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We determine the free energy of a vortex line within the Cinzburg-Landau formalism. Besides
the usual translational modes we also take account of self-Quctuations of the order parameter in the
calculation of the vortex free energy. The latter are due to the internal structure of a vortex line and
lead to an observable downward renormalization of the lower critical-field line H„(T) in strongly
layered superconductors. In thin films the self-Huctuations of the vortex lead to a reduction in the
power-law exponent of the current-voltage characteristic. We argue that in a three-dimensional
system the spontaneous creation of vortex lines cannot occur.

I. INTRODUCTION

Fluctuation efFects in superconductors have been the
subject of many past and recent investigations.
Whereas in conventional superconductors fluctuations
play only a minor role, the situation is diferent in the
high-temperature superconductors where thermal fluc-
tuations are relevant deep into the phase diagram well
below the mean-field transition at II„(T). As usual we
have to distinguish between the critical fluctuations close
to the mean-field transition (Ginzburg region) and the
Gaussian fluctuations outside of this regime. The width
of the critical regime depends on the magnetic field and
on the dimensionality of the system (see below) and is
of the order of 1 K wide in the oxides. The fluctua-
tion contributions to the thermodynamic as well as to
various transport properties have been analyzed both
experimentally and theoretically and good agree-
ment has been obtained in their scaling behavior. Even
outside the critical region fluctuations play a crucial role
in the high-T 's leading to novel phenomena such as the
melting of the Abrikosov lattice. ' Here we are inter-
ested in the efI'ects fluctuations have on an individual
vortex line outside of the critical region.

An immediate consequence of fluctuations is the low-
ering of the free energy of a vortex line due to its mo-
tional degrees of freedom. In two dimensions this eÃect
leads to the well-known Kosterlitz-Thouless transition
above which the quasi-long-range order of the Berezin-
skii phase is lost due to the spontaneous creation of
free vortices. At the transition, the entropy term in the
free energy arising from the translational fluctuations,

T ln(L /( ), ex—actly cancels the vortex self-energy det.
Here I is the system size, d the film thickness, ( is the
coherence length, and et = (4p/4m A) ln(L/() is the line

energy of the vortex excitation. In a three-dimensional
system the system size I has to be replaced by some
appropriate cutoK length due to the screening and both
the line energy as well as the entropy term are reduced.
Still, as the line energy vanishes on approaching the tran-
sition, the free energy of the vortex line drops to zero at
some point T, within the superconducting region, and the
question of a possible spontaneous creation of vortex lines
arises. Recently the latter has been proposed to occur by
Bulaevskii, Ledvij, and Kogan, with a temperature T,
suKciently below the mean-field transition to be observ-
able in strongly layered high-temperature superconduc-
tors. The study of Bulaevskii et al. has been formulated
within the continuum elastic theory of the vortex sys-
tem which inherently limits the fluctuation spectrum to
the translation modes. In the present paper we give a
complete description of the problem in terms of the more
fundamental Ginzburg-Landau (GL) theory.

Within the GL formulation the vortex line is a struc-
tured object with a spacially dependent order parameter.
Fluctuations of the order parameter around the mean-
field vortex solution (we call them self-fluctuations) then
lead to an additional contribution to the vortex free en-
ergy. In fact, these self-fluctuation corrections always
dominate over the translational fluctuations, leading to
an even larger reduction of the vortex free energy than
the one obtained by Bulaevskii et al. In spite of this very
encouraging result, we conclude from our analysis that no
spontaneous creation of vortex lines can take place in a
three-dimensional system.

