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The fractional-statistics gas with a spin degree of freedom is investigated using the random-phase-
approximation procedure of Dai et al. [Phys. Rev. B 46, 5642 (1992)]. The results are used to evaluate
the stability of the superfluid state of the dilute holon system in the context of the commensurate flux
phase. Spin-wave instabilities induced by gauge interactions are found to occur at extremely low density,
implying that superfluidity of the fractional-statistics gas is correct in the presence of a spin degree of
freedom. Spin-wave and density-wave collective excitations are also studied in presence of Coulomb
repulsion between holons. The resulting instabilities at small density are estimated to occur in a density
range of 0.01—0.1 holons per lattice site.

I. INTRODUCTION

The quantum mechanics of the fractional-statistics gas
has been a great focus of investigation' following the
suggestion ' that the case of semions ( v =

—,
'

) may be
relevant to the description of the spinless charged excita-
tions (holons) of high-T, superconductors. The
superAuid properties of the free spinless semion gas have
been demonstrated using the Hartree-Fock and random
phase (RPA) approximations by Laughlin and co-
workers. Based on the commensurate Aux state
description of the t-J model, it has been recently ar-
gued' that holons, in addition to fractional statistics,
also exhibit a twofold degree of freedom originating from
the valley degeneracy of their band structure. "' This
valley degeneracy is due to the magnetic structure of the
translation group of holons. This degree of freedom can
be thought as an "isospin. " In the small doping limit,
this isospin becomes a good quantum number and the
holon system can be described as an unpolarized system
of semions with isospin, in which both isospin states are
equally occupied.

Zou, Levy, and Laughlin' pointed out that the physi-
cal behavior of the semion gas may be changed by the
presence of this isospin degree of freedom. In the
Hartree-Pock treatment, this difficulty is associated with
the fact that the relative angular momentum of a pair of
semions is quantized by fractional statistics and leads to
an arbitrarily large kinetic energy when the particles
come close to each other. This does not affect particles
with identical isospin, which are constrained by the struc-
ture of the Hartree-Fock ground state to stay well apart
from each other. However, particles with opposite iso-
spin are not subject to this correlation and may reach the
closest approach which, in the case of holons, is given by
the lattice spacing. Thus, the contributions to kinetic en-
ergy originating from the relative angular momentum of

particles with opposite isospin are characterized by the
length scale of the lattice spacing while those originating
from the relative angular momentum of particles with
identical isospin are characterized by the mean interho-
lon distance. In the small doping limit, the former con-
tributions are expected to dominate and to destabilize the
Hartree-Fock ground state, which provides the basis for
discussing the superAuid properties of the semion system.

It is legitimate to address the question of the strength
of this isospin-induced instability at small doping and to
ask if this instability can invalidate predictions of
superAuidity at holon densities relevant to the experimen-
tal observation of high-temperature superconductivity.
In this paper, we study this instability at zero tempera-
ture using the Hartree-Fock and RPA procedures for a
simple model of free semions with an isospin in the con-
tinuous space. In this model, the finite lattice spacing of
the real system is simulated by a short-range cutoff of the
fractional statistics interaction. We find the instability of
the isospin-unpolarized system to occur at a density
smaller than 2X10 holons per lattice site, well below
the doping range 0.15—0.2 of interest for the experi-
ment. ' This instability is characterized by the softening
of a collective mode of the unpolarized system which is
identified as an isospin density fluctuation. ' This soften-
ing can be regarded as an indication of "isospin antiferro-
magnetic" long-range order, leading to destruction of
superAuidity. The low value of the critical density is due
to the logarithmic dependence of the roton minimum as-
sociated with the isospin density wave as a function of the
holon density. Because of the logarithmic dependence of
its strength, this instability only weakly affects the speed
of sound of the superAuid in the density range of interest
for the experiment. This leads to the conclusion that the
isospin-induced instability has no physical relevance in
the case of free semions.

We also study these instabilities of the semion system
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at small density in the presence of the Coulomb repulsion
between charged holons. We first study the instability to-
ward Wigner crystallization of the iso spin-polarized
semion system and of the spinless boson system and find
this instability to occur at a significantly higher density
for semions than for bosons. We then study the instabili-
ty of the unpolarized semion system and find this instabil-
ity to be of isospin-wave type and to occur at a relatively
large density. Based on these results, we roughly esti-
rnate the critical density of the superAuid holon system to
lay in the range of 10 ' —10 holons per lattice site and
speculate on the relevance of this instability to the disap-
pearance of high-temperature superconductivity at small
doping.

