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Pinning of a vortex array by parallel twin boundaries is theoretically investigated. The phase diagram,
the magnetic torque, and the resistance in the external magnetic field rotated in the ¢-b plane are studied.
In a dense vortex array the collective effects due to long-range interaction between vortices become of
importance. They confine the distortion of the vortex array near the twin boundaries to distances of or-
der of the intervortex spacing, thereby suppressing the influence of the twin boundaries on the whole
vortex-array pattern when the magnetic field is increased. Nevertheless, the critical angle between the
magnetic field and the twin boundaries, at which pinning onset takes place, weakly depends on the
magnetic-field value, in agreement with experiment. It is shown that measurement of the Hall resistance
is an effective tool to study pinning by twin boundaries.

I. INTRODUCTION

The interaction between vortices and twin boundaries
strongly influences the properties of the high-T, super-
conductors. It is usually believed that the order parame-
ter is suppressed at the twin boundary.! As a result, the
twin boundary attracts vortices, i.e., pins them. It has
been confirmed by decoration experiments on the visuali-
zation of vortices.>® Also, measurements of resistivity
have been performed in YBa,Cu;O,_j5 single crystals
which contained the twin planes oriented in only one
direction.* ® They have revealed drastic changes of
resistivity when the external dc magnetic field was
aligned along the twin boundaries. It was interpreted as
due to pinning of vortices by twin boundaries. Blatter,
Rhyner, and Vinokur’ have developed the theory in
which pinning by twin boundaries occurred when the an-
gle between the dc magnetic field and the twin boundaries
did not exceed some critical value. They have derived
the expression for the critical angle at low magnetic fields
when the vortex interaction is negligible and estimated
the effect of the vortex interaction for arbitrary magnetic
field using the tilt modulus of the vortex array. They
concluded that the increasing magnetic field suppressed
the pinning by twin boundaries and reduced the critical
angle. It did not agree with observed weak dependence
of the critical angle on the magnetic field.

In the present paper, pinning by twin boundaries is
studied in terms of continuum electrodynamics for type-
IT superconductors which takes into account the elastic
vortex-line tension, but neglects the shear rigidity from
the crystalline order of the vortex array. In the past this
phenomenological description was developed in the hy-
drodynamics of rotating He II in works by Hall,® Bekare-
vich and Khalatnikov,’ and Andronikashvili et al.'° (see
also Ref. 11). Its application to type-II superconductors
was initiated by Abrikosov, Kemoklidze, and Khalatni-
kov'? and worked out by Mathieu and Simon.'* A simi-
lar theory, which was called two-mode electrodynamics,
has been recently used to calculate the surface impedance
of the type-II superconductor in the mixed state.'* A
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central point of this theory is that there are two space
scales (two modes) for penetration of ac perturbation
from the surface into the superconductor with a dense
vortex array: The first one is of the order of the London
penetration length or the skin-layer width and was well
known earlier; the second scale, which will be called the
distortion screening length, is specific for type-II super-
conductors with elastic vortex arrays. For the case of a
dense vortex array, the latter is of the order of the inter-
vortex distance in the low-frequency limit. Earlier
screening of vortex-array distortions near sample boun-
daries was analyzed for rotating superfluids. !>!! There it
was called the superfluid Ekman layer width. It governs
the penetration of the perturbation from the slowly oscil-
lating solid surfaces which were investigated in the classic
pile-of-disk experiments in rotating He II. The superfluid
Ekman layer is crucial for interpretation of recent obser-
vations of the slow collective vortex mode in the B phase
of *He. !¢

In the present paper, we shall show that the distortion
screening length is important also for pinning by twin
boundaries. At the distance of the distortion screening
length from the twin boundary, the vortex array trans-
forms from the pattern dictated by the twin boundary to
that determined by the external magnetic field. Thus the
effect of twin boundaries is confined to the distortion
screening length which is decreasing when the external
magnetic field is increasing, but the value of the critical
angle weakly depends on the magnetic fields contrary to
the result of Ref. 7. Screening of vortex-array distortions
from the boundary perturbations is tightly connected
with the long-range interaction of vortices, as the Debye
screening due to the long-range Coulomb interaction in a
plasma.

On the basis of the developed theory, the phase dia-
gram of the twinned superconductor is studied for a sim-
ple slab geometry in the external magnetic field paraliel
to the slab. In many aspects the pinning of vortices by
parallel twin boundaries is similar to the intrinsic pinning
in the space between the Cu-O layers.!’?° However,
there are important differences: (i) Contrary to intrinsic
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pinning, the width of the twin boundary may be neglect-
ed compared to the spacing between them,; (ii) in the case
of intrinsic pinning, the distance between the pinning
plane is of atomic scale and the distortion screening dis-
cussed in the present paper is not relevant then. Thus the
phase diagram of the vortex array pinned by the twin
boundaries reminds that obtained for the case of the in-
trinsic pinning!® only at small spacing between the twin
boundaries. The distortion screening, which suppresses
the effect of pinning, strongly influences the phase dia-
gram.

