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Heisenberg antiferromagnet with a low concentration of static defects
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The static and dynamic response associated with a low concentration x of static defects in a
Heisenberg antiferromagnet at zero temperature is analyzed within linearized spin-wave theory via
a boson formalism involving a non-Hermitian potential. We obtain the dispersion relation for long-
wavelength spin waves in the form cu(q) = c(x)q+ ip(x)q . Our results for c(x) agree with previous
work and, in particular, give c(x) = c(0)[1 —ax + O(x )], where the coefficient a, which can be
related to the helicity modulus and the uniform perpendicular susceptibility, diverges in the limit
d —+ 2, where d is the spatial dimensionality. One major result is that 7 = d —1 for defects whose
spin S' is different from that (S) of the host lattice and r = d + 1 when S' = S. Thus d = 2

(which is the case for the copper oxide antiferromagnets) is the lower critical dimension at which
infrared divergences affect the dynamic response due to vacancies (S' = 0). To elucidate our results
we consider the way the antiferromagnetic symmetry is broken when defects occur unequally on the
two sublattices, and our results are consistent with previous general hydrodynamic arguments. We
give detailed expressions for the actual spin susceptibility in terms of the boson response function.
We also consider how defects aR'ect the zero-point contribution to magnetization and density of
states.

I. INTRODUCTION

The problem of impurities in a magnetic insulator was
at the forefront of condensed matter research some 20
years ago. This problem has recently been reexamined
in response to the interest in the magnetic properties
of systems like lanthanum cuprate, which, when appro-
priately doped, give rise to high-temperature supercon-
ductors. Here our main objective is to study the effect
of defects on a Heisenberg antiferromagnet at zero tem-
perature. By a defect we mean the perturbation to the
Hamiltonian caused by the introduction of an impurity
which has a spin S' which may differ from that, S, of the
host and whose coupling to the host, J', may also differ
from that, J, between nearest neighbors in the pure host
system. The perturbation associated with such a defect
is limited to the impurity site and its shell of nearest
neighbors.

The method to obtain the exact solution for a sin-
gle defect of finite spatial extent was developeds in the
late 1960s and was subsequently applied in great de-
tail to treat the case of a low concentration of defects
in a ferromagnet. 4' In some early works the single-
defect problem was expressed in terms of boson oper-
ators by using the Holstein-Primakoff transformation.
Although correct answers were obtained by this method,
later work using the equations of motion implied, as
we shall see, that a better boson potential, patterned
after the Dyson-Maleev potential for spin —wave inter-
actions, displays explicitly the fact that the scattering

and, as we shall see, the scattering potential at long wave-
length is of order v(q, q') qs, which leads to the imagi-
nary part of the energy, or the damping rate being given
by3 —6,8,16

I'(q; x)/(2JS) = Px(aq) "+2, (l.lb)

where n and P are constants. (Both here and for the
antiferromagnet we trivially extend previous results to
arbitrary spatial dimension. ) When applied to the va-
cancy case, the result in Eq. (l.la) was shown to be
closely related to that for the randomly diluted resis-
tor network. ' In fact, for the generic defect problem,

cross section vanishes in the long —wavelength limit. The
only slightly controversial point in this early work con-
cerned the best way to project out the impurity site for
the case of a vacancy. When the single —defect solution
was extended to treat higher defect concentrations of va-
cant bonds using an approximation equivalent to the
coherent potential approximation~s ~4 (CPA), difficulties
were encountered~2 due to spurious resonances on the
vacancy sites. These difBculties were overcome 5 by in-
troduction of a hard core potential on the impurity site,
the effect of which was to move the spurious resonance
to infinite energy.

To summarize these results, for a low concentration, x,
of defects in a ferromagnet on a d—dimensional hypercu-
bic lattice, the spin —wave energies are given by

E(q;x) = 2JSa~q [1 —ax+ 0(x )j = D(x)a q (l.la)
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at long wavelength one may write s (in appropriate
units)

basis of spin-wave hydrodynamics:

c(*) = v'A(x)/X~(x) (1.6)
Ax

E(q; x) q = D(x)q
M(x)

(1.2)

where M(x) is the magnetization (magnetic moment per
unit volume) and A(x) is the helicity modulus. Obvi-
ously, for small x we have

M(x) = M(0) [1+ (xS'/S) —x] .

The helicity modulus, A(x), which measures the stiffness
of the system to twisting the magnetic moment, is de-
termined within linearized spin-wave theory by a set of
equations which are isomorphic to those for the bulk con-
ductivity EC'~, of an analogous resistor network in
which the exchange interaction, Jg on the bond 6 is re-
placed by a conductance, op = JpSiS2, where Si and S2
are the spins which are connected by the bond b. Thus
if we write

Z~"l (x) = Z~' l (x = 0) [1 —n'x + O(x )],

E(q; x) = zJSaq [1 —px + O(x )]—:c(x)q . (1.5)

The later work of Kirkpatrick and Harris2i (KH), using
the Koster-Slater3 approach, led to a result of the form of
Eq. (1.5) but with a renormalized value of the constant
p which is consistent with that one would predict on the

then for the case of vacancy defects the coefficients of
Eqs. (1.1a) and (1.4) are related by n = n' —1. The
most complete analysis of the effect of defects on the spin-
wave spectrum of a ferromagnet was given by Izyumov
and Jones. s The behavior of D(x) near the percolation
threshold has been extensively studied by many analytic
and numerical techniques. 3 Knowing the dependence of
the damping on wave vector, Stinchcombe and Cristou~4
developed a scaling theory to describe the singular damp-
ing of spin waves in the vicinity of the percolation thresh-
old.

The situation for defects in the antiferromagnetic
Heisenberg (AFH) model is similar, but as we shall see,
the results are not quite as definitive. In this case the
properties of defects were of interest in view of the sugges-
tions of Marshall and of Lovesey that the diffuse scat-
tering due to zero-point motion should be observable in
mixed magnetic crystals. At the same time Tonegawa
used a method equivalent to that of Koster and Slater
to give a detailed study, within linear spin —wave theory,
of possible spin —wave bound states due to the presence
of a single defect. Subsequently, the distribution of zero—
point spin deviation near an impurity was studied in some
detail by Solyom and Bergov. Edwards and Jones 9

(EJ) used the spin-wave equations of motion to discuss
the effect of vacancies on the elementary excitation spec-
trum, but instead of resumming perturbation theory, as
in the Koster-Slater approach, they worked only up to
second order in the defect perturbation. Nevertheless, in
principle, they should have obtained qualitatively correct
results, as we will discuss later. They found that

r(&; x) - x(aq)"+'+ O(x') . (1 7)

Later, in the course of analytic and numerical work
to systems of experimental relevance, some results in con-
H.ict with Eq. (1.7) were found. For instance, it was found
that in two dimensions the damping rate that became
independent of q was the q —+ 0 limit and was thus not
negligible in comparison to E(q;x) in this limit. Also
a low-frequency divergence in the "constant" p in Eq.
(1.5) was identified. (This divergence was implied by the
results of E3, but they did not specifically consider ap-
plying their result to the case d = 2.) Also argumentsso
were given by Harris and Kirkpatrick (HK) that the per-
pendicular susceptibility was anomalous in the presence
of dilution, due to the creation of local regions which
had a net ferromagnetic moment. In fact, it is intuitively
quite clear that vacancies for the antiferromagnet give
rise to local Huctuating ferromagnetic regions which in
turn amount to creation of a local gap as one would ex-
pect in a ferrimagnet having two sublattices of difFerent
spin. In the ferromagnet, there is no question of a lo-
cal gap, as dilution does not change the symmetry, even
locally. In the antiferromagnet, the symmetry between
sublattices is only recovered on average: locally one has
a ferrimagnet with one acoustic mode and one optical
mode at long wavelength. Prom the work of HK it is
therefore clear that the lower critical dimension for the
zero-temperature dynamics of an antiferromagnet is two,
An explicit result for the damping due to vacancies was
given by HK, but the details of the calculation were per-
haps too brief. In fact, earlier work for the case of a
vacancy defect also disagreed with the result of EJ (Ref.
29) in Eq. (1.7), but this work was not published. Fur-
thermore, since the CPA, as used by Holcombe, is exact
in the low concentration limit, it implicitly contains the
correct [i.e. , Koster-Slater (Ref. 3)] solution for a sin-
gle vacancy and therefore is also expected to disagree
with Eq. (1.7). However since no analytic results for low
concentration were given in Ref. 32, one cannot use this
work to obtain the elementary excitation spectrum in the
long-wavelength limit. Thus one is led to expect that the
EJ result of Eq. (1.7) is incorrect.

Accordingly, here we treat in detail the case of a de-
fect with arbitrary spin and coupling constant. Also, to

where gz(x) is the perpendicular susceptibility with re-
spect to a uniform applied field. The helicity modulus,
A(x), measures the stiffness of the system with respect to
twisting the staggered magnetic moment, and within lin-
earized spin —wave theory is the same as for a ferromagnet
on the same structure. Note that both Eqs. (1.2) and
(1.6) express a dynamic quantity in terms of static elastic
or density quantities. The results of EJ (Ref. 29) for c(x)
were consistent with Eq. (1.6) up to the order in pertur-
bation theory to which they worked. Their result for the
damping rate (in energy units) at low concentration of
vacancies was



1038 C. C. WAN, A. B. HARRIS, AND DEEPAK KUMAR

illustrate the importance of ferrimagnetic fluctuations we
treat in detail the case where defects appear unequally
on the two sublattices. Our results, where they overlap,
do agree with those of KH and of Kumar. We find that
for defects, such as a vacancy, whose spin differs from
that of the host,

I'(q;x) = 2zJSzp&(aq)" +O(x ), S' g S, (1.8a)

where for defects with spin equal to that of the host we
find

I'(q;x) = 2zJSxP2(aq)"+ +O(x ), S' = S, (1.8b)

due to defects. Finally, in Sec. VI we give briefly conclu-
sions from this work.

II. FORMALISM: THE FERROMAGNET

In this section we will describe the formalism and dis-
cuss its application to defects in a ferrornagnet, where the
algebra is somewhat more transparent than in the case
of interest, viz. the antiferromagnet which is treated in
the next section. For operators A and B we define the
retarded Green's functions by

where Pq and P2 are constants. The physical reason for
the difference between these two results is that in the case
where the defect has the same spin as the host the antifer-
romagnetic symmetry is preserved within each unit cell,
whereas in the latter case it is only preserved on the av-
erage. Since breaking the symmetry between sublattices
leads to an optical mode, it is clear that the scattering
must be stronger when S' g S than when S' = S. Note
that for vacancies in d = 2 the damping never becomes
small in comparison to the frequency, so that antifer-
romagnetic magnons are not perfect elementary excita-
tions in this case. A scaling theory for the damping near
the percolation threshold was given by Stinchcombe and
Christou, but it was based on the results of EJ, which,
as we have said, we believe to be incorrect. In fact, re-
cently an unpublished paper4 has appeared in which a
finite result for p in d = 2 was obtained, in contradiction
to all the early work.