The efFects described below in the main body of the
paper are observable in the case of strongly layered ma-
terials such as the Bi- or Tl-based. compounds. In a first
step (Sec. II) we derive a suitable expression for the free
energy of a flux line in terms of the fluctuation spectra
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of the homogeneous (no vortex) and of the inhomoge-
neous (one vortex) system. In Sec. III we determine
the relevant eigenvalues and calculate the &ee energy of
the vortex line. It is convenient to combine the self-
Auctuation term with the mean-field. line energy into a
new renormalized line energy eP(T). The latter goes to
zero at a new fluctuation-corrected transition tempera-
ture T p ( Tp which we calculate explicitly in Sec. IV. We
then discuss our results in Sec. V, the downward bend-
ing of the lower critical field line H„(T) on approaching
the transition in a layered superconductor and the down-
ward renormalization of the characteristic power-law ex-
ponent in the current-voltage characteristic of a thin film.
Furthermore, we discuss the absence of the spontaneous
vortex creation in three dimensions (3D). We compare
our results with recent experimental measurements of
the lower critical field line H, , (T) by Brawner et al.
on a Bi2Sr2CaCu20s (BSCCO) single crystal and dis-
cuss their findings in the light of the present theoretical
analysis. Finally we conclude in Sec. VI.

II. THERMODYNAMICS OF VORTEX
FLUCTUATIONS

integral representation

and making use of the corresponding free energy func-
tional. Away from the immediate vicinity of the phase
transition we can assume only small fluctuations in the
order parameter and. use a Gaussian approximation in
the calculation of the free energy (2). For the vortex free
state the order parameter takes the form

A„= 1 + a„(r) + ib„(r), (4)

with a and b describing the (small) fluctuations in the
modulus and in the phase. In the presence of a vortex
we write instead

E„=A„(r)e*~+ [a„(r) + ib„(r)]e*~,

where P is the azimuthal angle, i.e. , r = (r, P). The
first term in Eq. (5) is the equilibrium solution for a
vortex. going to zero on a scale r & 1. On intermediate
distances the order parameter is suppressed due to the
How of screening currents:

Our starting point is the Ginzburg-Landau functional
in the Lawrence-Doniach form describing the free en-
ergy of a layered superconductor:

A„(r) = 1 —1/r for 1 ( r ( A/(.

Substituting the ansatz (5) into the Lawrence-Doniach
functional (1) and dropping higher-order terins we obtain

%[A„]= T„=Wp+ E;pL lnK+ bTp+ bT„.

+ I&&-I'+
2

I&-+i —&-I'

(1)

E = T lnI—
4+p)

(2)

with b, (r) = @ (r)/'Ii, the normalized order param-
eter of the nth layer. Here, the distances r within the
layers are measured in units of (, the planar coher-
ence length. The energy scale is determined by ep
(4p/4m%), where A is the London penetration depth for
the planar currents. The coupling between the layers
is described by the parameter p = 2(, /d = 2( /A,
with d the interlayer distance and (, the coherence length
in the z direction. The Josephson length A is given
by the relation A = d ((/(, ). Contributions from the
electromagnetic field are neglected since we consider the
strong type-II limit with a large Ginzburg-Landau pa-
rameter v = A/( )) 1. The temperature dependence of
the main energy scale is given by ep(r) = ep(0) r, with
T = 1 —T/Tp, and Tp is the bare transition temper-
ature. Whereas the mean-field line energy of a vortex
perpendicular to the layers is given by the expression
e~ ——ep lnr, its exact thermodynamic free energy has to
be determined from the definition

Here, the first two terms are the mean-field energies
for the homogeneous state (Xp) and for the vortex line
(eiL = epL ln v; L, denotes the sample size along the z
axis), whereas the last two terms describe the fluctuation
contributions

bEa = ) d,'r (2a„'+ (va )'+ ( 7b )''
+

2
(a-+i —a-) +

2
(b-+i —b-)

'Y 2 y 2

and

2m -
g r2)

+
I

A„' —1+ —,
I

b'„+ —,
I

a„"—b„
1 ), 2 ( Bb„Oa„&)" r E ~ ~)

For the vortex free state the total free energy involves
only the terms Tp + bop. In a next step let us for-
mally diagonalize the two Ouctuation contributions bWp

and Hap + t)X„(g = a or g = b):

where the partition functions Z„and Zp correspond to
the situations with and without a Aux line present. Both
partition functions can be calculated from the functional

(1,2)
bg

(10a)
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bg
(iob)

z
Zp

= exp

The products have to be taken over all the eigenvalues
of the Huctuation modes. From the definition (2) of the
vortex free energy we then conclude that the vortex fluc-
tuations will change the free energy to deviate from the
mean-field result E:~L . In the next section we will esti-
mate the magnitude of this effect.