The plan of the paper is the following. In Sec. II pin-
ning of a single vortex line is considered. Here the ideas
of Blatter, Rhyner, and Vinokur’ are presented and
developed. In Sec. III the general aspects of the continu-
um electrodynamics of the type-II superconductor in the
mixed state are discussed: the free energy, the phase, and
the currents and the procedure of averaging over the
periodic twin structure of the fields involved. The results
of this section are used in Sec. IV to obtain the phase dia-
gram in the external magnetic field rotating in the a-b
plane for the vortex array of small, but finite vortex den-
sity. In Sec. V the continuum model is applied to find the
vortex pattern and the magnetic field for an arbitrary
dense vortex array. The effect of vortex interaction on
the phase diagram is analyzed. The magnetic torque as a
function of the angle between the external magnetic field
and the twin planes is calculated in Sec. VI. The effect of
twin-boundary pinning on the resistivity is discussed in
Sec. VII in terms of the phenomenological model which
assumes the dynamic parameters of the vortex inside the
twin domain and that trapped by the twin boundary to be
known. Special attention is devoted to the Hall resis-
tance, which is an effective probe of trapping of vortices
by the twin boundaries.

II. PINNING OF A SINGLE VORTEX LINE

Following Blatter, Rhyner, and Vinokur,” let us con-
sider the pinning by twin boundaries in a simplified mod-
el which neglects interaction of vortex lines. We assume
that the twin boundaries are parallel with spacing d and
normal to the a-b plane (see Fig. 1) as in the experi-
ment.* "% The shape of the vortex line is governed by the
line tension, which is the energy per unit length of the
vortex line,

P
n—=—H*. (1)

Here ®y=hc /2e is the magnetic-flux quantum, A is the
Planck constant, e is the electron charge, c is the light ve-
locity, r. is the vortex-core radius, and r is the outer ra-
dius of the vortex. In the limit of low fields close to H,
(a low-density vortex array), the radius 7, is equal to the
London penetration depth A and correspondingly the
field H* coincides with the lower critical field H.,. But
at higher magnetic fields r, is equal to the intervortex dis-
tance r,, which is inversely proportional to V'H. Thus
the characteristic field H* weakly depends on the mag-
netic field, and mostly we shall ignore this .dependence.
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FIG. 1. Pinning of vortices by twin boundaries: (a) a single
vortex, infinitely thin twin boundaries (thin solid vertical lines);
(b) a single vortex, twin boundaries of finite thickness (grey vert-
ical stripes); (c) a dense vortex array, infinitely thin twin boun-
daries (thin solid vertical lines). The vortex lines are shown by
thick solid lines; their average straightened positions are pic-
tures by thick dashed lines.

Here and thereafter we give all our expressions as if for
an isotropic type-1I superconductor. However, they are
valid for a uniaxial anisotropic layered superconductor if
the magnetic field rotates in the a-b plane. In this case
the vortex energy does not vary at the rotation, but the
vortices themselves are nonaxisymmetric and the
penetration depth A and the core radius r, are combina-
tions of the penetration depths and the correlation
lengths £ for the a-b plane and the c axis: A=1"A,A,,
r, =V E,E, (see, e.g., Ref. 21).

When the vortex line is aligned along the twin bound-
ary, its line tension €, is less than the bulk line tension e.
The difference € —¢, is responsible for pinning by twin
planes. As a result of it, the vortex line becomes a broken
line with periodically repeating straight segments: One,
of length u,, adjusts to the twin boundary and the other,
of length V/(Z—u,)*+d? is stretched between two
neighboring twin boundaries [see Fig. 1(a)]. Here # is the
displacement of the vortex line along the twin boundary
per one period. The vortex energy per one period is

E=cu,+eV (a—u,)+d?. @)

Finally, the shape of the vortex line is determined by
minimizing the energy in respect to u, at fixed average
slope @ /d:
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df _ . "TW
du,_e' E—F———————=0. (3)

V(a—u, ) +d?

This condition has a simple physical meaning: It is the
balance of the line-tension forces in the twin plane for the
free and trapped segments of the vortex line in the point
of their connection:

g, =¢ecosly . 4

Here 6, is the angle between the twin boundary and the
free segment of the vortex line which is not trapped,
whereas the angle 6 points out the average direction of
the vortex line (see Fig. 1). The vortex line is distorted by
the twin-boundary pinning until 83 <6,. When 05 > 6,
the energy of the vortex line is minimal at u, =0 and the
twin boundary does not influence the shape of the vortex
line. Thus 6y is the critical angle at which the onset of
pinning by twin boundaries occurs. The formula
0o=1"2(e—¢,) /e obtained in Ref. 7 follows from Eq. (4)
in the limit of weak pinning when € —¢, <<e.

The boundary condition Eq. (4) has been derived ear-
lier for a superfluid vortex trapped by a thin wire in the
theory,?? developed for the interpretation of the experi-
ment on the precession of the vortex around the wire.?
Later, we shall see that this condition is not restricted to
the case of a single noninteracting vortex and remains
also valid for a dense vortex array (high magnetic fields).

It should be pointed out that the onset of the twin-
boundary pinning is sharp only if the width of the twin
boundary is neglected compared to the distance between
boundaries. In a more general model in which the width
d, of the twin boundary is finite, but the line tension does
not vary inside the twin boundary, the expression Eq. (2)
for the energy must be rewritten as

—e,\/ut2+d2+s\/

which yields, after minimization in respect to u,,

+(d—d,)*, (5)

u, u—u,
€ — — &
‘Vultd: AV a—u)td—d,)?

or

gcosf, =ecosO , (6b)

where 0 is the angle for the segment of the vortex line be-
tween the twin boundary and 6, is that inside the twin
boundary [see Fig. 1(b)]. As well as Eq. (4), Eq. (6) is the
condition of the balance of the line-tension forces, but
now the vortex line trapped by the twin boundary is tilted
to it and the angle 6 differs from the critical angle 6.
Thus at finite d, the onset of pinning is smeared: It is not
a sharp phase transition, but a crossover from small
values of u,~d,/d to the region of large u, in which
6=0,.