Just as for the ferromagnet, the vacancy limit for de-
fects in an antiferromagnet is an interesting special case.
As we shall see, there are several ways to obtain the va-
cancy case by suitably adjusting the parameters. One
way, clearly, is to set the defect spin S' = 0. The equa-
tions of motion method, introduced by EJ (Ref. 29)
and used by Jones for the ferromagnet, amounts to this
choice with J = J. This choice is also equivalent to
the treatment of Bulot et al. ~ In our opinion, and as
discussed in detail previously, the best way to treat
vacancies is to set S' = 0 and J' = oo to project out
any effects of the vacancy in the response functions. By
so doing, we believe that we give here the first correct
treatment for the spin response of antiferromagnets with
a small concentration of defects.

This paper is organized as follows. In Sec. II we re-
view briefly the calculation for the ferromagnet. We show
that the previous equations of motion for spin operators
can be reproduced by a convenient non-Hermitian boson
Hamiltonian. In Sec. III we extend this method to treat
the antiferromagnet with a low concentration of arbitrary
local defects. Where they overlap our results agree with
those of KH and Kumar. In Sec. IV we discuss the
results obtained in Sec. III in various limits. Here we
consider vacancies and also unequal substitution on two
antiferromagnetic sublattices. In Sec. V we briefly con-
sider density of states a low energy and show that it is ex-
pressible in terms of the hydrodynamic parameters. Here
we also consider the alteration in the zero-point motion

((A(t) B(t'))) = —~0(t —t')([A(t) B(t')])7 (2 1)

where ()7 denotes a Boltzmann average at temperature
T. The temporal transform is given by

((A B))a = e' ' '' "((A(t) B(t')))« (2 2)

and obeys the equations of motion

E((A; B))~ = (([A, H]; B))@+([A, B])T . (2.3)

The Hamiltonian we wish to treat is a spin-S Heisen-
berg magnet with defect sites:

H = Hp + ) e(R)V(R), (2 4)

where e is unity at defect sites, which are assumed not to
be adjacent to one another and e(R) = 0 otherwise. We
take

Hp = +J) S(R) . S(R+ 6),
R,b

(2.5)

VR = ~2) .[J S (R) —JS(R)] S(R+ 6) (2.6)

Throughout we will use lower case variables to indicate
dirnensionless (or reduced) versions of the counterparts
in capitals. Thus we set S'/S = s and J'/J = j.

As we shall see explicitly below, using linearized spin-
wave theory we obtain a Hamiltonian which is quadratic
in terms of boson operators. We are thus led to a scatter-
ing problem which we solve in the limit of a low concen-
tration, 2:, of defects, using the Koster-Slater approach,
In that case the boson Green's function, when simulta-
neous scattering involving more than a single site are
omitted, can be written in the form

where we take the positive sign for an antiferromag-
net and the negative sign for the ferromagnet, and 6 is
summed over nearest-neighbor vectors. The defect is al-
lowed to have spin, S', different from that of the host, and
to be coupled to its neighbors with an exchange constant
J'. Thus for a defect at site R the defect perturbation is
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G(R, R,';E) = ((~~, ~~))~ = Gp(R, R';E)+ ) .(Rl')Gp(R, R" +r;E)T~-(r, ")Gp(R" +&', R;E),
R",r, r'

(2.7)

where TR« is the T matrix for a defect at site R". Here and below lower case position vectors such as r and r' are
taken relative to the defect position, i.e. , they assume the value 0 or any of the z nearest-neighbor vectors 6. Also

TR (r, r'; E) = VR (r, r') + ) V~(r, r")G (r", r'"; E)TR,(r'", r'; E), (2.8)

which has a Fourier transform

T(q q' E) = ) e' +''' ~+''T&(r, r';E) . (2.9)

G(q, E) = E —E~ —xT(q, q; E)
= E —E~ —Z(q, E), (2.10a)

or, in dimensionless terms with g = 2JzSG and Z =
2JzSo

To first order in x the Fourier transformed configura-
tionally averaged Green's function is given by

chosen, is essentially constant in the vicinity of the spin-
wave resonance at E = Eq. In the above, G and T are
scalars for the ferromagnet, but are 2x2 matrices for the
antiferromagnet.

We now describe the calculations for a ferromagnet
within the boson formalism. The linearized Holstein-
Primakoff transformation" for the defect —free host leads
to the Hamiltonian (omitting the ground state energy)

Hp = 2JS ) (aR —a~, )(aR —an~) = ) E~a~~a~,
(RR')

g(q, e) = e —e~ —o (q, e) . (2.10b) (2.i2)

Furthermore, as we will discuss below, the configura-
tionally averaged spin Green's function, H(q, E), is re-
lated to the boson Green's function by

where the sum is over pairs of nearest neighbors, at

N '~2 Q~ atRe''i ~, where N is the total number of sites,
and

H(q, E) = 2S[1 + xA(q, E)]G(q, E), (2.11) E~ = 2JzS(1 —p~)—:2JzSe~, (2.i3)

where A is a vertex renormalization which, when properly where p~ = z i
Q& exp(iq 6). Thens

V(R) 1 )S
2JzS z - +) (nR —QR+s) (&R &R+ii) + j Rii'R + &R,+s~iR+b'

z
b

i Vs
&R g.&R+6+ g &R+(+R = VR ~

6 b

(2.14)

As noted by Jones, s this formulation, although correct,
may not be the most convenient. It suffers from three
drawbacks: (a) the scattering matrix element does not
vanish in the zero wave vector limit, 4 (b) although the
final results depend rationally on s, we see in Eq. (2.14)
the appearance of +s, and (c) it does not lead to fac-
torizable potentials. To avoid these undesirable features,
we make a non-Hermitian transformation for operators
on the defect site such that aRt is replaced by a~t~s
and aR, is replaced by aR/+s. This replacement is mo-
tivated by the desire to map the equations of motion
of the spin operators into those of the boson operators.
In the famous problem of spin-wave interactions, it has
been shown that the equations of motion of spin wave
can be reproduced by a non-Hermitian Hamiltonian (the
so-called Dyson —Maleev Hamiltonians iP) which leads to
simpler results than that of the Hermitian Hamiltonian
one obtains from the usual Holstein —Primakoff transfor-
mation. Of course, in constructing the full spin Green's

function we must take proper account of this intermedi-
ate transformation. The resulting non-Hermitian Hamil-
tonian which we will discuss is written in terms of the
same Hp but now instead of Eq. (2.14) we have

V(R) 1
VR —— CR aR

x [(j —1)aR + (1 —js)aR+$] .

(2.i5a)

In wave-vector representation

v = ) e' '
(1 —e ''i' s)

q, q', b'

x [j —1 —(js —1)e' ]a"a„, (2.15b)

so that the scattering matrix element at long wavelength
of order v~ ~I = je~(1 —s)/N, which vanishes in the limit
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q ~ 0. In contrast, in Eq. (2.14) v~ ~ = j(1—~sp~)(1—
v sp~~), which becomes j(1 —~s)2 g 0 for q = q' = 0.

We now introduce symmetry adapted coordinates. 4

The z nearest-neighbor vectors form a z-dimensional re-
ducible representation of the point group of the hyper-
cubic lattice which contains each irreducible representa-
tion, s, p, d, etc. , at most once. The associated uni-

tary transformation coefficients are denoted U&~
l and

their phases are chosen so that the P~»'s and g~»'s
(introduced below) are real. For instance, the s-wave

transformation coefficients are U&' ——1/~z. The only(~)

other symmetry of interest to us here is p-wave, for
which U&"' ——i6~/(~2a), where o; assumes any one
of the Cartesian directions, x, y, z, etc. Thus we write
vg = g„vL, where

R ) ~s ( R R+s)
(s) ~ - (~) +

6

(2.17a)

and

Q~»(q) = ) [(j —1) —(j s —1)e'~' ]Uz~" (2.17b)

For 8-wave symmetry we have

y~'&(q) = &ze, (2.18a)

0'l (q) = v ~[j(1 —s) + (js —1)e ] . (2.18b)

For non-s-wave symmetry P& U& ——0 and we set(v)

y( l(q) —g( l(q)/(js 1) ) e gsU'( ) (2 19)

where

(2.16a)

) P~"l (q) @~»(q') e'~ & at a~, (2.16b)' .,q

For instance, P&"*l(q) = csin(q a).
We see from Eqs. (2.16a) and (2.16b) that for each

symmetry label the potential is factorizable which is not
the case for the s-wave potential arising out of the poten-
tial of Eq. (2.14). In this representation the T matrix,
i.e. , the solution to Eq. (2.8), is of the form of Eq. (2.9)
with

T(q, q';E) —= 2JzSt(q, q', e) = 2JzS) t" (q, q';e)

= 2JzS ) y(vl(q)t(vi (e)q(~l (ql) (2.20)

where

t'"'(e) =
i

z ——).4"'(q)4'"'(q)(e —e~)
'

l

gives

t~'l(q, q'; e) = [j(1 —s) + (js —1)e„], (2.24)

(2.21) where
For non-s-wave symmetry we get

4'"'(q) 4'"(q') (j —1)
t~"l(q, q', e) =

z —(js —1)g~» (e)
where

(2.22)

(2.23)

For s-wave symmetry evaluation of Eqs. (2.20) and (2.21)

A(e) = [j —e][l —eg~(e)] + ejs[l + (1 —e)g~(e)],
(2.25)

where g~(e) = N P (e —e~) is the local Green's
function for the ferromagnet.

Next we consider the full frequency-dependent spin
Green's function, H(q, E), which we must express in
terms of the boson Green's function. This we do by writ-
ing

H(R, , R,'; E):((S+(R);S (R')))—~
= (J )-'[1+ ( -1) (R')]

x g (R,, R';E) + ) e(R,")g (R,, R" + r")tn«(r", r"')g (R,"+r"', R')
R" rr

(2.26)



48 HEISENBERG ANTIFERROMAGNET WITH A LOW. . . 1041

This relation follows from the fact that S+(R) = v'2SaR
and S (R) = s/2Sa~i. If h(r, r', e) denotes the configu-
rationally averaged result for JzH(r, r', E), then correct
to order x we have

h(q; e) = [1 + xA(q; e)]g(q, e), (2.27)

where

e~(x) = e~+ a(q; e~)

hd(x)q , q ~ 0,
(2.29a)

(2.29b)

where 0(q, e) = Z(q, E)/(2zJS). The p-wave contribu-
tion to o (q, e~) at small q is

where

cr~"l(q; e~) x(azqz/z)cr„, (2.30)

2z(js —1)
z —(js —1)g~i'l (0)

(2.31)

This p-wave result is identical to that required to calcu-
late the macroscopic electrical conductivity, Z', for the
analogous resistor network ' ' in which nodes i and j
are connected by a resistor of conductance o,z

——J,z S,S~.
Consistent with this identification we see that o.„=0 for
js = 1, even though j and 8 do not individually have to
be unity. (When js = 1 there is no conductance defect. )
In the dilute limit we have

Z"(0)
(2.32)

A direct evaluation of Eq. (2.29a) yieldss s

d(x) ——1+xo„+xo, , (2.33)

where

(2.34)

A(q, e) = (s —1) — (s —l)((js —1)[1—egF(e)]A(e)
+j(s 1)g (e))

(2.28)

and, aswehave seen, g(q, e) = [e —e~ —xt(q, q;e)] . As
expected, these results reproduce exactly those obtained
by Jones using an equation-of-motion approach.