II. FRACTIONAL-STATISTICS HAMILTONIAN

Let us begin the discussion by restating the problem of
free semions with an isospin in the Fermi representation.
Following Ref. 8, we represent the ideal fractional statis-
tics gas by a system of fermions with an isospin described
by the Hamiltonian

1 N

IP;+ A, I

2

where v= —,
' for semions and where

N
1

N r. —r.
A;=g A; =—gzX

In this system each fermion i interacts with all the others
through vector potentials A;J forj Wi, which are generat-
ed by solenoids attached to the ferrnions. In writing Eqs.
(1) and (2), we have used dimensionless units in which the
effective cyclotron energy

Ado — p
Pll

and the corresponding magnetic length
1/2

ao=

are confined on a lattice and in which no site can be dou-
bly occupied, leading to a minimal interholon distance
given by the lattice spacing. The failure of the continu-
ous model is due to the fact that it does not take into ac-
count the uncertainty in the position of the holon which
results from its confinement into a given degenerate val-
ley' ' in momentum space, or in other words, from the
definition of the isospin. This uncertainty is of the order
of the lattice spacing. If we insist on treating the holon
system as an ideal gas of semions in the continuous space,
this uncertainty in the holon position may be taken into
account by introducing an effective cutoff in the vector
potential A; at an interholon distance Ir; —r

I
smaller

than the lattice spacing. We shall do this using a Hamil-
tonian of the form

N
W= —g IP;+A;I',

2;=1
where

N 1 N —a~z. —z.
~

/2
A, =g A;. =—QzX 2(1—e ' ' ), (6)

and a is a parameter. This substitution effectively gives a
finite size to the Aux tubes attached to each ferrnion. It is
appropriate for studying the isospin-induced instability
but not for obtaining accurate results for the system of
semions on the lattice.

The instability associated with the isospin results from
the dominance of the "potential" energy 3; in the limit
a~ ~ of dilute systems, where the cutoff range becomes
vanishingly small. This is reminiscent of the Coulomb
gas of electrons which, at small density, tends to mini-
mize its potential energy to the detriment of kinetic ener-

gy, leading to instabilities toward fu11 spin-polarization
and Wigner crystallization. ' '

The cutoff at short interparticle distance can also be in-

troduced by using the effective Hamiltonian

N

&,~= lim —g IP;+ A;I
a~oo 2

are set to unity. Here, p and m * denote the holon densi-
ty and the effective mass, respectively.

The problem associated with the isospin is first mani-
fested by the divergence of the Hartree-Fock energy of
the unpolarized state. ' This divergence is due to the
term

I A;J I
appearing in the Hamiltonian &, which can

be regarded as a short-range repulsion. This repulsion
affects particles i and j with identical spin minimally, be-
cause the Hartree-Fock wave function vanishes at parti-
cle coincidence. However, within the Hartree-Fock ap-
proximation particles with opposite spin are not correlat-
ed and can come arbitrarily close to each other, leading
to an infinite contribution for the mean-fie1d interaction
energy I A; I

.
Clearly, this divergence at short interparticle distance

is an artifact of the model of semions in the continuous
space. Indeed, it cannot apply to the case of interest
given by the commensurate Aux state, ' in which holons

where A; is given by Eq. (6) as a function of a and where
o.' is now the parameter rejecting the holon doping. In
this Hamiltonian, the divergent contribution to the
Hartree-Fock energy due to the interaction I A;iI be-
tween particles with opposite isospin is canceled by an at-
tractive delta-function potential. This effective Hamil-
tonian leads to simple analytical results and is repeatedly
used in our study of the isospin-induced instability.

III. POLARIZED
VERSUS UNPOLARIZED STATE

Keeping in mind its analogy with the Coulomb gas, we
first study the instability of the semion system toward full
polarization by comparing the expectation energy of the
polarized and unpolarized Hartree-Fock ground states.
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Both states are constructed using a Slater determinant of
the form

rx ax)

Note the logarithmic divergence at large values of n of
the Hartree-Pock energy of the unpolarized state. Now,
using the effective Hamiltonian &,s of Eq. (7) instead of
%, we find

N 32
(17)

P;(r, cr)= '

in the case of the polarized state and by

Pot;(r, cr), i =1,. . . ,N/2
P;(r, o )= '

0 . zz2(r o') i =1+N/2 ~ . ~ N
(10)

where o; = 1, $ denotes the isospin of particle i and where
the single-particle wave functions P; (r, cr ) are given by

Pot, (r, o ), i =1,. . . ,N/2

~i2(r, o ), i =1+N/2, . . .,N
(9)

&~,s& t~ 1

16
[5+ ln(a'/2)] .