Using the decoration experiments,’ Blatter, Rhyner,
and Vinokur’ estimated that (e —¢,)/e~0.03. Then the
resulting critical angle is 6,=14° in a reasonable agree-
ment with the experiment. However, as mentioned
above, the experimental critical angle weakly depends on
the magnetic field,® which contradicts the prediction by
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Blatter, Rhyner, and Vinokur, but agrees with the theory
developed in the following sections of the present paper.

III. CONTINUUM MODEL OF THE TYPE-II
SUPERCONDUCTOR IN THE MIXED STATE

At a finite density of vortex lines, it is necessary to sup-
plement the energy of the line tension, Eq. (2), by the en-
ergy of the magnetic fields induced by vortices. The gen-
eral expression for the free energy of the superconductor
in the mixed state in the London model averaged over the
vortex-array cell is

2
F=[dr l 1 2T ()2+an]
2 *
= [ar | 212 2”2‘ ](r)2+ﬂ—$}. ™)
c 41
Here h(r)=[V X A]is the magnetic field and
P
p)= € O
_|(r)——477'k2 27TV¢ A (8)

is the current density averaged over the vortex-array cell;
n, is the two-dimensional vortex density equal to the
number of vortices per unit area in the plane normal to
the vortex lines. It is useful to introduce the vector of the
vortex induction B with the magnitude B=®yn, and the
direction tangent to the vortex lines. For an uniform vor-
tex array, the vortex induction coincides with the mag-
netic induction B, which is equal to the average magnetic
field (h(r)) by definition, but for a deformed vortex ar-
ray the difference between the vortex induction B and the
magnetic induction B=(h(r)) is important:'* It incor-
porates the long-range interaction in the vortex array at
scales shorter than the London penetration depth, but
much longer than the intervortex distance r, ~1/ ®,/B.
The third term «<n, <3 in Eq. (7) is the contribution of
the circular currents « 1/r around the vortex lines (7 is a
distance from a vortex line) which was not incorporated
by the energies of the averaged fields and currents [the
two first terms in Eq. (7)]. This contribution is responsi-
ble for the vortex-line tension given by Eq. (1). In our
theory we assume that the logarithm in this expression is
large and neglect the shear modulus of the vortex array:
Its energy depends only on the vortex density. This ap-
proximation is similar to that wused for rotating
superfluids.®!! For type-II superconductors, this ap-
proach was applied in Ref. 12-14.

In the presence of vortices, the phase ¢(r) of the order
parameter is a multivalued function and the phase circu-
lation around a closed path is determined by a number of
vortices surrounded by the path:

P, 3
5, $d1ve=[ds-B, ©)

where f ds is the integration over the surface encircled
by the closed path. It means that the gradient of the mul-
tivalued phase is not curl free and is connected with the
vortex induction:
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D,
—[VXVo]=B . (10)
21

Then one obtains, from Eq. (8),
4T7T[V><k2j]=$—h. : (11)

The equation remains valid even if A varies in space.

Now let us apply these general relations to our periodic
twin structure. By averaging Eq. (11) over the period,
one obtains that the average vortex induction and the
average magnetic field coincide. The latter is the magnet-
ic induction by definition, i.e.,

B=<(h)=(8B) . (12)

Note that now we are averaging h and B over the twin
structure, but h and B themselves have already been
averaged over the vortex-array cell.

In our geometry the x components of the vortex induc-
tion and the magnetic field do not vary in space since
both are divergent free: B,=h,=%,. But the z com-
ponents of h and B are different. In our limit of very thin
twin boundaries, the magnetic field remains continuous
and only the integral over the space between twin boun-
daries contributes to its average value:

1 d
— . 13
B,= fohz(x)dx (13)

Contrary to it, the z component of the vortex induction
B,=B,dz(x)/dx has a singular contribution from a twin
boundary where the vortex line is parallel to the twin
plane (the yz plane): dz/dx— . Here z(x) describes
the shape of the vortex line in the xz plane, which is
shown in Fig. 1. The singular contribution to the integral
of the vortex induction is of the &-function form and is
proportional to the length u, of the vortex line trapped
by a twin boundary. Then the condition on the z com-
ponent B, of the vortex induction is

u
B,=B,—+— [ “B,(x)dx . (14)
0

The approach developed is a mean-field theory neglect-
ing fluctuations which are shown to be important for Bi-
and Tl-based layered superconductors with a weaker cou-
pling between layers than for Y-Ba-Cu-O materials.?* But
even in Y-Ba-Cu-O materials for which the pinning by
twin boundaries has been revealed, the fluctuations may
play a considerable role for vortex arrays of low density
or small angles between vortices and twin boundaries
when the number of vortex segments inside the twin
domains is rather small. This problem requires a further
analysis. However, it is difficult to expect a pronounced
effect of fluctuations on the properties discussed in the
present paper (the phase diagram, the magnetic torque,
the resistance). More promising is to search for the fluc-
tuation effects in the NMR and the muon-spin-resonance
experiments as discussed in Ref. 25.
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IV. PHASE DIAGRAM IN THE EXTERNAL
MAGNETIC FIELD IN THE MODEL
OF ISOLATED VORTICES