According to Eqs. (2.10a) and (2.10b) the excitation
energy is given by

coupled to the host we should find o, = (1 —s) and (b)
for a vacancy o, = l. Indeed one can explicitly verify
these results.

Perhaps the biggest advantage of the non-Hermitian
Hamiltonian is that because the scattering vanishes in
the long-wavelength limit, it gives qualitatively correct
results order by order in perturbation theory. In contrast,
as noted by Callaway and by Izyumov, it is necessary
to regroup perturbation theory when the representation
of Eq. (2.14) is used. One grouping, of course, is to
sum all contributions of order x, as Izyumov did using
the t—matrix. A less well —known scheme uses 1/z as an
expansion parameter. Nevertheless, the two Hamilto-
nians corresponding to the perturbations of Eqs. (2.14)
and (2.15a) do give equivalent results, contrary to the
implications of Ref. 15.

It is interesting to consider the vacancy limit. There
are at least three ways to take this limit. First, one can
set j = 0 and use the representation of Eq. (2.14) which
has no hard core long —wavelength interaction in this case.
In fact, for j = 0 the scattering matrix element is of or-
der v(q, q') e~e~~. It would seem then, that s-wave
scattering is unimportant for vacancies. However, in this
representation the defect has a zero-frequency excitation,
and the t matrix is of order s t(q, q'; e) e~e~~/e. The
Born series diverges at zero energy. However, on reso-
nance (i.e. , for e = e~), it does lead to correct results.
It is possible, but somewhat cumbersome, to project out
the e = 0 excitation on the vacancy, for instance, by in-
troducing a potential on the vacancy site. ~ If this is
done by adding a potential on the defect site, it seems
necessary to sum over all repeated scatterings to treat
this hard core potential correctly. Use of the lowest-order
Born approximation is then totally misleading.

The second choice to represent the vacancy limit is to
set s = 0 and let j remain finite. The choice j = 1
corresponds to the equation-of-motion method used by
Jones and by Bulot et aL Here again, the perturba-
tion of Eq. (2.14) has nonzero scattering in the long-
wavelength limit, so finite-order perturbation theory will
lead to a gap in the excitation spectrum. Use of the
non-Hermitian potential of Eqs. (2.15a) and (2.15b) im-
proves the situation in that successive orders in pertur-
bation theory lead to a numerical renormalization of the
effective interaction at long wavelength and are thus qual-
itatively unimportant. However, one sees from Eq. (2.25)
that the t matri~ has a pole at e = j reHecting the de-
coupled excitation on the vacancy having this energy,
even when the equations of motion for spin operators are
used. When the full spin Green's function of Eq. (2.27)
is expanded to order x this pole vanishes: it is absent
from the combination

In Eqs. (2.32) and (2.33) it suffices to evaluate the p-
wave contribution at zero energy. Alternatively, we have
the macroscopic relation 7

t(q, q; e) A(q, e)
e —e~ e —e~

~+ (2.36)

d(x) Z"(x)M(0)
d(0) Z'(0)M(x) ' (2.35)

where M(x) is the magnetization. Since M(x)/M(0) =
1+x(s—1), Eq. (2.35) would predict that (a) for a defect

However, the fact that each individual term in Eq. (2.36)
has a pole at e = j means that for the choice 8 = 0, j = 1
the form for the full spin Green's function given in Eq.
(2.27) is not numerically reliable for energy near e = j. In
fact, it is a check on the calculations that the expression
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in Eq. (2.36) is independent of j, since the actual spin
response cannot involve j when the defect has zero spin.

Finally the third and most satisfactory approach is to
set s = sj = j = 0. By setting j = oo we project out
the decoupled excitation on the vacancy site in a way
similar to that adopted in Ref. 15. Furthermore, this
choice is clearly good if the constraints are not handled
exactly, as is the case for the CPA. i~

We now return to the case of a weakly coupled spin and
see in a more detailed way how the vacancy result can be
obtained from this limit. The only nonuniformity in the
j —+ 0 limit occurs in the s-wave t matrix, t(')(q, q'; e).

1

On resonance and when both j and e are both mu h
ess than unity, but j —eq is not near zero, we have

't cr

PD
(D

20—

10—

-10

-20

0.0 0.01 0.02
e-

q

I

0.03
I

0.04

t('&(q, q; e~) j(l —s) —e~

eq j —eq
(2.37)

(a&'
Imgp (e —i0+)=

(27r)
z= —sr Kg(ze) ~

d"qir6(e —azqz/z)

(2.38a)

Now we see how the j ~ 0 limit works. For any nonzero

j the q —+ 0 limit gives cr, = 1 —s, as expected for j g 0.
But this result only applies for eq (( j. For j &( e (( 1

t ' (q, q; e~)/e~ = 1, as we would expect for a vacancy.
[Recall the discussion following Eq. (2.35).] Even for
arbitrarily weak coupling, as long as the frequency is suf-
Bciently small, the defect spin ca,n respond to the time-
dependent field of its neighbors and Eq. (2.35) holds
with M(x) = M(0)[1+x(s—1)]. In the "high-frequency"
limit the weakly coupled defect cannot respond and the
defect looks like a vacancy: in Eq. (2.35) we should set
M(x) = M, with M = M(0)(l —x). In the crossover
regime there will be anomalous dispersion and accompa-
nying damping when the spin wave resonates with the
localized resonance. This scenario is illustrated in Fig.
1, where we plot t('&(q, q;e~)/e~ [evaluated from Eq.
(2.24)] versus e„ for a small value of j.

Finally we consider the damping of elementary excita;
tions. The decay rate in dimensionless units, I', is related
to the imaginary part of the self-energy on resonance:
I'(q) = Imcr(q, e~). To start we note that nonzero imag-
inary parts come exclusively from the Green's functions
evaluated at e = e~ —i0+. There we have, for e —+ 0,

FIG. 1. The s-wave perturbation on the dispersion relation
due to the defect for j = 0.02, s = 3/2, and d = 2. Here we

p ot y = t (q, q, e~)/eq vs e~ for q along (1,0). To get e&(x)l — (~)

use Eqs. (2.33) and (2.34). When the factor x is included [(to
get e~(x)], the resonance is much less prominent than in thjs
figure. Here we show the crossover from the low-frequency
(hydrodynamic-like) regime in which all spins follow the mo-

tion to the high-frequency regime in which the defect spin
cannot follow the motion. EfFectively, in the low-frequency
regime M(x) = M(0)[1+ x(s —1)], in which case y = 1 —s.
In the high-frequency regime M(x) = M . For infinitesimal

j, M = M(0) [1 —x] or y = 1. We do not accurately repro-
duce this limit because j is not infinitesimal. The crossover
occurs at a value of q such that e~ = j. The extreme values of
y are approximately +(2j) ' and occur for e~ = j&j s. Sirn-
ilar results obtain for the antiferromagnet when the vertical
axis represents w~/q.

tion of the self-energy leads to results in agreement with
previous ones:4

I'(q) = Kg(ze~)&+'

ir 2 2vr (js —1)z

2z zd [1 —(js —1)g&(0)/z]

(2.39)

We recall that an advantage of the non-Hermitian
Hamiltonian is that the correct wave vector dependence
of the self-energy is obtained even within lowest-order
perturbation theory. Consider, for example, the case of
defects, for which we may take 8 = 0. For this case a
Born approximation indicates that the imaginary part of
the 8-wave contribution to the self-energy at this order is

(a&"
Img„(e —i0+)= l

&2 )
z d= —~Kg(ze) &

d

d"q7r(2a q /d)6(e —a q /z)

(2.38b)

where K&
——2" ir"~ I'(d/2) is a phase space scale fac-

tor in d dimensions. We can neglect d-wave and higher
angular momentum symmetry which give rise to even
smaller contributions at long wavelength. Our evalua-

Im~(')(q, e)- dq'6(ez —ez )ezez q"+, (2.40)

and similarly for the p-wave contribution, both as in the
exact result of Eq. (2.39). The alternative approach in-
volving setting j = 0 is harder to interpret. From Eq.
(2.14) one can establish that the s-wave scattering ma-
trix element in this case is of order eqeq~, which indicates
that in any finite order of perturbation theory this scat-
tering is negligible in comparison to that from the p-wave
potential. For instance, lowest-order perturbation theory
with j = 0 gives
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Imo. (q, e) ~ l dq'6(eq —eq ) (eqeq ) q"+ . (2.41) Sa = &2S~ba (3.2b)

We use a superscript (n) to indicate the s-wave contri-
bution from nth order perturbation theory. The zero
energy excitation on the decoupled defect gives rise to a
divergent perturbation series. In fact we find for n & 2

Irno (q, e) ~"l (n —1) dq'6(e —e )

x [1+eq)" (eqeq ) q"+

(2.42)

S~ ——+2SRbH, (3.2c)

where SH is the magnitude of the spin on site R. The
pure system is then described (neglecting spin-wave in-
teractions) by the Hamiltonian

hp ——ep/(2JzS) = —) ) (a~+ bRgs)(aR+ ba+, ) .
RqW

(3.3)

Summing this series reproduces the correct result of Eq.
(2.39), but obviously this approach is rather opaque,
compared to the one we prefer.

To summarize: we conclude that using the non-
Hermitian Hamiltonian gives qualitatively correct results
even in lowest Born approximation. To treat vacancies,
one should take s = sj = j r = 0.

Since we are not keeping track of the constant ground
state energy, neither is it important, nor is it notationally
convenient, nor will we keep track of the ordering of the
operators. In terms of Fourier transforms,

hp = ) (ataq+ btbq+ pqatbt +pqaqb q) . (3.4)
g

III. DEFECTS IN AN ANTIFERROMAGNET:
RESULTS (3.5a)

This Hamiltonian is diagonalized by the transformation

aq = /qn rnqp

In this section we will develop the calculation for the
antiferromagnet with defects using the approaches which
proved useful in the previous section for the ferromagnet.
A detailed discussion of the results will be given in the
next section.