These energies are equivalent to those of Eqs. (15) and
(16) when a' =a and when a~ ~ and essentially lead to
identical results for the critical density at which the ex-
pected energies of polarized and unpolarized states cross
over. We find a'„„„„,=2e ' . Let us now take a' to be

in the case of the unpolarized state, where a' = 1/~5, (19)

(12)

and

b = —2
z
2 Bg

(13)

and where z =x +iy.
Using the Hamiltonian of Eq. (5), we evaluate the ex-

pectation energy

(a iitie)
&cia&

(14)

by following the procedure of Ref. 5. %'e respectively ob-
tain for the polarized and unpolarized states

27 2a +8a + 17m + 18n + 11m +4a+ 1+
32 16(a+ 1)

n 8++3
16(a+2) 32(2a+ 1)

(&1')n (bt)k —
ized /4

„I,(r, o )=5
Q2nn! Q2"i, t V'2~

are orbitals with isospin polarization cr'= 1', J, expressed
as a function of the Landau level- and angular
momentum-raising operators

where 5 is the average number of holons per site. This is
equivalent to taking a'=(aolbo), where ao is given by
Eq. (4) and bo is the lattice spacing. We then find that
the crossover occurs at a doping of 5=1.2X10 . We
conclude from this that this isospin polarization is ir-
relevant in the doping range of interest (5—=0.1).

The speed of sound of the superAuid can be estimated
from the compressibility corresponding to the energy of
the unpolarized state. The compressibility and the speed
of sound v, diverge very slowly in the limit of the dilute
system as a consequence of the logarithmic divergence of
the energy. For example, at densities corresponding to
0.3 and 0.03 holons per lattice site we respectively obtain
U, =0.92 and 0.94 in units of m, ao.

It is known from the study' ' of the electron gas that
the introduction of correlation between particles with op-
posite spin significantly reduces the energy of the unpo-
larized state and thus lowers the critical density at which
spin polarization occurs. Since this correlation is not tak-
en into account in the present work, our result should be
regarded as an upper bound for the critical density of the
instability toward isospin polarization.

IV. COLLECTIVE MODE SPECTRUM

A. RPA procedure

I (2a+ 1)(a+2)
2(a+ 1)

and

1 a(3a+4) 1 (a+2) (2a+1)
N 2 16(a+1)~ 16 (2a+2)2

(16)
I

In this section, we study the collective modes of the un-
polarized semion system using the RPA procedure of
Ref. 8. We first present the RPA treatment of the semion
system in the presence of a spin degree of freedom s =

—,'.
We then introduce a short-range cuto6'in the vector po-
tential in order to remove the divergence associated with
the spin.

The analysis of collective modes of the semion gas in-
volves the evaluation of the four-point Green's function

&(r&ai, r4a4lr2&2r3aq)= Jdte—' '(OiT[g (r„t)g (r4, t)p (rz, O)f (r~, O)]i0) (20)
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describing the propagation of a particle-hole pair, where
cr = g, J, denotes the spin variable and where

1 1&"""(r)r4lr2r3) = g —5, ,5, ,——5, ,5...,
crl ' ' ' 674

(r 1)—e(i/A)Jvtq (r)e
—(i/R)Jvt (21) X V(r, o „r4cr41r2tT„r3cr 3)

(23)
is the Heisenberg version of the operator g (r).

Due to the fact that the total spin is conserved, Eq. (20)
can be diagonalized in its spin variables to yield the
singlet or triplet Green's function

19"""'(r,r4I r2r3) g 5 5
o1. . o4

describing the propagation of a particle-hole pair in a
singlet state with fixed total spin S =0 or in a triplet state
with fixed total spin S = 1.