The model of isolated vortex lines is valid until the
spacing d is small enough and the magnetic field h does
not vary in space and thus is equal to the magnetic induc-
tion everywhere (B=h). The z component B, of the vor-
tex induction is equal to that of the magnetic induction
only on average ({B,) =B, ), but between the twin boun-
daries it does not vary: B, =B, cotf, and B=B, /sinb,.
Thus the magnetic field which incorporates interaction
between the vortices has no effect on the shape of the vor-
tex lines in the case discussed. Inside the twin boundary
where the vortex line is vertical, B, is infinite and accord-
ing to Eq. (14) in the limit d, —0 we obtain

d, /2 d
f_dt/zﬁzdx =B,u,=B,d — fo B,dx

=(B,—B, cotf,)d . (15)

Then the free-energy density averaged over the structure
period is

S_F_B' H'B. _ HXB,—B, cot) ]
41 sinf, 41 ’ (16

where three terms correspond to the magnetic energy and
the line-tension energy of the vortex segments between
(e« H*) and inside ( < H*) of the twin boundaries. Since
H=H* cosf,, the free-energy density is

B? H*(B,sinf,+ B, cos6,)

f=§;+ o . (17)

To discuss the phase diagram of a sample in an exter-
nal magnetic field, one should know its demagnetizing
factors. We shall restrict ourselves by a simple geometry
of a slab of large area parallel to the a-b plane. Then the
external magnetic field parallel to the slab coincides with
the thermodynamic field H with the components

9 .
H, =47 al;: =B, +H*sinf, , (18)
H,=4r of =B,+H*cosb, . (19)
0B,

These relations refer to the region where the vortex lines
are partially trapped by the twin boundaries as in Fig.
1(a), i.e., at O > 6,. In the region 0 < 6,, where pinning
is not effective, the magnetic induction B and the magnet-
ic field H are colinear and their magnitudes are connect-
ed by the same relation as in an uniform superconductor:

H=B+H*. (20)

In addition, there are regions of the full and the partial
Meissner states in the H plane. The former, as usual,
corresponds to the absence of vortices at all, i.e., B =0,
and the magnetic field satisfies the inequalities H < H,, if
0p <6, and H,<H_, cosf, if 65>6, In the partial
Meissner state, the vortices penetrate along twin boun-
daries, but twin domains remain free from vortices yet; in
other words, the vortices are completely locked in the



48 PINNING OF VORTICES BY PARALLEL TWIN BOUNDARIES. ..

twin boundaries. Then B, and H, satisfy Eq. (19), but in-
stead of Eq. (18), B, =0 and H, < H_, sinb,.

Summarizing, the phase diagram in the plane of H
consists of the following regions [see Fig. 2(a)].

(i) Region 1 of the full Meissner state. It is restricted
by the circle |H|=H,, and by the horizontal lines
|H,|=H,, cosb,.

(ii) Region 2 of the partial Meissner state which will be
called the lock-in phase. It consists of two stripes re-
stricted by vertical lines |H,|=H_, sin6, of the lock-in
phase transition (LPT) (see Fig. 2) and by the horizontal
lines |H,|=H. cos6,.

(iii) In region 3 the vortices are tilted in respect to the
twin boundaries, but finite segments of them (of length
u,) are trapped by the twin boundaries. This region,
which will be called the pinning phase, is restricted by
the LPT lines and by the pinning phase transition (PPT)

Hei

FIG. 2. Phase diagram in the external magnetic field H
which rotates in the a-b plane (only the upper half of the
H,—H, plane is shown): (a) the twin domains are thin com-
pared to the London penetration depth (d <<A), and the vortex
interaction is neglected; (b) the twin-domain width is compara-
ble with the London penetration depth (d~A); (c¢) thick
domains (d >>A), the vortex interaction is very strong and
reduces the lock-in phase transition (the LPT line) to the transi-
tion into the mixed state of the macroscopic twin domain. The
phases are (1) the full Meissner state, no vortices; (2) the partial
Meissner state, there are vortices confined to the twin boun-
daries, but the twin domains remain free from vortices (the
lock-in phase); (3) the mixed state with partially trapped vor-
tices (the pinning phase); (4) the usual mixed state without any
effect of twinning on the vortex-array pattern. Thus the effect
of twin-boundary pinning is present in the shadowed regions (2)
and (3).
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lines 65 =10, (see Fig. 2).

(iv) The rest of the H plane (region 4) is occupied by
the usual mixed state without any effect of the twin boun-
daries.

Thus the effect of twin boundaries is present in regions
2 and 3 (the lock-in and pinning phases shadowed in Fig.
2).