where we have introduced the eigenvalues p( ' ) and
M( ' ) for the fluctuation modes of the homogeneous and
of the inhomogeneous state. The superscript refers to the
amplitude (1) and to the phase dominated (2) mode, re-
spectively. Using the eigenmode representation for the
fluctuation energies we can rewrite the ratio of partition
functions into the form

i qxr,
o,q(r) = e'+' and bq(r) = 'e'+',

r2 (15a)

whereas the phaselike eigenfunctions behave like

i qxr,
b2(r) = e' ' and a2(r) = 'e'

r2 (i5b)

Projecting the eigenvalue equations (14a) and (14b) onto
the "incoming" plane wave exp(iq. r) and using the nor-
malization condition Id r aqe '~' = I'd r b2e
I LQ, we can derive the following relations for the de-
sired eigenvalues:

M(i) (~)

well as "scattering" states, whereby the latter ones give
the dominant contribution to the partition function in
(2). The asymptotic (r )) 1) form of the moduluslike
eigenfunctions is given by

III. CALCULATION OF THE VORTEX FREE
ENERGY

The eigenvalue problem (10) for the fluctuation modes
is most easily tackled by going over to a Fourier repre-
sentation both for the planar coordinate [q = (q, q&)] as
well as along the z axis:

and

(2) (2)
M~ I

—p~ A:

d'r, , I' 1 2 cIb,
I

——3+ ~&.2
~

u, +-
L L„(r2 j r2 cIQ

(16a)

A„(r) = d ) Ak(r)e'"" =
k= —vr

—AA., (r)e' ". (l2)
dk

27'

I,"„' = 2+ p,'„' and p,'„' = g'+p[i —cos(k)], (i3)

with IJ,~ ~ corresponding to the (massive) moduluslike and
p~ i to the (massless) phaselike mode. The corresponding
eigenvalues for the vortex state are determined by the
(real-space) equations

/i 2 cIbI,&'nI, + 2n~ +—l

——3 +».'
l

&~ +-
(r2 r2 oIP

The homogeneous problem then is trivially solved. and
the two eigenvalues are given by [see Eqs. (8) and (10a)]

d'r, , (1 2 cIo,2
~

——1+ E„~ b2 ——
L Ly (r2 ") r2 0$

(16b)

M @
——p ~+2' lnv) (~) q —2

L LQ
(17a)

The main contribution to the above integrals comes from
the interval 1 ( r & A/( which gives rise to a logarithmic
divergence. Using the dependence (6) for the order pa-
rameter A„as well as the asymptotic forms (15) for the
eigenfunctions, the integrations in (16) can be performed
explicitly and we obtain the results

= [M —p(l —cos k)] aI, (14a)
M k

= p A,
—27t nK(2) (2) (17b)

and

I' 1 2 Oak
V2bI, +

I

———1+
(r2 r2 0$

= [M —p(1 —cos k)] bI, . (14b)

Again, this system of equations has two different solu-
tions describing amplitude and phase modes. The prob-
lem to be solved is essentially a scattering problem for
a two-component wave function scattered off a centrally
symmetric potential. The spectrum involves "bound" as

for the eigenvalues of th~ amplitude and phase fluctu-
ation modes in the vortex state. In addition to these
self-fluctuation modes we also have to take into account
the planar translationa/ vortex modes, 9'[A„(r) exp(iP)].
For these modes, only the relative positions of the vortex
cores in the different layers are important. Consequently,
the left-hand side of the equations (14) is zero and the
eigenvalues are determined by the finite coupling between
the layers

M„= M„" = p(1 —cosk).

We can now calculate the desired ratio of partition
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functions as given in (11). Making use of the results (13),
(17), and (18) for the eigenvalues p, and M we obtain

of ((T) we obtain for the large wavevector cutoff' the value

q ((T)/((0) = r i~2. Performing the integration in
(24) we obtain for the self-fluctuation part the expression

Z„ t' s(L, l
&" = exp

I

— '
I C~. C-ir,

Zo ( T ) I,T 1
F„lf ——— ' ln r ln

7
(25)

with the translational part (&, given by

M( )M( )
k k (2o)

which exhibits a nontrivial temperature dependence un-
der the logarithm. The result (25) is correct to loga-
rithmic accuracy. Collecting terms we can write the free
energy of a vortex line into the form

and the self-Huctuation part, after expanding the square
root, by

F = L,s, (~) + Fg, (26)

(self
kq

271 Q + p (21)
with the renormalized line energy e& given to logarithmic
accuracy by

The thermodynamic free energy of the vortex then is
given by

El (7 ) = E 0 (7) ln K

T
so (r) = sp(v. ) ——ln

~d lr) (, ( d.