It is convenient to express these four-point Green's
functions in terms of their matrix elements

( IVI„" ) = Jd r(d rzd r3d r4ttt "(r„r4)

or

x v(r, o l r4o 4lr2cTQ r3cT3) (22) x 9(1 l r4lr2 r3)Q I3(r2 r3)

on the basis of magnetoexciton wave functions

(24)

( —1)"@„"&(r„r2)=, (2B, —z(/2)"(2B, —z2 /2)" exp[ —
—,'(lzl

I +Izzl +Iz&l )]exp[ —,'(z(z2+z)z)3 —z2z)3)],I. 2n2"+" n!n'!

(25)

where z& is given by z&=i (q +iq ) as a function of the
momentum q of the particle-hole pair. The momentum q
is conserved. The singlet and triplet collective mode
spectra are evaluated for given momentum q as ihe set of
values for frequency co leading to a singular matrix (24)
for the four-point Green's function, i.e.,

the density of particles with spin down oscillate in oppo-
site phase.

The four-point Green's function of the unpolarized
semion system can be evaluated as a sum of Hartree, ex-
change, ladder, and RPA graphs using the procedure of
Ref. 8. Using length and energy units of Eqs. (3) and (4),
we obtain

cpinglet

I
jr(piet =0

(26)

and

cpinglet
20

(V )
—l y &si gnlet col(ii)

0
i=1

(27)

The collective modes for S=0 correspond to density
waves in which density oscillations occur in phase for
both spin species while those for S = 1 correspond to spin
waves in which the density of particles with spin up and

cytriplet

where Vo is given by

20

( p )
—1 ~ triplet~(i)

0 ~~a
i=1

(28)

[A'co —(e„e„)+i1)] '—
, n'=O, n )0

IV, I„")=5.p „5 „[ R~ (e„—e„—) +ig. —] ', n =o,n')o
0, otherwise,

(29)

where

12

e„=g b, e(„" .
i =1

(30)

(5)
n 4 (31)

The coefficients a, and b, are listed in Tables I and II.
The quantities e'„' and lV" are defined by Eqs.
(3.4)—(3.15) of Ref. 5 and Eqs. (7.9)—(7.28) of Ref. 8, and
are given explicitly in Appendixes A, D, and E of Ref. 8.
Typical examples are

which corresponds to Eq. (A4) of Ref. 5 and

('. Im("I'„)=5.,
—

~z ~'/2
X e g (2m /I z& I

1), (32)

which corresponds to Eq. (D8) of Ref. 8.
Note that Appendixes A, D, and E of Ref. 8, where

these quantities are listed, refer to a gas of bosons (v=o)
rather than a gas of semions. This is because the in-
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TABLE I. Coefficients a; multiplying quantities 'N", as
defined by Eqs. (27) and (28).

1

2
3

4

6
7
8

9
10

& single&
l a &riplet

l

11
12

13
14
15

16
17

18

19
20

a single&
l a triplet

l

1

4
1

4
1

4
1

4
1

4
1

4

tegrals for the semion gas with isospin are the same as
those for the bose gas, except for a change in the length
and energy units and the spin multiplicity factor. These
effects are accounted for by the factors a, and b; in Tables
I and II. The singlet and triplet coefficients are different
because the RPA graphs are zero for the triplet, due to
spin conservation at the vertex. The coefficient a, or b, is
essentially the spin multiplicity of the corresponding
graph, evaluated with the usual Feynman rules, times a
factor —,

' for each occurrence of 3,. in the relevant in-
tegral.

As in the Hartree-Fock calculation, we now encounter
a short-wavelength divergence associated with the spin
degree of freedom. The formally divergent integral

—r /2
I2=e q lim J rdr

2 2 (33)
r +g

which appears with opposite signs in the ladder diagram
'N' ' and in the sum of RPA diagrams
'N' '+'N" '+'N" ', no longer cancels as it did in the
case of spinless semions. Like for the isospin polariza-
tion discussed in Sec. III, this divergence is an artifact of
the continuum that may be rectified by substituting the
effective Hamiltonian &,s. of Eq. (7) for gf. This modifies
I2 to

B. Results

In Fig. 1, we show the dispersion relation of the collec-
tive modes associated with the triplet (dashed lines) and
with the singlet (full lines) for values of the parameter
a' = 1, 3 X 10, and 1.65 X 10, which respectively corre-
spond to 0.32, 1X10, and 1.9X10 holons per lattice
site. The softening of the roton in the triplet channel for
the last value of parameter o.' corresponds to an instabili-
ty toward an isospin density wave. Note that the wave-
length A, =2m/q associated with the roton minimum is
twice the mean interparticle distance.