The model we treat is an isotropic Heisenberg antifer-
romagnet with a low concentration of defect sites, each
of which consist of a defect spin of magnitude S' coupled
to its neighbors with exchange coupling J'. The corre-
sponding host values are S and J and the notation in
terms of reduced values introduced in the preceding sec-
tion will be adopted here. We take the ground state of
the pure system to consist of two interpenetrating hyper-
cubic lattices. In the Neel ground state the A sublattice
spins have SH ——+S and the B sublattice spins have
SH ———S. As usual we introduce boson operators which

create spin deviations: a)~ (b~t) creates an excitation on
the site R, in the A (B) sublattice. The Neel state is the
boson vacuum. For concreteness one may visualize
a simple cubic or, in two dimensions, a square centered
lattice. The unit cell is a d-dimensional hypercube of
side a containing two sites and the Brillouin zone (over
which all wave vector sums are carried) corresponds to
this choice of unit cell, of course. For spins on the A
sublattice we have

where

b q = rnqn +/qP q (3.5b)

(1 —eq&
'~

(3.6)

where

Then

eq —— j. —p2 . (3.7)

hP = ) (nt nq + Pt Pq) eq .
q

We introduce the boson Green's functions, 4P

(3.8)

(3.9)

1
—e—e

(3.10)

where Qr(q) = nq and Q2(q) = P q. The unperturbed
Green's functions, indicated by superscript (0), are given
as

SH —S —aH aR,

SH = V 2SRaR)

(3.1a)

(3.1b)

where e = E/(2JzS).
Use of the above transformation to boson variables

shows that for a defect on the A sublattice at site R,
the dimensionless defect perturbation is

SH ——$2SRa8,

and for those on the B sublattice

SH, = —S+ ba.bR)

(3.1c)

(3.2a)

1
'URCA ) (aH, + bR+s)(aR + bH, +s)

+ —) (aa + v sbH, +s)(aH + ~sb~+s) . (3.11)
6
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S~+ = v'2Sa~, S~ ——sV2Sat~ (3.12a)

for defect spins on the A sublattice. For defect spins on
the B sublattice we write

As for the ferromagnet we now replace a~ by ~sa~ andt

aR. by a~/~s. This transformation will lead to a per-
turbation with weak scattering in the long —wavelength
limit. Thus all the transformations we are using retain
Eqs. (3.la) and (3.2a) but have

(u)
vKGA —g vR, q~ )

P

where the perturbation of symmetry p is

nR.q~ ——— ) (a~ + bR+s) U(p) 1 (~l *~

rz(
~

~ ).[(j-1). +(j -1)b'+,.]U,'."'

(3.14)

S~+ = v 2SbRt, SR ——sv'2SbR . (3.12b) (3.15)

For host spins Eqs. (3.la) —(3.2c) continue to apply. Note
that we chose versions of this nonunitary transformation
such that the zero-wave vector Fourier component of bo-
son operators corresponding to one component of spin
(here S ) is conserved. Then

vReg — ) (ag + bR+s) [(j —1)aR + (j s —1)b~+s)

(s.is)

Again, in close analogy to the ferromagnet, we introduce
symmetry adapted operators. The transformation coef-
Bcients U&, where U is a unitary matrix, are exactly the
same as for a ferromagnet on the same structure. If terms
of the symmetry label p, , we have

As before, the s-wave coefficients are U&' ——1/~z and(~)

the p-wave coefficients are U&"' ——icb, where o. is x, y,
etc. , and c is a normalization constant, c = d/(z6 ).

Normally one solves the single-defect problem in a real-
space representation in which all quantities are conBned
to the defect region. We find it simpler for the antifer-
romagnet, where there are inevitable algebraic subtleties
involving the symmetry between sublattices, to work in
terms of spatial Fourier components. Here the fact that
the defect is localized reflects itself in the fact that the
potential is the sum of a small number of separable po-
tentials, each having difFerent symmetry and each of rank
one. For a defect on an A site, the s-wave perturbation
in terms of Fourier transformed variables is

~Re~ =
N ) &'" " (aq'+&qb-q)[(j —1)aq +(js —1)~,b', ]

q, q'

=
N )." ' [&q( q

—
&q q) + &-q(teq ™q)]

q, q'

x (ctq&[lq&(j —1) —mq Pq&(j s —1)] + Pt, [(js —1)lq Pq& —mq&(j —1)])
-=—„' ): .",.(q, q')

"q,q...2-

(3.16)

(3.17a)

(3.17b)

where N is the number of sites in one sublattice, i.e. , N = P 1. Equation (3.17b) shows that the s-wave perturbation
can be represented by a 2x 2 matrix. From Eq. (3.17a) we see that this matrix is the outer product of a two-component
column vector lrl(q)) and a two —component row vector (((q') I:

~~', ~(q, q') = ln(q))(((q')le" ' (3.18)

where

Ill(q)) i:tq pqmq tqeq&

lg(q))2 = lqpq —mq = mqeq&

(3.19a)

(3.19b)

(((q)li = t (j —1) —p m (j s —1) = l [(js —1)e —j(s —1)]:—tqPi (q),

(S.i9c)
(3.19d)

and

(((q) I. = tq~q(js —1) —mqU —1) = mq[Us —1)eq+ j(s —1)]

=—mqg2(q) .

(3.19e)

(3.19f)
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At long wavelength we have l~ m„e~ . Thus at long wavelength the scattering matrix elements in Eq. (3.18)
are of order

U
'

(q, q') ~e~ {3's —l)ge~ +2(s —1)/v'e~ (3.20)

This result shows that the scattering is much larger for s g 1 than for s = 1, a fact which will be discussed in more
detail in the next section.

Summing over all repeated s-wave scattering from a single defect on the A sublattice gives the s-wave part of the
2 x 2 (dimensionless) t matrix, t, as

tR', A(q, q') = 2R', A(q, q') + N ) .2R', A(q, q")g"'(q")~R', A(q", q')
q//

+N2 ) . -ReA(q q")g"'(q") RGA(q" q"')g"'(q"')~ReA(q"' q') +"
q// q///

(3.21a)

lrj(q))(((q')l 1 ——).(((~)lg"'(~)lq(7-)) (3.21b)

ln(q)) X(q') llD(e)

De m~

(3.21c)

(3.21d)

where

D(e) = (j —e) [1 —e(l + e)go(e)] + ebs [1 + (1 —e )go(e)], (3.22)

in agreement with KH and Tonegawa, 7 where

go(e) = N ') (e —e~) (3.23)

In Eqs. (3.21a)—(3.21d) the two —sided Fourier transformation is defined similarly to Eq. (2.9). If the concentration
of defect sites on the A sublattice is x~, then the configurationally averaged Green's function has the self—energy
(correct to first order in x) from such defects given by

) e(R)tR~'~ A(q, q')
R6A

=—XAb O.A' (q)
(s) (3.24a)

= »4,, ln(q)) (((q) IlD(e) (3.24b)

~q= xAhq q
~ [/qPg(q), mqg2(q) ] . (3.24c)

](~) ( I ) i(q' —q) a. q ~q(q, q,' = e — l

x [mq 42(q'), ~q 4l(q') ], (3.25)

IVote that the self-energy is thus subject to the same es-
timates as given in Eq. (3.20) for the potential.

Let us now construct the s-wave t matrix for a concen-
tration, 2:~, of defects on the B sublattice. One can see
that the perturbation simply interchanges the role of a
and bt operators, or similarly, n and Pt operators. This
same reasoning shows that this results in replacing D(e)
by D(—e). So

and, in analogy with Eq. (3.24c),

(s) &q mqo~ (q) = [m~$2(q), l~gg(q) ] . (3.26)

The s-wave self-energy is the sum of the two contribu-
tions given in Eqs. (3.24c) and (3.26).

For non-s-wave scattering the calculations are simpler.
We use the fact that for p not s, P& U&

——0, as a
result of which perturbations involving the defect site
only appear in the s-wave scattering. For non-s-wave
symmetry we have
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q, q'
(3.27)

where P(~) (q) is defined in Eqs. (2.17a) and
(2.17b). For a square-centered lattice P(" ) (q)
2 sin(q a/2) cos(q„a/2) and for a body-centered-cubic lat-
tice P(" ) (q) = v 8 sin(q~a/2) cos(q„a/2) cos(q, a/2). In
matrix representation we have the analog of Eq. (3.18):

g(q, q') = la(q)) (p(q') I
(3.28)

where lp(q)) is the two —component vector (m~, —l~).
Summing over repeated scatterings we find that

t(l ) '( — ).R. (js —1)4'" (q)4'" (q')
z —(1 —e) (js —1)g (» (e)

X mqmq~ mq/q~
—/qmq /q/q

(~)(,)
1 ) - &(")(q)'

g2 ~2
q

(3.30)

At long wavelength the most important non-s-wave scat-
tering is in the p-wave channel. Since Q(»(q) q, we see
that both the scattering potential v(") and the p-wave
self-energy are of order gqq' at long wavelength. This
scattering is comparable to that in the 8-wave channel
for s = 1. Likewise when the defect is on the B sublat-
tice we obtain to first order in x

( ) (i s —1)4(")(q)'
~~ (q) =x~ —(1+e)(js —1)g'"'(e)

/2
(3.31)—mq/q m

and after a configurational average

( ) (i s —1)&'"'(q)'
o.~ (q) = x~

z —(1 —e)(js —1)g'"'(e)

mq —mq/q
2

mq/q /q

(3.29a) Again the total contribution to the self-energy of sym-
metry p, is found as the sum of the contributions given
in Eqs. (3.29b) and (3.31).

We summarize by collecting the results from Eqs.
(3.24c), (3.26), (3.29b), and (3.31) to write the matrix
elements of the self-energy for the configurationally aver-
aged boson Green's function of Eq. (3.9) which is given
in terms of the self-energy matrix o. as

where

(3.29b)

where

g(q e) = [g("(q e) ' — (q, e)1
' (3.32)

cr (q, e) =

xg/2

z —(1+e)(js —1)g'"'(e) r

xgtqe~ xgm eq
2 2

D(') [(j —1) —j( —1)]+ ' '[(j —1) +j( —1)]

x m2)-(j, ,)4. (q) li, (1 .)(j, '1),(„)(,)P+S
(3.33a)

crp p(q, e) =

xgmq
z —(1+e) (js —1)g(~) (e) p

'

x~t e~ x~m e~2 2

[(js —1)e~ —j(s —1)] + [(js —1)e~ + j(s —1)]

x /2

+
& -(1- )(j -1)g'"'( )

(3.33b)

cr p(q, e) = [(js —1)e~+ j(s —1)]+ [(js —1)e~ —j(s —1)]

—) (js —1)P(»(q) l~m~l +(z —(1 —e)(js —l)g(»(e) z —(1+e)(js —l)g(»(e) 9
' (3.33c)

ap (q, e) =

xg
z —(1+e)(is —1)g'" (e))

"[U - 1) .- j( - 1)]+ D™e~[(j- 1) .+ j( - 1)]

xA—).(is —1)4(")(q) ~q~ql
(1 )(. ) („)( )

+
P+S

(3.33d)



HEISENBERG ANTIFERROMAGNET WITH A LO%. . .

where D(e) was given in Eq. (3.22). Note that only when x~ = x~ is the symmetry between the two sublattices
preserved. In that case the above results satisfy the relations 0~ ~(e) = cry p( —e) and cr~ p(e) = o p ~(—e).

In Appendix A it is shown that the spin Green s function is given by an expression similar to that in Eq. (2.27)
for the ferromagnet. Using such a development we can express the spin susceptibility, which in dimensionless units is

(q, e) = (Jz)((S+(q); 9 (q)))„ in terms of the matrix of Green's functions defined in Eq. (3.9) as

where

A(q, e) =

(q, e) = A(q, e) [1,1]g(q, e) + B(q, e) [1,1]g(q, e)
1 1

1 pg 1 Cq

cq 2
1+ —(x~ + x~)(s —1) + (s —1)—[x~~(e) + x~~(—e)]

2

(3.34)

and

(s —1)
B(q, e) = (xz —x~ + (1 —p~) [z~~(e) —x~w( e)]),— (3.35b)

where ~(e) is given in Eqs. (A16a)—(A17) of Appendix A. In the absence of defects (x~ = z~ = 0), the susceptibility
has a wave vector-dependent amplitude which varies like ~q

—Q] for q near a ferromagnetic wave vector Q, and like

~q —Q~
i near an antiferromagnetic Bragg wave vector Q, in agreement with Refs. 20 and 40.