V. CONTINUUM MODEL: THE EQUATIONS
FOR THE DISTORTED VORTEX ARRAY

In general, the equations for the vortex array are de-
rived by varying the free energy Eq. (7) with respect to
small 8¢, 8 A, and Su. Here the small phase variation 8¢
is assumed to be single valued and well defined every-
where; then, the variation of the phase yields the con-
tinuity equation V-j=O0. Variation of the free energy
with respect to the electromagnetic vector potential A
gives the Maxwell equation

[vxh]=2;

(21)
In order to obtain the equation of the force balance for
the vortex array, we should find a variation of the free en-
ergy with respect to the displacements &u of the vortex
lines. There is a relation between variations du and 838

which follows from simple geometric arguments and vec-
tor identities:

8B=—BV-5u+(B-V)du=—[VX[BX8u]]. (22)

With the help of Eq. (11), one can find the relation be-
tween variations 8j and Su:

2
EZ—A[VXSj]=8$=—[VX[$X8u]] (23)
or
2
ATA = —[Bxbu] . 24)

Bearing in mind Egs. (22) and (24), the variation of the
free energy with respect to du is

42

8F,= [dr

.e., H*
j-8j+ 47T$$ 83,

H*B-[VX[6uXB]] } _

_ 1.
__fdrlcj [SuxB]+ o

(25)

After integrating by parts, one obtains the Euler-
Lagrange equation for the bulk:

H*B
=0. 26
BX |VX 477,‘8} 0 (26)

1 .
:[ﬁx_]]"-

In the left-hand side of Eq. (26), the first term is the
Lorentz force and the second term is the elastic restoring
force from line tension of the vortex lines, both normal-
ized per unit volume. If the bulk equation (26) is
satisfied, the variation of the free energy is reduced to the
integral over the surface of the superconductor:
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sF, = [ds- 2L [Bx[Bx5u]]
u 478

8u—§($-8u)

27
B , 27

_ _H*B
- de 47

where the differential vector dS is normal to the bound-
ary surface. By definition, the variation of the free ener-
gy with respect to the vortex displacement is a force on
the vortex array and the tensor:

B, B,
ik 32

__ H*B
Tik = 41

(28)

is the elastic momentum-flux tensor of the vortex array.
If there is no force on the vortex array at the supercon-
ductor surface, the momentum flux vanishes at the sur-
face and the vector induction; i.e., the vortex lines are
normal to the surface. Equations (11), (21), and (26) to-
gether with the boundary conditions form a complete set
of equations describing the elastic vortex array.

Now let us return to the problem of twin boundaries.
The magnetic field h and the vortex induction B lie in the
xz plane and have only x and z components, whereas the
currents are directed along the y axis. All variables de-
pend only on x. Then our electrodynamic equations yield
that h, and B, do not vary in space and coincide with
the x component of the magnetic induction:
B, =8B,=h,. After exclusion of the currents from Eqgs.
(11), (21), and (26), there remain two differential equa-
tions for A, and B,:

d |,,%h
_ ¢ 2z | = 29
h: dx A dx B (29)
dh: | d |H'B. |, (30)
dx = dx B o

We have also the conditions Egs. (13) and (14) following
from periodicity.

Choosing all displacements of the vortex lines
8u[0,0,8z (x)] parallel to the z axis, the variation of the
free energy given by Eq. (27) may be written as

sF, =5 Db
u 47B

where S is the twin-boundary area and 6z (0) and 6z (d)
are variations of the vortex displacements near the twin
boundaries at x =0 and d. If a segment of the length u,
of the vortex line is pinned by the twin boundary, then
the variation of the displacement difference 6z (d)— 6z (0)
for the segment of the vortex line between the twin
boundary (at fixed average slope of the vortex line) shor-
tens the length u,, i.e., 8z(d)—5z(0)= —0&u,, and the
variation of the free energy of the vortices trapped by the
twin boundaries is

[6z(d)—8x(0)], (31

B, B,
5Ft=S'$0—Et6u,: “SFOEt[SZ(d)‘“SZ(O)]
*
t

B, H,

X

=5 4

[8z(d)—8z(0)], (32)
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where B, /P, is the number of vortices per unit area of
the twin boundary and H*=4me,/®y=H * cosb, is the
field determined by the line tension €, of the vortex
trapped by the twin boundary. The energy is minimal if
the sum of the variations 8§F, +6F, vanishes; it gives the
boundary condition for the vortex induction,

z

B

where the critical angle 6, is determined by the balance
of line tensions, Eq. (4). Thus the latter is valid indepen-
dently of the vortex density. The vortex lines may be
trapped by the twin boundaries only if the angle
Op =arccosB,/B between the magnetic induction
B=<(h(x)) and the twin boundary does not exceed the
critical angle 6,. In the dense vortex array, the critical
angle 6, slightly depends on the magnetic induction be-
cause of the logarithmic dependence of the line tension €
on the vortex density, but this dependence is much weak-
er than that predicted by Blatter, Rhyner, and Vinokur.’

The system of the nonlinear equations (29) and (30) to-
gether with the conditions Egs. (13), (14), and (33) yield a
general solution of our problem. In the simplified
analysis of Secs. II and III, we neglected the space varia-
tion of the magnetic field and assumed that free segments
of vortices were straight. This is valid until the interac-
tion between vortices is not important. Another case, in
which an analytical solution can be obtained, is the re-
gion close to the PPT line. There Eqgs. (29) and (30) can
be linearized in respect to small B,=%,—B,, and
h,=h,—h,,, where B,,=h,,=B, cotf, are values of B,
and &, along the PPT line:

= cosf, , (33)

h'—}&d—zhi=$' (34)
i dx? 2

dh; H*sin%@, d B,

dx * B dx - (35)

X

These equations yield two modes of space variation. !4

(i) The magnetic field 4, and the vector induction B,
do not vary in space. This is the zero-frequency limit of
the skin-layer behavior.