(27a)

(27b)

E. lI z + +tr + +self ~ (22)

with Ft, —— T 1 (nt—and F„~r = T 1 n(„~—.rThe contri-
bution from the translational modes is particularly sim-
ple for the 2D case, where Ft, —— T ln(L L—„/( ) is de-
termined by the freedom to place the vortex at any point
within the plane. It is this part of the free energy which
drives the Berezinskii-Kosterlitz- Thouless transition in a
two-dimensional system. Going over to a system of cou-
pled layers the freedom of placing an individual pancake
vortex is restricted due to the interaction between the
vortices in difFerent layers. For a very weak coupling the
Josephson interaction can be neglected with respect to
the electromagnetic one and the cutofF in the logarithm
is given the screening length A. On the other hand, for
a dominant Josephson coupling the cutofF is determined
by the Josephson length A = d ((/( ). As a result, we
can use the interpolation formula

TL„
d ('/A' + ('/A' (23)

2' TI A dk
self

d ( „2vr
ln

d2 2 + (2)

(2vr) pl ) p&2)
24)

For the quasi-2D strongly layered superconductor with
d we can neglect the coupling term oc p in the

eigenvalues p, li' ). The integrand of (24) is well behaved
at q = 0 and the interesting quantity is the large q cutofF.
The smallest scale for the fluctuations is given by ((0) and
accounting for our convention to measure lengths in units

representing the competition between the Josephson
length and the London penetration depth for the in-plane
currents. The result (23) applies to a long vortex. For
the case of a short vortex segment (L, d) the electro-
magnetic restoring force cannot build up and the cutofF
in the logarithm is always given by the Josephson length
A. In the limit of vanishing interplanar coupling we have
A ~ oo and the cutofF is given by the size of the sample
such that (23) goes over into the result for a film.

Second, let us turn to the self-fIuctuation part:

+R Tp
&R ln

Tp sp(0)d

The fIuctuation corrections to the line energy become
large at reduced temperatures w ) w~, well outside the
regime of critical fIuctuations, and thus our approxirna-
tion is applicable over a large temperature range. For a
2D superconductor the extent of the Ginzburg region is
given by

T+ Tp
7Q —1 «a.

To so(0)d
(29)

Using parameters typical for the quasi-2D BSCCO com-
pound [Tp 100 K, d 15 A. A(0) 1000 A. , resulting
in sp(0)d —3000 K], we obtain the estimates r~ = 0.033

Note that we have split the free energy into a renormal-
ized line energy which accounts for all of the internal
structure of the vortex (including self-fluctuations of the
order parameter) and a contribution arising solely from
the translational degrees of freedom in the problem. The
second term in (26) has been found before by Nelson
and Seung and in the work of Bulaevskii, Meshkov,
and Feinberg. It corresponds to the entropic contribu-
tion to the free energy driving the Berezinskii-Kosterlitz-
Thouless transition in a two-dimensional system. How-
ever, the result (27) shows that in addition to this trans-
lational term, the short-wavelength self-fluctuations Ion
length scales ((0)] lead to a downward renormaliza-
tion of the line energy of the vortex. This contribution
is due to the nontrivial internal structure of the vortex
line and usually represents the dominating term. For a
structureless (pointlike) object the corresponding term is
absent .