The density at which this "antiferromagnetic" instabil-
ity occurs is nearly identical to the critical density found
in Sec. III for the "ferromagnetic" instability. Thus, the
two calculations corroborate each other. It often occurs
in interacting Fermi systems, which are similar, that
competing instabilities become important at roughly the
same density. ' While the phase diagram is difficult to
calculate reliably near this density, the existence of an in-
stability of some kind is clear. As remarked in Sec. III, it
is important for the anyon description of high-
temperature superconductivity that this density is low.

The energy of the triplet collective mode remains finite
at large wavelength, as occurs with the collective mode
energy of quantum Hall states. ' This is due to the fact
that the RPA diagrams, which have been found to be re-
sponsible for the linear dispersion relation of compres-
sional sound in this system at large wavelength, are ab-
sent in the triplet channel. It is interesting to note the ab-
sence of a roton in the singlet channel at any density.
This is similar to the well-known behavior of Fermi sys-
tems with short-range repulsions, in which the instability
toward antiferromagnetism is much stronger than the in-
stability toward Wigner crystallization. '

V. SPIRAL SPIN DENSITY WAVE

We present here the relation between the collective
mode obtained within the RPA procedure and the
description' ' of a spiral spin density wave. This al 3ws
us to put our work in perspective with previous stud-

—
q /2

2
(34)

~ ~ I I
f

~ I I I
f

I I I I
i

I I I ~
/

I I ~ ~
l

~ I ~ I2

and has no other effect.

TABLE II. Coefficients b; multiplying quantities e'„', as
defined by Eq. (30).

b;

7

8

9
10
11
12

0.5

0.5 1.5
qao

2.5

FIG. 1. Dispersion relations of the triplet (dashed lines) and
singlet (full lines) collective modes of the isospin-unpolarized
semion system for values of the parameter (A) a'=1, (B)
a' =3 X 10~, and ( C) a' = 1.65 X 104.



48 FRACTIONAL-STATISTICS GAS WITH SPIN AND. . . 10 387

ies' ' concerning the antiferromagnetic instability of the Fermi gas.
Let us consider a Slater determinant of the form of Eq. (8) constructed using the orbitals

(t, (r, (T)= '

(zpb —zp b)

2
(t)(~), (r, o.)+e

Q, )vn{r, o )+e

Q(
't

)n

P(~), ( r, cr ),
2"n!

(zp b —zpb r)

2 ( —1)"(c())*(a )"
p(~) iv~2(r o ) i =1+%/2

n=1 2"n!

(35)

where the operators a and b are defined as in Eqs. (12) and (13), zp=i(q +iq ), and where the c's are variational pa-
rameters.

This state is a spin density wave of momentum q in which the spin spirals in the plane perpendicular to its axis of
quantization, as indicated by the expectation value of the spin at given position r. This expectation value is given by

&1(t (r)g (r)&, = 5 +5,6,ae ' ''"+6,8,g*e ' 'p "p'" +0'{c„"'), (36)

where z =x +iy and

0 n+ n en
n P QZP

&2"n!
(37)

This state is formally similar to the wave function
describing the spin density-wave instability of the
Coulomb gas. ' It may be viewed as a coherent superpo-
sition of triplet particle-hole pairs excited out of the
Hartree-Fock vacuum described by Eqs. (8) and (10).

The relation between this wave function and the per-
turbative calculation of previous section can be estab-
lished by evaluating its exPectation energy &&,(r&p)l. us-
ing the efFective Hamiltonian of Eq. (7). Expanding this
expectation energy in powers of c, and c0 and retaining
only linear and quadratic terms, we find

where & is defined as in Eq. (1) and where r, is a dimen-
sionless parameter reAecting the mean inter-particle dis-
tance. The latter is given by

pl e 1

Efi2 Q~p
' (40)

22

( casing)et)
—1

( cy )
—1 ~ sing)et~(i)

0 (41)

and

where c. is the dielectric constant of the medium and
where m * is the effective mass of the holon.