IV. DEFECTS IN AN ANTIFERROMAGNET:
DISCUSSION

In this section we will discuss the results of the pre-
ceding section, as summarized in Eqs. (3.32) and ff, in
various limiting cases and will compare them with pre-
vious developments. We thus give a comprehensive dis-
cussion of the response of the system to first order in the
defect concentration, x. For this purpose we will mostly
confine our attention to the long-wavelength limit. We
distinguish three main cases: (I) s = 1, (II) s g 1, but
z~ = x~, and (III) s P 1 and z~ g z~. Roughly speak-
ing these cases represent the following physical situations.
In case III the defects break the antiferromagnetic sym-
metry and we actually are dealing with a ferrimagnet
(HK). In case II, we still have an antiferromagnet, but
because s g 1, there are fluctuations in which locally
ferrirnagnetic regions can occur (HK). Case II for s = 0
describes the case of vacancies equally distributed on the
two sublattices. To treat vacancies it is best to set j = oo,
to avoid spurious effects from decoupled excitations on
the defect site at energy e = j. However, on resonance
we would expect, in light of the results for the ferromag-
net, that the results do not depend on j. Finally in case
I, each unit cell has exactly zero ferromagnetic moment:
there are no fluctuations towards ferrimagnetism. As we
shall see, each of these three regimes is characterized by
a distinctive long —wavelength behavior. In regime I the
elementary excitations are weakly perturbed from those
of the defect-free host. The same is true in regime II as
long as the spatial dimensionality, d, is greater than 2.
Therefore under these conditions the oK-diagonal parts of
the self-energy represent higher-order (in x) corrections

and we may write the spin-wave energies in the presence
of defects as

e~(xg, zg) = e~+ cr~ ~(q, eq —i0+),

eq(xg, xp) = eq + o p, p(q, —eq + i0+),
(4.1a)

(4.1b)

a (q, e) = zeal 1+, e go(e))j
(2 —1)4'» (q)'

+I —
I

ge J z —(j —1)g(»(e)
(4.2)

where x = (x~ + x~)/2 and P(»(q) = PpP("P (q),
where p is summed over components x, y, etc. [For future
use, note that at long wavelengths P(»(q)2 za2q /4
ze2. ] In writing Eq. (4.2) we used Eq. (3.6) for the
transformation coeKcients l~ and m~ and we dropped
terms which lead to corrections at low energy or long
wavelength. In this regime, then, for q —+ 0,

whose real part gives the perturbed energy and whose
imaginary part, I'~, gives the damping rate. For x~ =

the antiferromagnetic symmetry is preserved and
e~(z~, x~) = e~~(xg, x~). However, for d = 2 and for
s P 1, the decay rate remains a finite fraction of the
frequency and the real part of the self-energy diverges
in the low-frequency limit. Thus for d = 2 spin waves
are strongly perturbed in regime II. Finally, in case III
we need to consider the full self-energy matrix in order
to describe ferrimagnetic spin waves which exist at long
wavelengths. In the calculations which follow we consider
a body —centered hypercubic lattice in d spatial dimen-
sions.

In case I (s = 1), we have, at long wavelength,

y(» (q) ~

Reeg(x/ = x, x~ = x) = Reeg(x)= eg 1+x . + x
Cq

—:e~(0)[l —px+0(x) ] .

j —1
z —(j —1)g(» (0)

(4.3a)
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~"(x) X~(0)
Reeq(x) =

~
eq(0) (4.4a)

For small x this gives

Prom spin-wave hydrodynamics~ or from an
analysis~ of the equations of motion at zero temper-
ature neglecting spin —wave interactions, it is predicted
that

Also

I g(.)(,) I ' )-
(e —i0+) 2 —e2

q q
(4.6a)

(4.6b)

1 ) - z sin (q~a/2) cos2(q&/2). ..
N (e —i0+)2 —e2

= (ze /d)lmgp(e) .

1 dZ" (x) 1 dpi (x)
2Z" (0) dx 2y~ (0) dx

Imgp(e) = 2~Kd (2e)" sgn(e),

where sgn(e) = e/!e!. Thus Eq. (4.5) gives

(4.6c)

In Appendix B it is verified that Eqs. (4.3a) and (4.3b)
agree with Eq. (4.4b). sP In Eqs. (4.3a) and (4.3b) it
should be noted that P(»(q)z/e~ is independent of q in
the limit q —+ 0, so that defects in regime I merely renor-
malize the spin —wave velocity. In Eqs. (4.3a) and (4.3b)
we see a divergence in the limit j —+ 0. This divergence
reflects the divergence in y~ when the coupling of a de-
fect spin to the host becomes arbitrarily weak. But, as
discussed for the ferromagnet (see Fig. 1), a crossover
takes place for e~ j. Also from Eq. (4.2) we find

1
Ime~(x) = —x(j —1) vrK~(aq)"+~

4
1 Z2

x —+ "[ —U —1)9'"'(0)]' (4.7)

This dependence on wave vector is clear from lowest-
order perturbation theory: We saw in Eq. (3.20) that the
scattering matrix element for s = 1 is of order &e e I.q q ~

This leads to the estimate

Ime~(x) = x(j —1) ez[lmgp(e~)]

1 z2
X —2+ d[. -(j-1)~()(o)]' '

where we used

(4.5)

Imeq dq'h (e~ —e~ )e~e~ q"+ (4.8)

consistent with the complete result of Eq. (4.7).
Next we turn to case II, where x~ = x~ = 2;, but

s P 1. There

j —1
o. (q, e) = xe~

( I—xe(s —1)! —. —s + (1 —s)gp(e) !

~ XQ f74q+ +
kz —(1 —e)(js —1)~'")(e)

(4.9)

and

+x(s —1) gp(0)

y(» (q) &

+x
eq

(js —1)
z —(js —1)g(» (0)

Ime~(x) = x(s —1) e~lmgp(e~)
= x(s —1) 7rKg(aq)"

In this regime, therefore,

j —1 (I
Ree~(x) = e~ 1+x . +x(1 —s)! —. —s!

(4.10)

(4.11a)

(4.11b)

Here we obtain a much larger damping rate than in the
previous case because the spin fluctuations when s g 1
give rise to an anomaly in y~. Also, for d = 2 we see
a divergence in Eq. (4.10) [due to the presence of gp(0)]
whereas in case I there is no such divergence. We defer
further discussion of the results in Eqs. (4.10)—(4.11b)
until after treating case III, the results of which provide
an explanation for the distinction between cases I and II.

We now proceed to case III, where s g 1 and x~ g
2:~. To avoid undue algebra we will simplify this case by
taking js = 1. This gets rid of the p-wave scattering and
simplifies many of the expressions. For js = 1 we find

s —1o, (q, e) =
2 (x~sD(e) —xgsD( e) —e~[x~sD(——e) + x~sD(e)]), (4.12a)

s —1
o p p(q, e) =

2 ( x&sD(e) + x&sD( —e) —e~[x&sD—( e) + x&sD(e)]), — (4.12b)
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( —1)~.
cr~ p{q, e) = —

harp (q, e) =
z [xgsD( e—) —x~sD{e)],2s~D(e D —e

(4.12c)

where sD(e) = 1+(s—l)e(1+e)gp(e) for js = 1. The ele-
mentary excitations are given by the poles of the Green's
function which occur at

[e-e~ —~, (e)][—e —e~ —~p, ~(e)] ~,~(e)~~, (e)

to work to higher order in the defect concentration x,
since a ferromagnet involves coherent ordering of mag-
netic moments.

Finally, we should point out that our results in Eqs.
{4.16a)-{4.16c) follow the expectations of Ref. 22 where
the normal mode equation,

= O. (4.13a) 2Aq' + Me/(hp) + y~ [e/(hp)] = 0, (4.17)

—e +Aie+A2e =0, (4.13b)

where

C x~sD(e) -x~sD(-e) )
Ai = (z~ —x~)(s —1) I

!&sD(e)D(—e)(xQ zA) )
(4.14a)

( x~(s —1)l ( x~(s —1)lAg=! 1—
sD(e) p q sD( —e) p

' (4.14b)

Using the evaluations in Eqs. (4.12a)—(4.12c) we write
this as

was obtained, where here p denotes the gyromagnetic
ratio of the spins, and A is the helicity modulus, which
is proportional to the conductivity of the analog resistor
network. Our result in Eq. (4.15) agrees with Eq. (4.17).
To verify this use Eq. (B15) for y~ and note that when
q s = 1, A(x)/A(o) = 1.

Now we return to a further discussion of the results
for case II given in Eqs. (4.10)—(4.11b). Considering also
Eq. (4.12a) we see that Reo (q, e~) is of order x~ —x~
at long wavelength. This indicates that unless x~ = z~
scattering at long wavelength is large. This can be seen
explicitly in Eq. (3.20): when s g 1 the scattering matrix
element is of order ge~/e~~. An estimate analogous to
that in Eq. (4.8) would give in this case

We now analyze the situation at low energy. In that case,
it suffices to keep terms in Ai or A2 up to order egp(e).
Then we get

Ime~ dq'6'(e~ —e~ ) q~ (4.18a)

—e [1 —2x(s —1) gp(e)] —e(x~ —x~)(s —1)
Ree~ e~/e~ = 1 . (4.18b)

+e [1 —2x(s —1) + (s —1) (z~ —x@)egp(e)] = 0 .

(4.15)

We thereby get two roots. For the optical mode we do
not calculate the damping. For it we find

e, , (q) = (z~ —zz)(s —1) + O(q ) . (4.16a)

For the acoustic mode we give both the dominant real
and imaginary parts of the energy:

with

e2

( )( 1)
(4.16b)

I'~ = e Imgp(e) (s —1) (z~ —x~) +2 2 2x(s —1)
(x~ —xa)

(4.16c)

Here, in contrast to Rayleigh scattering in the ferromag-
net [see Eq. (2.39)] with a low concentration of de-
fects, we find an imaginary part of order e" q ", since
Imgp(e) e" and e q . To recover the results for
Rayleigh scattering in a ferromagnet, we no doubt have

The strong scattering reflects the fact that when defects
occur on only one sublattice, they give rise to an optical
mode at nonzero frequency as given in Eq. (4.16a). This
strong scattering has no analog in the ferromagnet. Nor
does it happen in the antiferromagnet when s = 1.