(ii) &, and B, vary in space as exp(+x /L,), where L, is
the vortex-distortion screening length related to the elas-
tic mode of the vortex array'* and is given by

H*sin’g
LSZZ}\?TO—‘ . (36)
H*sin"6y+ B,

The superposition of these two modes,

h,(x)=hy+h,cosh(x/L,) ,

B(x)=hy— hycosh(x /L),

- x
H*sin’g,

should satisfy the conditions Egs. (13), (14), and (33).
This gives
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Y B,—B,, H*sin’6,+ B,
! B,  H*sin’6,+B,(d/2L,)coth(d /2L,) ’
Bx
hO:(Bz—Bx()) . 3
B, +H*sin*0,(2L, /d)tanh(d /2L,)
B,—B,, H* sing,
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h = .
' cosh(d /2L,) B, +H* sin*6,(2L, /d)tanh(d /2L,)

Expanding the free energy and keeping the terms of the second order with respect to (B, —B,,), one obtains the free-
energy density in the pinning phase in vicinity of the pinning phase transition:

B H* (B,—B,y)* H*sin’0,[(d /2L,)coth(d /2L)—1]

Py . (B, sinfy+ B, cosb,)+

8 H*sin*0,+ B, (d /2L, ) coth(d /2L;)

(39)

The thermodynamic magnetic field H, which is equal to the external magnetic field in the parallel slab geometry, is

given by
H* sin?0ycosOy[(d /2L,) coth(d /2L )—1
H =4 O _p 1% ino,—(B,— B, s ol : ) 1]
V 0B, H*sin6y+ B, (d /2L;) coth(d /2L;)
(40)
H*sin®0,[(d /2L,) coth(d /2L )—1
Z:££:BZ+H*cos90+(BZ~Bzo> — ol E 1
V 08B, H*sin’6y+ B, (d /2L,) coth(d /2L;)
One may also reverse the obtained formulas and find the magnetic induction B as a function of the field H:
' H* sin0, cosB,((d /2L,) coth(d /2L;)—1]
BX:HX—H*SIn60+(HZ_H20> " > >
— H * sinf cos“6,+ H,(d /2L;) coth(d /2L;)
(41)

H*sin%6,[(d /2L,) coth(d /2L,)—1]

B,=H,—H%*cos6,—(H,—H,)

This derivation is valid until the shape of vortices
slightly deviates from a straight line. It is provided either
by small value of (B, — B,,) near the PPT line or by small
value of d /L, when the vortex interaction weakly affects
the shape of the vortex lines.

Now one can analyze the effect of the vortex interac-
tion on the phase diagram. Figures 2(a)-2(c) show how
the phase diagram varies when the space d between the
twin boundaries is increasing and the vortex interaction
is becoming more and more important. The position of
the PPT line is not affected by the vortex interaction, al-
though the screening of the twin-boundary effect serious-
ly suppresses the contribution from the twin-boundary
pinning. (It is easy to check that in the limit of large
d /L, all derived expressions are those for a uniform su-
perconductor expanded near the PPT line.) Contrary to
it, the lock-in phase transition is strongly influenced by
the vortex-distortion screening. To define the LPT line,
one should assume B, =0 in Egs. (40) and exclude B,
from them. This yields

0= H,—H_sinb,
e = " H,, cosb,
— cotBy[1— (2L, /d) tanh(d /2L,)] . 42)

Here 0, is the angle in the H plane between the z axis and
the lock-in line close to the critical point (see Fig. 2). In

— H* sinf, cos’0y+ H,.(d /2L,) coth(d /2L;)

[

the limit of small d <<L; ~A, the LPT line is nearly verti-
cal as derived above [see Fig. 2(a)], but crosses neverthe-
less the z axis somewhere beyond the scale of Fig. 2(a) at
the value of H,:

2
HZ = 12“37}1* taneo Sin90 . (43)

However, at so large H, the expansion used in the deriva-
tion is not exact. Therefore Eq. (43) must be considered
as an approximate order-of-magnitude estimation.

In the opposite limit of large d >>L;, Eq. (42) yields
6,=m/2—6,, which means that the LPT line is tangent
to the circumference |H|=H,,. As mentioned above, one
may not use Eq. (42) far from the critical point. Howev-
er, the shape of the LPT line in the limit of very thick
twin domains (d — o) is clear without any approxima-
tion: It should be a segment of the circumference
|H|=H,, as shown in Fig. 2(c). Thus the effect of the
vortex-distortion screening controlled by the ratio d/L;
changes the LPT line from the vertical straight line [Fig.
2(a)] to the segment of the circumference |H|=H,,
which is the transition line at which the vortices begin to
penetrate into the macroscopic twin domains [Fig. 2(c)].

It is interesting to compare the effect of the vortex-
distortion screening in type-II superconductors with the
similar effect in rotating neutral superfluids (*He and
3He). In the neutral superfluid, the penetration depth A is
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infinite and the characteristic field H*—0. Also, it
should be taken into account that Eq. (36) yields the
width of the screening layer in the direction normal to
the twin boundary and at the angle 7/2— 6, to the vortex
lines. But here we need the screening depth along the
vortex lines, which is L, =L, /sinf, and according to Eq.
(36) is equal to

1/2_ [‘I)Oln(rv/rc) JI/Z_ 172

*

B

In(r, /r,)

4mn,

47 B

(44)

We have obtained the length which exactly coincides
with the superfluid Ekman layer width for the rotating
superfluids. !!