VVe first consider the isospin-unpolarized semion sys-
tem. In the presence of Coulomb interactions, the four-
point Green's function V is now given by

22

{cpriplet
)
—1 {cy )

—1 ~ tripletcli2(i)
0 ~~a, 7 (42)

m' e m' riplet —1 n'1

mm'nn'

Xc„"+0 (c„"), (38)

VI. COULOMB INTERACTION

where 2'"P"' is defined as in Eq. (28). Thus 9'" "' corre-
sponds exactly to a linear response kernel in the e's. It
follows that the eigenvector of 9'" "' that becomes singu-
lar at the instability point corresponds to a specific wave
function of this form.

where coefficients a2, and a22 are listed in Table III and
where VQ is given by Eq. {29)with

13

e„=y b, e'„',
i=1

(43)

where b, 3=1. The additional diagrams e" ', 'lV( ", and
'N( ' appearing in Eqs. (41)—(43) are

d r)d r2
~

II„(rl,r2)IIQ( 2 r, ),(13) 2~ 2 2

I. rl —r2

A. RPA procedure

In units of the effective cyclotron energy Ac@, and of
the effective magnetic length a0, the Hamiltonian ap-
propriate for a system of particles with charge e obeying
fractional statistics is given by

~%V'2' ~" &= d r d r 1' a(r, r )m n 1 2 ma 1& 1
r2

X g"„p(r2, r2),

&
m'~qg(22)~n'& — d2& d2r 1(t 'a(r r )m n 1 2 ma I& 2rl r2

(44)

&„t=&+—g —r,p gI, (39)2,~. /r; I .
)

. sample /r rj.
/

X 1()„"p(r„r2),

where II„ is the projector onto the nth Landau level
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given by TABLE III. Coefficients a; multiplying quantities 'N", as
defined by Eqs. (41) and (42).

= 1II„(r„rz)= I.„
2m

Iz, —z, I'

2
singlet
1 a triplet singlet

t
triplet

X exp[ —
—,'(lz,

l
+ lz2 )+ —,'z*, z2] (45)

and where L„ is the nth Laguerre polynomial. Explicit
expressions for these quantities are listed in the Appen-
dix. In order to introduce a cutoff at short interparticle
distance, we replace the bare Hamiltonian & in Eq. (39)
by the efFective Hamiltonian &dr of Eq. (7) with o.'=2.

We then consider the isospin-polarized semion system.

For this we have

22

(V) '—= (V )
' —y It9"

with

(46)

[A'co —(e„e„.)+—i9)] ', n'=0, 1, n ) 1

l&ol"„)=8 g6 „~ „'[
—A'co —(e„e„,—)+i9)] ', n =0, 1, n') 1

0, otherwise,

(47)

where

13
(,i)

Eq (48)

Please note that the quantities e'„" e'„' ' and 'N"' 'N' ' of Eqs. (47) and (48) refer now to an unperturbed polar-
ized ground state with Landau levels n =0 and 1 occupied. These quantities are now given by Appendixes B, F, and 6
of Ref. 8.

B. Results

(&,~) „, 11
16 2

29
32

(49)

and

(~,s) tg

N
1 1

16
[5+ ln(a'/2) ]——

2 2

1/2

r, . (50)

Taking a' =2 as discussed in the previous section, we find
the critical r, at which the expected energies of the polar-
ized and unpolarized states cross over to be
~crossover —

(
19 )Q2/~ or 2 53S 6

Now, in Fig. 2 we show the dispersion relations of the
collective modes associated with the triplet (dashed) and
singlet (solid) channels of the isospin-unpolarized system
of semions with Coulomb interaction. Note the similari-
ty with Fig. 1. The softening of the triplet mode at
r, =2.36 corresponds to the onset of antiferromagnetic
long-range order. The singlet mode disperses like the
square root of q at large wavelength, as appropriate for
the two-dimensional plasmon. Again, we see no
significant roton formation in the singlet channel. This is
due to the fact that, in absence of correlation between
particles with opposite isospin in the unperturbed
Hartree-Fock ground state, the short-range part of the

Let us first consider the magnetic instabilities of
semions with an isospin. Following Eqs. (17) and (18), we
have for the energies of the polarized and unpolarized
states in the presence of Coulomb repulsion
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FIG. 2. Dispersion relations of the triplet (dashed lines) and
singlet (full lines) collective modes of the isospin-unpolarized
system of semions with Coulomb interaction for parameter
values (A) r, =1.33, (B) r, =1.89, and (C) r, =2.36.