But now we have to take account of the fact that in case
II defects occur with equal probability on both sublat-
tices. It is possible, and according to Eq. (4.12a) it does
happen, that the real part of the energy shift has opposite
signs for the two cases when the defect is on di6'erent sub-
lattices. Thus the q-independent energy shift, estimated
in Eq. (4.18b), cancels out when x~ = z~. In contrast,
the scattering from incoherent scatterers cannot possibly
cancel out. Thus the imaginary part of e~ is proportional
to (x~ + x~), and the estimate of Eq. (4.18a) gives the
correct dependence on wave vector. Furthermore, we see
that for this case, (s g 1), only the s-wave scattering
contributes, because the p-wave scattering gives a con-
tribution to Ime~ of order q"+i. Another way of stating
the physical difFerence between cases I (S = S') and II
(S g S') is that in the former case the antiferromag-
netic symmetry between sublattices is preserved in each
unit cell, whereas in the latter case the antiferromagnetic
symmetry is only preserved on the average. The Huctu-
ations which locally destroy the antiferromagnetic sym-
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metry tend to create a local gap which, when x~ g xz,
evolves into a true optical mode. This strong scattering
only occurs when S g S'.

Finally, we should compare the present results with
previously derived ones. We should emphasize that the
result of EJ, namely that Ime~ q"+ was obtained
only for the vacancy case, i.e. , for 8 = 0, to which our
result in Eqs. (4.11a) and (4.11b) applies. It is not clear
why they got the result they did, because their formalism
is closely related to ours, since it involves the equations
of motion of spin operators directly. On the other hand,
the later single-defect results of KH do agree with the
present ones, where they overlap, i.e. , for the vacancy
case. There it was explicitly pointed out that there was a
logarithmic divergence in p of Eq. (4.3b) for d = 2 for the
vacancy case. We note that this divergence occurs when
s g 1 and is identified with a divergence in the uniform
susceptibility when s g 1. It seems that some recent
work34 is unaware of this divergence. In that reference
numerical results for d = 2 are used to estimate p in Eq.
(4.3b) to be approximately 3, whereas we know that the
exact result corresponds to p = oo. It has been suggested
(KH) that this divergence results in an overdamped spin
wave in the long-wavelength limit. A definitive analy-
sis of the result of this divergence may require treating
terms of higher order in x, which we do not consider here.
We now know that for d ( 4 the antiferromagnetically
ordered phase is unstable with respect to the applica-
tion of an infinitesimal random field. In the present case
this result applies because random dilution of an AFH in
a uniform field gives rise to a random staggered field.
Within the low concentration expansion we only see this
anomaly for d = 2. There seem not to be previous calcu-
lations of the damping due exclusively to a force constant
defect, i.e. , for our case I, where s = 1. There one has
very weak scattering which is comparable to that in the
ferromagnet and then one has Ime~ ~ q"+i.

In the remainder of this section, we would like to re-
mark on some extensions of our theory. We first point
out that our result for the damping of spin wave due to
vacancies also applies to the case of bond dilution. How-
ever, for bond dilution the calculations would be much
more dificult. Consider a system with a concentration p
of randomly removed bonds. To low order in p remov-
ing bonds does not remove a spin, so in low order results
analogous to case I will be found. However, at order p'
one will begin to see the efFects of removing a site, when
all its z neighboring bonds happen to be removed. At this
level, results characteristic of case II will appear. Thus,
for bond dilution we expect the damping at small p to be
of the form

I'(q, p) - pC' i(p) q"+' + + &.p'q" ', (4.19)

where C„ is a constant. Therefore at small enough q, the
q" damping will dominate. Thus the q" damping is
a general feature for diluted AFH systems.

Secondly, based on our calculation, the dynamical
scaling theory for the AFH system by Christou and
Stinchcombess (CS) has to be modified. The CS the-
ory was based on the calculation by EJ (Ref. 29) which,

as we have pointed out, incorrectly gives q"+ damping.
To apply our result to the scaling properties, we will use
a simpler approach than that of CS. The dispersion rela-
tion for the antiferromagnetic case is

(q) = (x)q+ ~V( )q" ',
where c(x) can be expressed as

(4.20)

c(x) = A(x)
X~(x)

(4.21)

where A(x) is the DC conductivity, and y~(x) the trans-
verse susceptibility. Near the percolation threshold at x,
these scale as follows:

A(x) ~ (x x, )~ ~ (

X~(x) -(*—x.) -(. (4.22)

t+ r 2t —p —(d —2)v
z —~ + —j- +

2v 2v
(4.24)

so we find the same relation for z as did CS. The scaling
for the damping rate is therefore found to be

2t —P —(~t —2) v

p(() ~ ( 2v (4.25a)

As in the CS paper, we can go further to write

F(q, () oc (x —x, ) "q" ', (4.25b)

where p, = (d —2)v —1/2[2t —P —(d —2)v] which differs
from the CS result p, = dv —1j2[2t —P —(d —2)v].

V. STATIC AND LOW-FREQUENCY
PROPERTIES

In this section we will apply our results for the various
low-frequency and static properties. First we consider
the zero —point motion induced by the defect.

We first consider the total moment on the A sublattice,
when there is a single defect located somewhere on the
A sublattice. This quantity is given by

(5.1a)Sz ——NS + (S' —S) —) (a~taR, )
R

= ~S + (S' —S) —) [I'„(o,'„c k) + mk(p „p—k')

—~k~~((~kp' g) + (p-k~k))] . (5.1b)

where ( is the correlation length, and according to HK, w

can be expressed as ~ = t —P—(d —2)v. We then apply the
dynamic scaling principle of Halperin and Hohenberg,
in order to get a relation consistent with (4.20). Thus,
omitting amplitude factors we write

~(q) = q'f(q() = q'(q' '(' '+~q" ' '(" ' ') .

(4.23)

Comparing this with Eqs. (4.20) and (4.21) we get
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(AkCt'g) = de 1
Img~ ~(k, k; e —i0+),

(5 2)
where T is the temperature, and we use

1 ( 1+
~ ~

t, (k, k;e).
qe —ekee —ek

(5 3)

We will separate this into various terms. First there are
the terms which occur in the absence of defects, Then
there is the static effect of the defect embodied in the
term S' —S. Finally there are contributions due to mod-
ifications in the zero-point fluctuations due to the defect.
To isolate such terms we write 0 —Img (k, k;e —i0 ) .

—OO

(5.4)

We denote the contribution to the zero-point motion due
to fluctuations caused by the defect LS, so that S&
Sz(0) + S' —S —6S, where Sz(0) is the value of S& in
the pure system. Then

Obviously, the contribution from the first term represents
fluctuations in the absence of the defect, whereas the
second is due to the presence of a single defect. In the
zero-temperature limit, we have

de—Im " [cr~(k; e)]
7r e —ek 2

m2
+ z [oA(k e)]pp + 2 2 [Z~(k e)],p + 2 z [o~(k e)]p, (5.5)

Here we noted that the diagonal (in wave vector) t matrix is given in terms of results written in Eqs. (3.33a)-(3.33d):
t (q, q, e) = o (q, e). Also, in Eq. (5.5) cr~(k;e) is the self-energy when the defect is on the A sublattice,
whose symmetry-adapted components are given in Eqs. (3.24a)-(3.24c), (3.29a), and (3.29b). We decompose the
«ntributions in Eq. (5.5) into those from s-wave scattering and non-s-wave scattering, indicated by a subscript.
Thus we write the contribution involving s-wave scattering as

—iO +
tzPq(k) mkg2(k) tom&[Pq(k) + $2(k)] eg de

,o+ N „-™(e —e~) (e + e~) (e —ez) D(e) ~ (5.6)

and that due to non-s-wave symmetry to be

—iO +
de 1——) t„m„

~-io+ & N

1 1
x Im +

(e —e~) (e + ek) (e2 —e2k) z —(1 —e) (js —1)g&~l (e)
' (5.7)

Thus

de 1 ). pk~ (js —l)P~"l(k)
,o+ vr

™
N „(e2—e&)2 z —(1 —e) (js —1)g~~l (e)

' (5.8)

We should check the convergence of these expressions,
as this will confirm the expected result that the lower
dimension for the occurrence of long-range order in the
presence of random dilution is d, = 1. The integrals in
Eqs. (5.6) and (5.8) are over the (d + 1)-dimensional
manifold of momenta and frequency. Counting powers
of momenta and frequency in the integrand of Eq. (5.6)
yields three inverse powers. This result, taken at face
value, would suggest a logarithmic divergence for d = 2.
However, this apparently divergent term cancels out. To
see this, we now consider the situation when the energy
dependence of D(e) is neglected. [The energy dependence

Im
—iO+

de 1
2

———Im
p+ (e + ek) e + ek —i0+

- 0

=0

(5.9)

of D(e) would increase the power count we just made. ]
Also note that Pq(k) + $2(k) ek, so this term does not
actually contribute in zeroth order in e~. Also the term
in (e —ek) has no imaginary part for negative e and
therefore gives zero contribution. We are thus left with
the term of order m4& in the integrand of Eq. (5.6) which
yields
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So all the terms which appeared to lead to the divergence
of LS for d = 2 actually vanish. Less dominant terms
than those we just considered cause a divergence at d = 1.

We now analyze these expressions using the 1/z
expansion. Roughly speaking, this expansion is ob-
tained by expanding momentum —dependent quantities in
powers of pk. To leading order in 1/z we drop the correc-
tions of order unity to the denominator in the last factor
of Eq. (5.8) and we set ek ——1 —pk2 = l. Also we use
N 'Q„pk2 = 1/z and

) ~'"'(k)'=2 (1-~.) (5.10a)

so that
(5.10b)

Thus to leading order in 1/z we have

de js —1 1 1
Im

z (e + 1)2 (e —1)2

) as„=-',
pgs

(5.12)

as
Proceeding similarly, we have the s-wave contribution

(5.11)

The integral is easily done using Im(x —i0+) = 7t6'(z).
Thus we have to leading order in 1/z

oc&—i 0+

dc

D( )

js —1 ) . (e+ ek) j(1 —s) & - (e+ ek)(e+ 1)
N (e —ek2)2 N ~ (e —e2) (5.13)

Here we have

js —1 . (e+ ek) js —1 . (e+1 —pk)
N - (e —ei, ) N ) (e —1+p2)

k k k

js —1 2

(e —1) z(e ~ 1)
2

z(e2 —1)

(5.14a)

(5.14b)

j(1 —s) & (e+ e&~)(e+ 1) j(1 —s)(1+ e) & . e+ 1 —p&2

N +- (e —e ) N +-(e —1+p )k k
(5.15a)

j(l —s) 1

(e —1)2 z(e + 1) z(e2 —1)
(5.15b)

Also we need the 1/z expansion of D(e) For this pur. pose
we write

~o(e)= ) .. .+ 2

Using these results we find that

1 j —1 2js 'i 2(js —1)
4z j+1 j+ly j+1 (5.18)

Oz 2
Combining Eqs. (5.12) and (5.18) we get the full result

D(e) = 1+
1 —e z(l —e2) z(j —e)(1+ e)

(5.17)

This result makes evident the nature of the 1/z expan-
sion. The first term replaces the density of states (with-
out defects) by two h functions at e = +1. Subsequent
terms contain corrections which effectively give a finite
width to the density of states. Using Eq. (5.16) we obtain
the desired expansion:

's 0 —1)
4z(j + 1)' (5.19)

This shows that for vacancies (s = 0), the effect of zero-
point defect fluctuations is of order (1/z)2, at least, as
was found some time ago by Kumar.