VI. MAGNETIC TORQUE
FROM PINNING BY TWIN BOUNDARIES

An effective tool to study anisotropy of the type-II su-
perconductors is the measurement of the magnetic torque
at rotation of the magnetic field. In the continuum
theory, the free energy of a single crystal without twin
domains is invariant with respect to rotations in the a-b
plane and there is no torque. However, in the presence of
parallel twin domains the rotational symmetry is broken
and there is a torque which endeavors to orient a sample
so that twin domains would be parallel to the magnetic
field H. The magnitude of the torque per unit volume is
given by

____1_ oF ____‘1_ G :Bsz_Btz
Vab, Vb, o

Here G =F —VB-H is the Gibbs thermodynamic poten-
tial and 65 and 6y are the angles between the twin
boundary and the magnetic induction B and the magnetic
field H, respectively.

At first let us consider the simpler case of noninteract-
ing vortex lines. According to Egs. (18) and (19), the
torque for the lock-in phase in which B, =0 is

H, (H,—H* cosf,)

= , 46
T o (46)

T=

(45)

and in the pinning phases,
H*(H,sin6,—H, cosb,) HH*
4  4r

sin(8,— 0y ) .

(47)

On the PPT line, where 6 =605 =0,, the rotational sym-
metry is restored and the torque vanishes.

When the distortion screening is important, one must
use the formulas derived in Sec. V. Using Eq. (41), the
torque as a function of the magnetic field H is equal to

HH*

T=
41

sin(6,—0y)

H — H* cos®8,

X : - (48)
H(d/2L,)coth(d /2L;)—H* cos6,
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In the limit of d /L;—0, Eq. (48) reduces to Eq. (47). In
the opposite limit of large d/L,, distortion screening
essentially suppresses the magnetic torque:
L, . . H —H* cos*§,
T:‘Z;j“HH sm(GO—OH)%T"— . (49)
The magnetic torque from twin boundaries can explain
the magnetic-field-induced orientation of superconduct-
ing Y-Ba-Cu-O microcrystals observed with the x-ray
diffraction in Ref. 26.

VII. EFFECT OF TWIN BOUNDARIES
ON THE RESISTIVITY AND THE HALL EFFECT

Free vortices and those trapped by the twin boundaries
are characterized by different dynamic parameters and
yield different contributions to resistivity. This has been
used for detection of the twin-plane pinning.*~ ¢ Here we
consider the resistivity in different regions of the phase
diagram using a simple phenomenological model which
assumes the dynamical parameters of vortices inside and
outside the twin boundary to be given.

At first, let us derive some general relations for a uni-
form anisotropic uniaxial conductor in a magnetic field.
The anisotropy axis given by the unit vector m, which is
assumed to be normal to the magnetic induction B. Then
Ohm’s law in the most general form is?’

E=pm(m-j)+p,[bXm]([bXm]-j)+pg[bXm](m-j)
—ppm([bXm]-j)+pgb(b-j) (50)
or, in the terms of the conductivity,
j=om(m-E)+o,[bXm]([bXm]-E)
+op[bXm](m-E)—0ozm([bXm]-E)
+opb(b-E) . (51)

Here E is the electric field, b=B/B is a unit vector point-
ing the direction of the magnetic induction, and
(p1>psPBi>PB>Pe) and (0,0,,05,05,,0) are the com-
ponents of the resistance and the conductance, respec-
tively, which are connected by the relations

g, o
PI= y P
0,0,70p0pg 0,0, t0p0p
%] ;7
pp=————F——— Ppp=————]——, (52
0,0, t0p0p 0,0, 0p0p
1
PB op

In experiments they usually measure the components
of the electrical field parallel to the current and normal to
both the current and the external magnetic field. Since
the latter is normal to the anisotropy axis m and thereby
parallel to the magnetic induction in the slab geometry,
these components are

(E-j)

_ . _(E-[bXj]D _ .
En”—J”—PnJ’ E=——""7"=

Py > (53)

where the resistances p, and p, are
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1 . .
p“:j—z{pz(m-1)2+ptf[b><m]-J)2

+(pg —pp)(m-j)[bXm]-j)+pz(b-j3},
) (54)
pi:?{pBl(m'j)2+th([b><m]'j)2
+(p,—p,)(m-j)([bXm]-j)} .

For an isotropic conductor, p, =p, (but pj is different be-
cause of magnetoresistance) and pg =pp,. Then the
transverse component E | presents the Hall effect. How-
ever, in an anisotropic case E| includes also a contribu-
tion that does not vary when the magnetic field inverts its
direction (the “even” Hall effect?®). Also, the longitudi-
nal component E| has a term <(pg —pg) odd in the
direction of the magnetic field. Both contributions are
due to anisotropy.

Now let us apply the relations derived to a type-II su-
perconductor in the resistive mixed state. The electrical
field E is related to the velocity v, of the vortex motion
by the Josephson relation

E=——i~[vL XB] , (55)

and the unit vector b=28B/3 points out the direction of
the vortex induction B. The model involves both the
flux-flow and creep regimes of vortex motion: The
difference between them is supposed to be taken into ac-
count by the magnitudes and the dependences of the
resistance components. Further, we shall neglect the
resistance for currents along the vortices (pp=0,
o p— oo ), adopting the simple Lorentz-force concept of
vortex motion in which Ohm’s law may be presented as
the balance of forces acting on the vortex:

P, B
—bxjl=——3

2 {o,m(m-v;)

+G,[me]([me]-VL)
+og[bXm](m-v,)
—opm([bXm]-v;)} . (56)

The Lorentz force in the left-hand side of Eq. (56) is bal-
anced by the friction and transverse forces in the right-
hand side which are proportional to the vortex velocity
vy.