The Gaussian approximation used in the above deriva-
tion is equivalent to the one-loop perturbation expansion
for calculating the free energy. In this approximation,
the logarithmic term in Eq. (27) is a perturbative cor-
rection implying the condition T/spd (( 1. Within the
present approximation the line energy extrapolates to
zero at a ternp erat ure v.„given by the implicit equat ion



10 4S2 G. BLATTER, B. IVI.EV, AND H. NORDBORG

and 7.~ —0.083.
Closer to the transition temperature one has to go be-

yond the Gaussian approximation and the inclusion of
higher-order corrections then is expected to lead to a
renormalization of the expression under the logarithm
in (27). The exact result for the line energy sP(T) turns
to zero at some Huctuation-corrected transition temper-
ature T,p & Tp, sP(T,p) = 0. Again, the fluctuation-
induced shift bTO = To —T 0 of the transition tempera-
ture is large, ' bTO & 7~TO, and thus can be calculated
within our approach. We will give a brief derivation of
the renormalized transition temperature T 0 in the next
section. Before doing so, let us compare our result (27)
for the quasi-2D case with the corresponding results for
the intermediate layered case, where (,(0) & d & („and
for the continuous (anisotropic) case with d & (,(0).

For an intermediate layering, as it is the case in the
Y-based cuprates, the long-wavelength cutoff' in (24) is
given by the coupling term p(1 —cos k) instead of the
mass term and the result for the renormalized line energy
is

+int
T

with 4 = 4» + i@2 . The above form is equivalent to
(1) if we measure planar distances in units of ((0) and
use the normalization 4„= [~zp~d/aT]A„ for the order
parameter. Defining averages as usual,

(X) = (D~ -)(D~ ) X ~ I ( &/T),— (34)

(@1,2 k('q) @1,2 k' (q ))

= (2~) b(k+ k') 82(q+ q') Gk~ "~(q). (35)

with X a function of 4» and 42, we can construct
the two-point correlation functions Gk

' (q), in Fourier
representation

&, (v) = &o(v) ——In, ) tnt, g. (0) & d & r...R
2 0

(3o)

The free propagator takes the form

Gp„' (q) = q —7. + (1 —cosk)(1 2) 2 2(,(0)'

Finally, for the continuous anisotropic situation we can
expand the cosine and go over to a three-dimensional
momentum space integration with the result

7 = 6'0 7
T

in+. , d & (,(0).

In contrast to the quasi-2D result (27) the line energy
renormalization involves only a trivial shift independent
of temperature for the intermediate layered and for the
continuous (anisotropic) 3D cases. Hence, the downward
renormalization of the line energy should be observable
in strongly layered quasi-2D materials such as the Bi- or
Tl-based compounds, whereas no such eKect is expected
to be observable in the intermediate layered Y-based ma-
terial.

G' '(q) = G.' '(q) + G."(q) ~( )G'" (q) (37)

with the self-energy Z(w) given by

~ T dk' rt2q'

sp(0)d 2vr (27r)'

x 3Gp~k~ (q) + Gpk (q) (38)

Fluctuations are treated by the usual perturbative ex-
pansion in T;„t. Note that the coupling constant is

T/sp(0)d, which is small in the same sense as pre-
viously discussed in connection with the result (27) for
the renormalized line energy. Within the most simple
Hartree-type approximation we can immediately write
down the Dyson equation for the propagator in the form

IV. SHIFT OF THE TRANSITION
TEMPERATURE The equation for G~ ~ is analogous and G~ ~ = G~ ~. For

the self-energy we thus can write

For a field theoretical calculation of the renormalized
transition temperature T 0 it is convenient to approach
the transition temperature from above. We rewrite the
Ginzburg-Landau functional (1) in the form X = Xp +
T;„t, where

4' T uc
sp(0) d 2~

g
(2n. ) 2

q2 —v. —2 + 2[(,(0)/d]2 [1 —cos k]
' (39)

1

T 2

x —~C,„—~4~„+ V'4»„+ V'C2„

&.(0)' 2+ 2 (@1m+1 @1n) + (@2n+1 @2m)

(32)

The physical transition temperature T,o is determined by
the condition Z + 7. = 0. For the strongly layered quasi-
2D situation the lower cutofF [(,(0)/d]2 is smaller than
the width wG of the Ginzburg region. On the other hand,
the condition E + v = 0 should be understood to be
accurate only up to the width of the critical regime. We
then choose vG. as the lower cutofF in the quasi-2D case,
Z + w —7~. The upper limit of integration is given by
q 1 [corresponding to fluctuations of wavelength ((0)]
and we obtain the result
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Tp
p = 1 —T p/Tp ln

~

—~, (~ & d,,(0)d
(4o)

for the shift in the transition temperature. This shift
is larger than the width 7G of the Ginzburg region and
thus our use of the simple Hartree approximation is con-
sistent. Using parameters for BSCCO we obtain an esti-
mate w p 0.113 for the shift in the transition tempera-
ture.