Next we consider the dependence of the zero-point mo-
tion on distance from the defect. However, since this
analysis is rather technical, it is relegated to Appendix
C. There we obtain the result
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(5.20)

where we assume that the observation point a distance
r ( r )) a) from the defect and the defect are both on
the same sublattice. This analysis was done explicitly for
vacancies, but it probably holds generally for the type of
defects considered in this paper.

Next we study the density of states for spin devia-
tions. For different applications one might consider dif-
ferent definitions of the density of states. Here we will
evaluate

1
p(e) = —) Img (k, k; e —i0+)

k
(5.21)

p(e) = po(e) + &p' '(e) . (5.22)

Since defects contribute independently to p~ &, we have

for low energies. In fact what we should evaluate is the
term linear in the concentration of defects, and we treat
here only the case x = x~ ——x. Thus we write

k

(5.23a)

We start with the s-wave contribution, which is denoted p, (e):

p~'&(e) = ) Im ",
~

+
~
[j(1 —s) + (js —1)]

1 1 l j(1 —s)

I
(5.23b)

If we write ek = (ek —e) + e, we can express the sums over k in terms of go(e) and fo(e), where

1 - 1
fo(e) = y)

k
(5.24)

To leading order in e we obtain

~t,'"(~) = . I
fo(~)" + ~ 'z

I
+ ~I . + (~ —&)ao(~)'

l l (& —8) z )
ego(e)—" .

~ [(js —1) —j(1 —s)dfo(e)'/de],
2

(5.25)

where the prime indicates the real part and the double prime the imaginary part. Now, of course, fo(e)" is only
nonzero for positive energy, e. But go(e)" is an odd function of e, which for positive energy obeys

2eg()(e)" = f (e)" . (5.26a)

Also

dfo(e)'/de = go(e)' . (5.26b)

For most applications we combine the positive and negative energy spectral weight:

vr[p, (e) —p~ (—e)] = . fo(e)" + e —.+ s —1 —s —(s —1) go(e)'
~

.(1 —j) „d[fo(e)"] s 2 2

j de

(Thermodynamic properties involve the negative of the spectral weight at negative energy. )
Next we include the non-s-wave contributions. For p, g s, we have

(5.27)

xp (e) =™I ) 2 ([zz" (q; e)], + [~~" (q; e)) ) (5.28)

For small e we may write this as

(i) I 1 - 4'"'(q)' i~ 2 (js —1)
N ) - (e —eq)2 ~ ~ z —(j s —1)g~»(e)

' (5.29)
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This can be written as the sum of two terms, the first taking the imaginary part of (e —e~), the second the imaginary
part of g&»(e). The second term can be dropped because it is of order e g (e)", as shown in Eqs. (4.6a), (4.6b),
and(4. 6c). So we have

(i)( )
js —1 1 ). pi' (q)

z —(js —1)g~»(0)' K e~(e —e~)~
(5.30)

The integrand only contributes an imaginary part for e„near e. There P~&l(q)2 = ze . Non-p-wave contributions can
be neglected henceforth, since they are higher order in e. So

~p~'l(e) = (js —1) z ). e~
z —(js —l)g~»(0)' N (e —e~)2

z(js —1) d[efp(e) "]
z —(js —1)g~&l(0)' de

(5.31a)

(5.31b)

where

(1 —j)1= z(js —1)
z —(js —1)g&»(0)' ' (5.33a)

A.2 ———.+ s —1 —s —(s —1) gp(e)
S 2 2

z(js —1)
z —(js —1)g„(0)'

Note that A, 2 is identical with the constant p defined
in Eq. (4.3b), and which is evaluated explicitly in Eq.
(4.10) .

"sVe discuss briefly the meaning of this result. To order
x we may write

/I
e

~[~(e) —~(—e)] = (1+xAi)fp 1+px
(5.34)

where 1 + px to this order is
/[A(x)g~(0)]/[+[A(0)y~(x)]. This result suggests that
it is correct to view dilution as simply renormalizing the
energy [as in Eq. (4.3b)] and the oscillator strength of
the spin vraves. Hovrever, this idea cannot be totally cor-
rect because there are contributions to the low —energy
density of states from large q spin waves. An alterna-
tive way to obtain the above results is to consider the
spectral weight for each value of q and sum over q. In
that approach the density of states far small e has can-
tributions (a) from spin waves with e~ = e and (b) from
spin waves with arbitrary q. These latter contributions
must be kept in order to obtain the result given in Eqs.
(5.33a) and (5.33b). This observation suggests that to
higher order in 2: the low-energy density of states may
not be expressible in terms of the static magnetic elastic
constants, as we were able to do at first order in x in Eq.
(5.34).

In the following, vre show briefly how one discusses

Thus in all we have

vr[p~ l(e) —p~ (—e)] = Ai fp(e)" + A2edfp(e) "/de,

(5.32)

the effect on local modes of mixing with extended states.
This treatment will lead to shifts relative to the single-
defect bound state energies as given for the antiferromag-
net, for instance, by Tonegawa. For simplicity, in the
following example we consider the ferromagnetic case and
suppose there exists only one local mode at frequency a~.
Then the boson Green's function can be written

G(q, ~) =

(d —M~

(u) —a )(~ —ai) —xcr(q, ~)

(5.35a)

(5.35b)

which can be factorized as

G(q, ~) =
M —(d y Cd —M2

(5.36)

where limz p ui(q) = const x q and u2 = ui + xC(q) .
In this way we obtain the spin-wave pole discussed above
and also the pole shifted away from the local excitation
energy given by Tonegawa.

VI. CONCLUSION

In this paper we have studied the quantum Heisenberg
antiferromagnet in d spatial dimensions at zero tempera-
ture in the presence of defect sites. We have allovred the
defects to have arbitrary spin and coupling constant to
the neighbor host sites. We treat the low concentration
limit, but for some applications vre allow the concentra-
tion of defects x to be different on the two sublattices, A
and B. Thus vre do not necessarily require x~ ——x~. Of
course, when x~ g x~ we are dealing with a ferrimagnet.

Our principle results are as follows.
(1) Our treatment is sufficient to obtain dispersion re-

lations for the case when x~ g x~ which lead to a fer-
romagnetic acoustic mode and an optical mode, both of
whose frequencies agree with the predictions of contin-
uum theory. Also, the damping of the acoustic mode
agrees with that obtained in a ferromagnet with a low
concentration of vacancies.
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(2) In the case when x~ = x~ but the defect spin
is different from that of the host, one has locally bro-
ken symmetry, so that one can view the modes as being
locally those of a ferrimagnet. This indicates that the
scattering is strong in this case. We find the scattering
matrix element to be of order unity [for details see Eq.
(3.20)] and consequently the damping of spin waves of
wave vector q to be of order q", in agreement with a
Golden Rule estimate.

(3) For the case when the defect spin is the same as
that of the host, the scattering matrix element, given in
Eq. (3.20), vanishes in the long-wavelength limit, and the
damping is of order q"+ . As long as x~ = x~, the real
part of the energy is given in agreement with continuum
theory in terms of the perpendicular susceptibility, y~,
and the helicity modulus, A.

(4) We show that the local density of states is also re-
lated to the static elastic constants, y~ and A. However,
the density of states has non-negligible contributions even
from large wave vectors.

(5) The total zero-point spin deviation attributable to
the defect, AS, is shown to be finite for d ) 1. To lowest
order in 1/z, where z is the coordination number, AS is
found to be proportional to the spin on the defect site.
For a vacancy, the fact that a spin is missing reduces the
zero-point perturbation due to the missing S+S terms,
but the zero-point fluctuation is increased due to the de-
crease in the local excitation energy near the defect. A
more accurate calculation would probably show that, in
three dimensions, the zero-point motion scales with dilu-
tion as the mean field transition temperature.

(6) We find that the spin deviation field around a defect
falls ofF as r "+,where r is the distance from the defect.

(7) Although we give no calculations, our formula-
tion does enable one to calculate [via Eqs. (5.35a) and
(5.35b)] the shift in the local mode energies due to inter-
action with the spin-wave continuum.

S+e~ ——V 2Sa„, (A2a)

S+e~ = v 2Sbt, (A2b)

S,~~ = V'2Sa~[l + (s —1)e(r)], (A2c)

S„&& ——v 2Sb, [1 + (s —1)e(r)], (A2d)

(( arear' z&e~))e ((araki br'ea))e

((,+~a ar+, g))e ((b.+~a br ~a))e
(A3)

Now use the t-matrix solution for the single-defect prob-
lem. Then

G(r, r') = G~ (r, r') + ) e(R,) G T(R)G (r, r'),
R

where G~ ~ is the pure-system Green's function. Then

LI (, ') = G&'l+) (a)G~'lT(R)G~'&
Ft

x [1+(s —l)e(r')],

- X,Y

(A5)

where the subscripts X and Y assume the values 1 or A
and 2 or B. After a configurational average this becomes,
in Fourier transformed variables,

Lrx, v(A)= [G(A)lx, v (A) [1+»(s —1)l

where s = S'/S and e(r) is unity if a defect is at site
r and is zero otherwise. We define the analogous boson
Green's functions by
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1
+x~ (s —1)—

N

) G(A)T(V A )G~'&( )
q

(A6)

where T(Y; A, q) is the t-matrix when the defect is on
sublattice Y. Thus

APPENDIX A: VERTEX FUNCTION

H(A) = G(A) [I+L(A)],

where I is the unit matrix and

(A7)

In this appendix we relate the spin susceptibility to the
boson Green's functions. We start by defining the matrix
H by

[L(A)lx,~ = bx, Y + —) T(&; A, q)G '
(q)

(s —l)xg ' N ' ' x v
q

((S,+e~ S, e&)). ((S,+ S, ))

((S,+6B 'em))

In view of Eqs. (3.12a) and (3.12b) we write

(Al)

(A8)

From here on we drop the superscript (0) on G. All
subsequent Green's functions will be unperturbed ones.

Thus
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[L(A)]x ~ = (s —1)x~6x ~

+( — )~).[ ( ) ( )],
and

G(A) = U(A)g(A)U(A), (Allb)

[L(A)]x &
——(s —l)@~6' ~

where
(A9a)

g(A) = 0
1

e+eA
(A12a)

+(s —1) ).IT(B;A, q)G(q)]x ~

(A9b)

and

G(A) = 1+e
A

e2 —e2 (A12b)

U(A) = mg (A10a)

We may think of [L]xz (or [L]~z, respectively) as a two-
component column vector which is the first (or second,
respectively) column of the matrix [L].

It is important to understand the transformations be-
tween the A Brepr-esentation on the one hand and n P-
on the other. We define the transformation which is used
to express a and bf in terms of n and Pt:

and

V = U(A) v U(A)

v = U(A) VU(A),

(A13a)

(A13b)

where V (v) is the perturbation in the A B(n-P)-repre-
sentation. For the pure system

Note that, on the other hand, the transformation prop-
erties of the potential are

Note that this matrix is symmetric, so we do not need
to distinguish between it and its transpose. The inverse
transformation is

V(A) =
'7A

(A14a)

U(A) i = lg mP
mp l),

(A10b)
v(A) = (A14b)

g(A) = U(A)-'GU(A)-' (Alla)

If g denotes the matrix Green's function in the n-P rep-
resentation, and G that in the A-B representation, then
we have

t = U(A)TU(A), (A15)

where T (t) is the configurationally averaged t-matrix in
the A B(a-P) rep-resentation.