In our case the anisotropy axis m is the ¢ axis and we
restrict our analysis by a geometry in which both the
current and the magnetic field, as well as vortices, lie in
a-b plane, i.e., normal to the anisotropy axis. Then
(m-j)=0 and the formulas for the p; and p, in the case of
straight vortices look as for the isotropic case:

PI=p: sin2(6j—93 ), p1=pp sin(0;—6p), (57)

where 6, is the angle between j and the twin boundary.
The transverse component E, <p, is to be measured
along the c axis.

When the twin-boundary pinning is important and a
finite segment of the vortex is trapped by the twin bound-
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ary, the vortex velocity v, is also determined from the
force balance, but the dynamic parameters are different
for the trapped and free segments of the vortex lines.
Equation (56) refers now to the free segments, but the
unit vector b=28B/8B varies in space. The motion of the
distorted vortex line may be described by the y com-
ponent of the vortex velocity, v;,, and the z component
vy, describing translation of the free segments along the
twin boundaries. We use the balance equations for forces
only along the y and z axes: The forces along the x axis
include the pinning force which balances all other forces.
The Lorentz force has no component on the z axis; the
trapped segments of vortices also do not contribute to the
balance for the z axis, which is

0= [(o,b2v;,+0pbvy,)dl . (58)

Here the integral expands over the free segment of the
vortex line with d! being an infinitesimal element of its
length. Bearing in mind that b, = sinf(x), b, = cosf(x),
and dx =b,dl, where 0(x) is the angle between the local
direction of the vortex line and the z axis, Eq. (58) yields
the following relation between the two components of the
vortex velocity vy :

o, sinB(x))sz=—~aB,vLy , (59)
where
(sinf(x))=(1/d) [ *sin6(x)dx (60)

assumes integration over the space between the twin
boundaries.

Now let us consider the balance of forces on the y axis.
The total y component of the Lorentz force per one
period of the twin structure is

o P
(F), = [ 216X j)di=—2 [ (b,j —bj.)dl

20 a—ia
- ¢ IxlU Jz
Dy

where L =V d?+72%. The Lorentz force is balanced by
the force

B,
(Fa)y=—" [f(or,vLy—aB,bquz)dl+0tvayu,
B,
z_T(U,ULyL-—aB,ude oWy U;) - (62)

Here L= fdl is the length of the distorted free segment
of the vortex line between two neighboring twin boun-
daries and o, =1/p,, is the conductance for the vortex
segments trapped by the twin boundaries. Equating the
two forces, (Fp),=(Fg),, one obtains the resistances
which determine the longitudinal and the transverse com-
ponents of the electrical field:
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- 0'l< Sin9>
P (0, L/d+0u,/d)o{sinb)+ogop
sin*(6; —605) 3
sinfp ’
O g Sinfp

PL= PG (sin6) sin(6,— 65)
_ P Sinfp
~Pip, (sind) sin(6;, —6p)

(64)

Now let us apply the expressions derived to some sim-
ple cases. If the twin-plane pinning is absent and the vor-
tex lines are straight, then ( sinf) = sinfy=d /L, L=L,
u, =0, and Egs. (63) and (64) reduce to Eq. (57) derived
earlier. Another simple case is when the isolated vortex
lines are trapped by the twin planes (the low vortex densi-
ty): In this limit the free segments of the vortex lines be-
tween the twin boundaries are straight, ( sin6)= sin6,
=d /L (but LF*L!) and u,=d ( cotOz — cotf,). Then

sinf,

py=p, sin’(6,—0p)

>

sinfg +(p, /p.,) sin(8p,—65p)
sinfp

B)sinBB-i-(pt/plw)sin(Qo—-OB) :

(65)

p1=pp sin(6;—6

In the lock-in phase, 85 =0 and the Hall effect is absent
since the vortex motion is guided by the twin boun-
daries:?®

P = Pew sinZOj, p,=0. (66)
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VIII. CONCLUSIONS

The continuum electrodynamics of the type-II super-
conductor in the mixed state has been developed to study
pinning by parallel twin boundaries in a Y-Ba-Cu-O sin-
gle crystal. The theory shows that the effect of pinning is
screened at the distance of the distortion screening length
from the twin boundaries, but the pinning onset weakly
depends on the magnitude of the external magnetic field.
This screening is a manifestation of the long-range in-
teraction between vortices, as the Debye screening is a re-
sult of the long-range Coulomb interaction in a plasma.
The distortion screening is also important for the position
of the transition line between the lock-in phase (the vor-
tices are completely trapped by the twin boundaries) and
the pinning phase (the vortices are partially trapped by
the twin boundaries).

The magnetic torque and all components of the resis-
tance for a single crystal with parallel twin domains in
the magnetic field rotating in the a-b plane have been
studied. The resistance has been calculated within the
phenomenological approach which assumes the dynamic
parameters of vortices inside the twin domains and vor-
tices completely trapped by twin boundaries to be known.
The theory predicts how the resistance should vary when
the external magnetic field is rotated in the a-b plane. It
has been shown that the Hall component of the resistance
is especially important for studying the phase diagram.
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