For the intermediate layered case with (,(0) & d & (,
the lower cutoff in (39) is provided by the coupling into
the third dimension and we obtain

0.1

TR

Tp
7 p —1 —Tp/Tp —,d &( (0).

7rsp 0 0
(42)

Comparing these results for the Tp shift with the re-
sults for the temperature where the renormalized vor-
tex line energy is expected to vanish, we observe that
for the two cases of intermediate layering and for a con-
tinuous 3D material the shifted transition temperature
coincides with the zero in the renormalized line energy,
si (T p) = 0, see Eqs. (30) and (31). For the quasi-2D
case the same result holds.

V. DISCUSSION

Tp
1 —Tzp/Tp lrl 2 ( (0) & d & (,.op0d, 02

(41)

Finally, for a 3D material the result for the renormaliza-
tion of the transition temperature takes the form

0
2T./3 ~co ~R

T
FIG. 1. Temperature dependence of the lower critical Beld

H„(T) for the case of a strongly layered quasi-2D material.
The dotted line is the linear extrapolation of H„(T) defining
the bare transition temperature To. Fluctuations lead to a
downward renormalization of H„(T). Within the Gaussian
approximation the lower critical Beld extrapolates to zero at
TR. The regime where the Gaussian approximation applies is
limited to temperatures well outside the Ginzburg regime of
critical fluctuations (shaded area). Within the region where
fluctuations become large (beyond Gaussian) the lower crit-
ical field line rapidly decreases and drops to zero close to
the Buctuation-corrected transition temperature T o. Above
the Berezinskii-Kosterlitz-Thouless transition at T&K& a gas
of confined vortex-antivortex pairs appears. Its presence pro-
hibits the spontaneous creation of vortex lines in the system.
At the three-dimensional ordering temperature T the pairs
dissociate and long-range order is lost. The relative arrange-
ment of the various temperatures is illustrated in the inset.

To begin with let us consider the quasi-2D situation
where the interlayer coupling is still appreciably strong
such that A & A. For this case the translational contribu-
tion to the vortex free energy is given by the expression
I"t,, —— T(L, /d) ln (—A /( ), see (23). This formula is
valid for a vortex of any length d & L, & oo directed
along the c axis. In contrast, the total free self-energy
of a vortex line as given by the first term in Eq. (26)
only applies to a vortex of infinite length L, . For a finite
vortex segment of length L, (e.g. , the vertical part of a
vortex loop of extent L, along the c axis) the total free
energy can be written as

I"' = L, sp (T) ln
' ——ln

l(L, ) T A2

The upper cutoff l(L, ) in the logarithm depends on the
length L of the segment with the two limits at d and at
infinity given by l(d) = A and by l(oo) = A.s The lower
critical field H, is determined by Eq. (43) with L = oo
and we obtain

R T A'II, = sP(T) ——ln
@0

(44)

The lower critical field line deviates from the usual mean-
field result due to the nontrivial fluctuation correction
in the renormalized line energy sP(T), see (27). The
temperature dependence of H, close to the transition

Tp 1R
TR Tcp ~ ln ) 7+Tp )

sp(0)d r~ (45)

