenching of tunneling' ' for a half-integer total spin at
H =0 (that is at PH =sr) is evident. Another important
observation is that the tunneling rate for both the integer
and half-integer S must oscillate with the applied field.

Our main goal is to understand how large a field des-
troys all traces of the quenching. If one demands that all
cosines in Eq. (17) are small, this, according to Eq. (5),
would require H ((H~~/4S . Note, however, that ac-
cording to Eq. (15) the coefficients bs rapidly go to zero

z

for large S,. This reflects the fact that the coherent states
(14) correspond to the classical vector S lying in the XY
plane. At lS, ~

((S, with the help of Stirling's formula,
we obtain

3S,
bs =(~S) '~ exp (18)

It then follows from Eq. (18) that only m ~ &S effectively
contribute to A; at m ))&S coefficients C become ex-
ponentially small. Thus, the actual limitation on the field
becomes H «Hll /S.

Typical values of the anisotropy field in single-domain
particles are Hll

—10 —10 Oe. Consequently, for
S—10 —10, the presence of a small magnetic field, H —1

Oe, should not be a problem. The more serious
problem comes from the fact that in ferromagnetic par-
ticles the WKB exponent b(H) is of the order of'
(H~~/Hi)' e (H)S, where Hi=Xi/p&S. This makes
the tunneling probability exponentially small for a large
S, unless Hll & H~ or H Hll Anti er omagnet'c parti
cles with a small noncompensation of sublattices have
been shown to be better candidates for experimental
study. For such particles the WKB exponent is

(H~~/H, „)' S where the exchange field H,„ is orders of
magnitude greater than the anisotropy field H~~ (S is the
total spin of one sublattice). For the topological effects
studied in Refs. 16 and 17 and in this work, the relevant
quantity in antiferromagnetic particles is the excess spin s
due to the noncompensation of sublattices. Then the for-
malism employed here applies without change to the anti-
ferromagnetic case. The effective freezing of the tunnel-
ing for half-integer s will occur for H «Hll/s. For
nanometer-scale antiferromagnetic particles this should
be an easier condition to satisfy than in the ferromagnetic
case. In a system of a large number of single-domain par-

ticles one would expect statistically equal numbers of in-
teger and half-integer spins. If all moments of the parti-
cles are initially magnetized in one direction and then the
field is switched off, the freezing effect should reveal itself
in a longer magnetic relaxation for the half-integer parti-
cles. This should result in a peculiar time dependence of
the relaxation: a fast drop of the magnetic moment of the
system to one-half of the initial value and then slow relax-
ation to zero. Of course, to observe this effect one must
have a very narrow distribution of particle sizes, other-
wise the broad distribution of individual lifetimes will
smear the relaxation.

The macroscopic tunneling variable S must inevitably
interact with the dissipative environment. Interactions
which violate t invariance can potentially destroy the
freezing effect. They include the coupling of S to the
Auctuations of the electromagnetic field, V ~ S h, and the
coupling to other spins, V~ g;S s, The first can be ig-
nored because at low temperature the average statistical
fluctuation of the field in the volume of a single-domain
particle is much less than the critical field estimated
above, (h )' —10 Oe at T-1 K. Interaction be-
tween the spins forming S and the spins of the environ-
ment should be of major concern since the addition of
only one —,

' spin to the system may completely change the
tunneling picture. The importance of this interaction, of
course, largely depends on how strong it is, compared to
the exchange interaction between the spins forming S:
typically 0. 1 —1 eV. This problem remains to be studied
qualitatively. It should be noted that, even in the pres-
ence of the freezing at H =0, the survival of interference
effects at HWO is not obvious and depends on the
strength of the dissipation. If S is strongly coupled to the
dissipative environment, the latter acts as a classical
measuring device that determines the direction of tunnel-
ing, +PH or —

PH [see Fig. 2(b)]. In this case the in-
terference between the instanton and anti-instanton,
switching S to +PH and —PH, respectively, will be des-
troyed. Note, however, that in insulating materials the
width of the ferromagnetic resonance can be extremely
narrow. Correspondingly, the precession state which we
denote +„should be a rather good quantum state of a
single-domain particle. This makes us believe that quan-
tum interference effects in magnetic particles can be ob-
served experimentally. The approach developed in this
work provides the basis for such study and for further
theoretical elaborations, including the effect of dissipa-
tion.
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