Coulomb repulsion favors spin-wave instabilities to the
detriment of density-wave instabilities. '

We now consider the instabilities toward Wigner crys-
tallization of the isospin-polarized semion system. In
Fig. 3, we show the collective mode frequency for this
system in presence of Coulomb repulsion. The softening
of the collective mode at r, =9.95 corresponds to Wigner
crystallization. Note that the wavelength associated with
the roton minimum now equals the mean interparticle
distance, as opposed to twice this distance, as occurs in
Figs. 1 and 2.
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FIG. 3. Dispersion relation for the collective mode of the
isospin-polarized semion system with Coulomb interaction for
parameter values (A) r, =0, (B) r, =7.35, and (C) r, =9.95.

We have tested the reliability of this calculation by us-
ing the same formalism to study the bose Coulomb gas.
We find the instability in this system to occur at r, =40,
which agrees well with the Green's function Monte Carlo
estimate r, =37+5 (Ref. 17) for fermions

We note that our Hartree-Fock and RPA estimates
r, =2.53 and 2.36 for the magnetic instabilities of the
semion system are comparable in size to the Hartree-
Fock result r, =2.2 we find for the ferromagnetic insta-
bility of the 2D electron gas. The Hartree-Fock approxi-
mation may lead to underestimate the critical value of r,
at which magnetic instabilities occur. This is verified to
be true in the case of the electron gas, for which magnetic
and Wigner instabilities are found' to occur at compara-
ble densities, characterized by r, -=37. In light of the
analogy with the electron gas, our result r, =-2. 3 for the
magnetic instabilities of the semion system should there-
fore be regarded as a lower-bound for the critical value of
r, at which the unpolarized Quid becomes unstable.
Based on the same analogy, we expect our result r, -=10

for Wigner instabilities to be relevant to the unpolarized
semion system and to provide an upper bound for the
critical value of r, at which the unpolarized Quid becomes
unstable.

In the context of the commensurate Aux state descrip-
tion of the t-J model, such instabilities lead to the de-
struction of the superAuid phase at low density. It is in-
teresting to evaluate the doping at which these instabili-
ties should occur in real materials. The number of holons
per lattice site is given as a function of r, by

2
-1

b=7T p 2 r~
cA

(51)

O

where bp denotes the bond length. Using bp-4 A and
c-6 for the case of La2Cu04 and approximating the
holon mass by the mass of the bare electron, we obtain a
doping range of 0.006—0.11 holons per lattice site. Note
that this doping range includes the domain in which
La2Cu04 loses superconductivity and exhibits a spin-
glass behavior. ' This suggests that, within the com-
mensurate Aux state description of the t-J model, the in-
stabilities of the system of holons with Coulomb repul-
sion may account for the disappearance of superAuidity
at small doping.
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APPENDIX

The contributions e(„' ' defined in Eq. (44) are given by

e(„)3)= r, &~/2 ~—(i —1/2)

i =1 I
(A1)

The contributions 'N' "and "K' ' defined in Eq. (44) are given by

(0 ~~(21)~0 ) (0 ~~(21)~n) —b/

(o (~(2))[) ) (o ['}g(z))( ) p. ce b(ii—
(' ['N' "[„)=(' ['N' "(o)=r, ce (b —m)/q,
(' ('11'' "[' ) = (' [~ ' [")=r ce (b —m)(b —n)/q

(A2)
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mtnt
Iz pl

and where the function f (m, n) is given by

( I'N' 'I„)= —& /2r, ce f (m, n), ( I'N' 'Io) = V—rr/2r, ce f (O, m +n),
I'N' 'I„' ) = &—rr/2r, ce [bf (m +1,n) n—f (m, n —1)],

( I%" 'I", ) = &—rr/2r, ce [bf (1,m +n) n—f (O, m +n —1)],
(' I'N' 'I„)= v'—rr/2r, ce [bf (m, n +1)—mf (m —1,n)],
(' I'N' 'Io) = Vr—r/2r, ce [bf (1,m +n) —mf (O, m +n —1)],
(' IlV' 'I„') = &—n/2r. ,ce "[b f (m +1,n +1)—(m +n)bf (m, n)+mnf (m —1,n —1)],
(' I'N' 'I", ) = &~—/2r, ce [b f (2, m +n) (—m +n)bf (1,m +n —1)+mnf (O, m +n —2)],

where b =q /2, r, is defined as in Eq. (39), coefficients c are given by
1/2 ' n —m —n'+m'

bm+n —m' —n' —Z
13

(A3)

(A4)

n. m +n —2i

i! (m —i)! (n i)!—
min(m, n) b

—if (m, n)=
b "g,"=+,'(j —1/2)

2 k~o (m +n i +—k)!k! (A5)
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