is illustrated in Fig. 1. The low-temperature linear ex-
trapolation of the mean-field lower critical field line goes
to zero at the bare transition temperature Tp. However,
this large scale extrapolation may be difIicult to observe
in a real experiment as the linear approximation of the
Ginzburg-Landau mean-field results itself breaks down at
low temperatures T & Tp/2. Note that Tp is only a pa-
rameter in the theory but has no real physical meaning in
terms of a phase transition as the latter is shifted down
to T p. The fluctuation-corrected H, line extrapolates
to zero at a temperature close to TR where the renor-
malized line energy vanishes [we ignore here the small
shift in the zero of the lower critical field (44) as corn-
pared with the zero of the line energy sP(T) arising due
to the translational fluctuations; this shift is smaller than
the width of the critical region]. The lower critical field
line exhibits a weak downward curvature which is mainly
due to the contribution of the vortex self-fluctuations.
The latter are large due to the appearance of the prod-
uct of two logarithms, (47rT/@pd) ln K 1n—(1/r). In com-
parison, the translational fluctuations contribute only a
small shift (47rT/4pd) ln(A /—(2). The actual zero of the
lower critical field line is close to the fluctuation-corrected
transition temperature T,p. The expression for the shift
TIt —T p follows from Eqs. (28) and (40):
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and taking parameters appropriate for BSCCO we obtain
the shift T~—T p 3 K between the extrapolated and the
actual zero of the H„ line. Note that this shift is larger
than the extent 7~Tp of the critical fluctuation region.

In a next step, let us briefly discuss the thermodynam-
ics of a layered superconductor. Starting out with an
uncoupled system of superconducting layers (or a thin
Blm) a low-temperature phase exists with (algebraic)
quasi-long-range order (Berezinskii phase~s). Thermal
creation of vortex loops of minimal extent I —d then
destroys this phase at temperatures T ) TBK~, where the
Kosterlitz-Thouless temperature follows from the vanish-
ing of the free energy (43):

eg(T „)d
BKT

2

Solving for TBK~ we obtain

TBKT 2 dE'
p

Tp d dT
( 27~, (47)

where the derivative is taken at T = T,p. For a finite
3osephson coupling true long-range order exists at all
temperatures below the 3D transition temperature T .
The thermally created vorte~ loops above TBKT then re-
main confined to lengths & A. The three-dimensional
ordering temperature can be determined from the condi-
tion A = (BKr(T ), where the BKT coherence length is
given by

(T) = &(T) exp
I
bT' T

Tp —T )
BKT )

(48)

The parameter 6 is nonuniversal and typical values ob-
tained in thin superconducting films are in the range
2—16. The physical 3D ordering transition takes place at
the temperature

T 2 dip~

Tcp d d

61—
ln (A/()

(49)

For temperatures T )T, the BKT-type resistivity starts
to grow and for large temperatures T ) T p the resistiv-
ity goes over into the 2D Aslamazov-Larkin behavior.
The renormalization from Tp down to T p is much larger
than the distances T p

—T or T p
—T K from the

fluctuation-corrected transition temperature T,p to the
3D ordering temperature T or to the BKT temperature
TBKT. The relative positions of the various temperatures
are illustrated in Fig. 1.

Let us analyze the question of a possible spontaneous
creation of vortex lines. As mentioned above, minimal
loops of size bz = d and br = A can be created at
no cost for temperatures T ) TBK~. Similarly, loops
of size bz = nd, br —A could appear at temperatures
T & T where the free energy F(L, = nd) as given by
(43) drops to zero. The sequence T approaches the value
T where the vortex free energy and thus H, vanishes.
Unfortunately, the exact determination of T is impos-
sible within the accuracy of the present (Gaussian) ap-
proximation. It is important to note that in the regime

T & TB« the gas of small (n = 1) loops annihilates
the large loops with n ) 1. Hence, above TBKT a gas of
elementary loops consisting of bound vortex-antivortex
pairs with radii r ( A exists. A vortex line embedded
in this gas of elementary loops is unstable and bound to
decay. Similarly, the creation of a long vortex line has to
go through a nucleation process where the growing nu-
cleus is again unstable due to the presence of the gas of
elementary loops. At T the elementary pairs dissociate
and the long-range order vanishes.