Now

= 6x,A + —). U(A) 't(~; A, q) U(q) '
U(q)g(q) U(q) (A16a)

Similarly

+ —) U(A) 't(A; A, q) g(q) U(q)
q

[Llx,g (A) 0 + —) U(A) 't(B; A, q)g(q) U(q)
0

(A16b)

(A17)

Recall from Eqs. (3.19a)—(3.19f) that

t(A, A, q) = [lqPi(q), mqPg(q) ], (A18a)

ept(B, A, q) [m~~~(q) ~

where D(e) is given in Eq. (3.32).
To evaluate Eq. (A16b) note that
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egU(A)
70+ (A19)

and to evaluate Eq. (A17) that

Then we find that

U(P)
—1 mA YA

[L]x,& (~) 1 K,(.)
(s —1)x~ 0 D(e)

(A20)

(A2la)

where

[L]x B (A) 0 K (e)
(s —1)zB 1 D(—e)

(A21b)

K+(e) = —) [lq)z(q), mqg2(q) ] g
' (q)U(q)

q

and K (e) = K+(—e). Explicitly we have

1 . l Py(q) mq&2(q)K = — +N e —eq e+eq

= —) tqpq(q)(e+ eq) + mqp2(q)(e —eq)

(A22)

(A23a)

(A23b)

= —) ([j(1—s)[t (e+ eq) —m (e —eq)] + (js —1)eq[lq(e+ eq) + mq(e —eq)]) (A23c)

= —) [j(1—s)(e+ 1) + (js —1)(e+ e )] (A23d)

) ((js —l)(e —e ) + (1+e)[j(1 —s) + e(js —1)])

= 1 —js + (1 + e)go(e) [j(1—s) + e(js —1)] .

(A23e)

(A23f)

K+ (e)~(e) =
D(,)

. (A24)

We can write the results in the form of Eq. (3.34) if we
define

where g~&(0) is the p-wave Green's function for a fer-
romagnet. Recall that the symmetry-adapted function
P(~) (q) is the same for both ferro- and antiferromagnets.
We have

APPENDIX B: HELICITY AND
PERPENDICULAR SUSCEPTIBILITY

1 y(P) (q)2
1+,q&PZ

(B2a)

Z"(x) 2xz(js —1)=1+Z'(0) z —(js —l)g~~(0)
' (Bl)

We will assume that the helicity for a ferromagnet is
equivalent to the macroscopic conductivity, as expressed
in Eq. (2.32). To evaluate this for a body —centered
antiferromagnet, we will express the right-hand side of
Eq. (2.32) and relate the result to the similar term in
Eq. (4.lla). For a body-centered-cubic ferromagnet Eq.
(2.32) gives

1 y(P) (q)2 P(P)(q)2= —). +N - —1+pggAFZ
(B2b)

where in Eq. (B2a) the sum is over the paramagnetic
zone, whereas in Eq. (B2b) the sum is over the smaller
antiferromagnetic zone (AFZ). The sum over the second
antiferromagnetic zone, which is needed to reproduce the
outer half of the paramagnetic zone, is obtained by not-
ing that exp(iq 6) = —exp(iq' b'), where q' (in the first
antiferromagnetic zone) is the value of q (in the second
antiferromagnetic zone) modulo the antiferromagnetic re-
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ciprocal lattice. Thus (t("l and p change sign in going
from a wave vector in the first antiferromagnetic zone to
its equivalent in the second antiferromagnetic zone. Thus

x dZ" (x)
2Zei (0) dx

(B8)

y(~)(q)2

qGAFZ
(B2c)

y(P) (q)2
gF(0) = ~ ). 2 =gAF(0) (B3)

Note that here 2/N is the number of q values in the AFZ.
Thus, in the notation of Sec. III, this would be

Next we evaluate the perpendicular susceptibility. The
simplest way to do this is to consider the system in a
small staggered field h, whose purpose is to stabilize
the antiferromagnetic ground state. The staggered field
adds to hp in Eq. (3.4) the term h, g (at a~ + bt b~).
The definition of the Green's function is such that y~ ——

—
2 limy. p y+ (q = O, e = 0). In evaluating y+ we

should first let q go to zero, then let h, go to zero. In
the presence of a staggered field, h„Eqs. (3.6) and (3.7)
are revised:

1 dZe'(x) 2z(js —1)
Zei(0) dx z —(js —1)gAF(0)

(B4)

where gAF(e) is the antiferromagnetic p-wave t matrix of
Sec. III. Thus we may write

1/2/'1+ h, +.,~

)
)1+h. —,,i"'

2eq )
(B9)

G g
q 8

(B5)

P" (q) = v zsin(q a/2)
P=y, z, .

cos(qua/2) ~zaq~/2,

For a body-centered hypercubic lattice in d spatial di-
mensions, one has

e~ = (1+h, )2 —p2 . (»0)

Thus to leading order in h„eo: 2h, and g~ =
g& &

——

—ep . Therefore from Eq. (3.34) we have that

so that
(B6) 1

yg = ——A(0, 0)
2 eo

1+,, ): .,n
O ~,n

(Bl1)

(t"(q) = ) P"~(q) - za q /4 - ze
P

(B7)

where P labels the d coordinate directions. Thus the last
term in either Eqs. (4.3a) and (4.3b) or (4.10) inside the
square brackets is

Note also in Eqs. (3.35a) and (3.35b) that the quantity
(1 —p~)/e~ is actually (t~ —m~) . Using Eqs. (B9) and
(B10) this quantity is (1+h, —pq)/e~ —& 2ep. Thus for
xg =xg =x we have

A(0, 0) = (tp —mp) [1 + x(s —1) + 2x(s —1)&(0)] (B12a)

=12 x(s —1)
ep 1 + x(s —1) + 2 . [1 —js + jgp(0)(1 —s)]2

(B12b)

Also

Using the evaluations we have

) op„——2 (j —1+js —1) .
P '0

(B13)

Thus

=1 (1
1 + x(s —1) + 2x(s —1)! —, —s + gp(0) (1 —s)

2
r(j

( 2b
1 —xl 1+s ——.

! (B14)

1 dy~(x) 2 2

2y~ (0) dx
= —g.(o)( —1) + ( /j) + (B15)

This result agrees with Eq. (B.16) of KH when the anisotropies 6g and 6~ are zero. In view of Eq. (B15) we see that
Eqs. (4.3a), (4.3b), and (4.10) are all consistent with Eq. (4.4a).
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APPENDIX C: ZERO-POINT DEVIATION

In this appendix we analyze how the zero-point deviation depends on the distance from the defect. For simplicity,
we confine out attention to the case where the defect (located at R) is on the same sublattice as the defect. We start
from

(o) ~ - (o) (o)
gAA = gAA + 7 ~ gAX~XY gYA &

X,Y
(C1)

where A and Y are summed over the values A and B. Only the term involving the t matrix has a dependence on r.
Keeping only it, we have

g~~(R+ r, R+ r) =
2 ) e' " ' '+

[lqg ~(q) —mqg& (q)]tp, (q, A) tgg (A) —mug (A)
q, A, po.

(C2)

In matrix notation we have

[t(q, A)] = e'~" ~ &zgi(A), m&$2(A)
mq D(e)

Thus the terms which concern us are

+).
l +S

(C3)

gAA —— e' ' Im
1,( „),, eq tq mq I l„gi (A) m„g2 (A) '(

¹

- D(e) e —eq e+ eq) e —eg e+ eg

~. /'2eqlqmqg(»(q) 2egt~m~g(»(A) (j s —1)
e2 e2 e' —e' D(»(e)A

(C4)

in an obvious notation. Now for simplicity, we specialize to the case of vacancies, for which Pi = —P2 = j and
D (e) = j[1 —e(1 + e)go (e)]. Then

(aR+ aR+ ) =
—io+

i(q —g) r

oo —io+ ¹2
Aq,

m'
x Im

1 —e(l+ e)go(e) e —eq e+ eqp e —e~

- ~.e~" (q)»O~~~(A)
e~ —ei e~ —ei z+ (1 —e)g(&)(e)) I

e+ epp

(C5)

One can analyze the non-s-wave contributions in Eq. (C5) by simple power counting estimates and one finds them
to be of order R 2"+ . However, keeping in mind Eq. (5.9), we have to be careful with any power counting argument
for the s-wave contributions. To see the problem, replace D(e) by a constant, in which case the integration over e
can be done explicitly first. So we set

1 e(1+ e)go(e)
1 —e(1+ e)go(e) 1 —e(1+ e)gc(e)

(C6)

where

((2R+,&a.+r) = &i+&2+Ts ~ (C7)

de 1 t2

, ) e*~q-&"e,rm q +
,O+ Vr ¹

q, A
e —eq

m q
e+ eqP (, e —ep

m„
e+ eg)

(C8a)
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de I,( &),, eqe(1 + e)gp(e) l„mq ) i' l&A

,p+ 7r N2 „1—e(l+ e)gp(e) e —eq e+ eqp ge —eg
q, A

m2

e+ epp
(Csb)

We have

de 1, „,, f~qP(")(q) ~,P(~)(~)
,p+ n N2 -( e~ —e2 e —e~~ z+(1 —e)g(»(e)p

q, A p+s

2 2 2 21,( ~l, mqlp tqm„
!N (eq+ e), eq+ eg)

q, A

e (q-al (e& eq)
2N2 „eg(eq + eg)

q, A

(CSc)

(C9a)

(C9b)

i(q —A) r

q, A

) i(q Al r-
2N~ „(eq+ eg)

q, A

1

(eq + ep)
'

eA)
(C9c)

(C9d)

In going from Eq. (C9c) to (C9d) we dropped the completely local term, since we are only interested in the behavior
at large r. Thus

Ti ~(r/a) —ad+i (C10)

where we find the constant K to be I/(32vr) for d = 2 and 1/(16vrs) for d = 3. Note the cancellation which led to the
result of Eq. (C10) rather than a power law with exponent —2d+ 3. The same cancellation in Tq makes it irrelevant.
Actually we find

T -38+2

Finally, we consider T3 for simplicity for d = 2. Then

(C11)

8
/~2

sin( z q a) sin( 2 A a)r

,p+ vr
- (e~ —e~)(e2 —e~~)

(C12)

where I' = z+ g("&(0) and we have omitted corrections at finite wave vector in Eq. (C12). We have

—i0+
de) (g } a I A~( 1

ip+ 7c eqe& i e —eq

(
e+ eq i, e —ep e+ egg

(C13a)

a4

2F(2~)4
1

32r~4 AdA qdq dP~ dP~ cos Pq cos P~

,.( ), q A 1

eqeA eq + eA
27r 2' —t(q+A)+i A cos Pz (r/a)+i q cos Pq (r/a)

(C13b)

(C13c)

It is easily shown that this integral gives a contribution of order r = r " which must be added to that of Eq.
(C10) to get the full result.
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