Finally, let us concentrate on the weakly coupled case
with A ) A. The translational free energy is given by
the expression I"t, ——2(L, /d)T ln v in the case of a long
vortex, whereas for a short vortex (L, d) we obtain
Ft, ——2(L, /d)T 1n(A/() as the electromagnetic restoring
force cannot build up. Similarly, the cutoff l(L, ) is given
by the screening length A in the case of a long vortex,
whereas l(L d) A. As a consequence, the two
logarithms in (43) drop out and the temperatures T all
collapse into the BKT temperature TBKT above which
the vortex lines dissociate. In superconducting films we
further have to replace I, by the film thickness d and
the relevant screening length is' A, tr = 2A /d (to avoid
additional complications we always assume here that the
spatial extent of the film is smaller than A,g, as is usually
the case ). The exponent a(T) in the current-voltage
characteristic V I ~ ~ is also renormalized by the
self-fluctuations of the vortex. Below the BKT transition
we have

( )
VKr dip (T)

T (50)

and the downward renormalization of a(T) due to the
self-fluctuations competes with the XY-type renormal-
ization vier ( 1 close to TB„T. The result (50) also ap-
plies to layered superconductors in the large current, limit
where length scales & A are probed.

In the light of the present theoretical considerations
the experiments of Brawner et al,. are interpreted in
the following way (see Figs. 1 and 2): In the strongly
layered BSCCO compound the fluctuation corrections to
the lower critical fi.eld line are large and show a nontrivial
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FIG. 2. Lower critical field line 0, versus temperature

in a BSCCO single crystal as measured with a Hall probe
technique by Brawner et al. (Ref. 17).
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temperature dependence (see Fig. 2). Over an 10 K
range close to the transition the H, line extrapolates to
zero at a temperature 86 K which we identify with our
calculated extrapolated zero T~, hence T~ —86 K in the
experiment of Ref. 17. Close to the renormalized tran-
sition temperature (but still outside the critical regime)
fluctuations going beyond the Gaussian approximation
lead to a further downward curvature of the H„ line such
that its actual zero is close to T 0. In the experiment the
lower critical Geld goes to zero at a temperature 83.5
K, hence we obtain T,o 83.5 K. The shift T~ —T o be-
tween the extrapolated and the actual zero of the lower
critical field line then is in good agreement with the above
estimate for the Bi-based quasi-2D superconductor. The
deviations of our lowest-order result for the H„(T) line
from the actual curve are expected to become relevant
within a region somewhat larger than the critical region
7-~TO. In the Y-Ba-Cu-0 compound the H, line only
undergoes a parallel shift. The critical fluctuation region
is small, & 1 K, and the downward bending of the lower
critical field line is restricted to a narrow temperature in-
terval, in agreement with the experimental observations
of Brawner et al.

VI. CONCLUSIONS

In this paper we have analyzed the influence which fluc-
tuations have on the properties of an individual vortex
line. In particular, we have determined the free energy
of a vortex line within the Gaussian approximation. The
fluctuation corrections to the line energy can be split into
a term arising from the nontrivial vortex structure (self-
fluctuations) and a second term arising from the trans-
lational degrees of freedom. The first term usually is the
dominant one and leads to a downward renormalization
of the line energy. The second term corresponds to the

entropic contribution to the free energy which drives the
BKT transition in 2D. Within the Gaussian approxima-
tion the renormalized line energy of the vortex extrapo-
lates to zero at T~ & To, where To is the bare mean-field
transition temperature. Close to the transition fluctua-
tions going beyond the Gaussian approximation lead to
a further downward renormalization of e& such that the
exact line energy vanishes at the fluctuation-corrected
transition temperature T 0 & T~ & To. The shift in the
transition temperature has been determined within the
Hartree approximation and is larger than the width of
the critical regime, To —T,o ) 7~TO. The difFerence be-
tween the extrapolated and the actual zero of the lower
critical field line has been estimated to be T~ —T 0 3
K for the strongly layered BSCCO compound in good
agreement with the experimental findings of Brawner
et al. " For the case of intermediate and strong cou-
pling between the layers (d ( (,) the lower critical field
line only undergoes a constant shift and no pronounced
efFects are expected due to the fluctuations. Again
this result agrees with the experimental findings on a
Y-Ba-Cu-0 superconductor. The vanishing of the line
energy below the transition allows for the appearance of
a gas of confined (r + A) vortex-antivortex pairs within
the temperature region TBK~ & T & T . The presence
of this gas of elementary loops prohibits the spontaneous
creation of vortex lines. At the 3D ordering transition
T, the elementary pairs dissociate and long-range order
is lost.
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