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Kinetic theory of fiux-line hydrodynamics: Liquid phase with disorder
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We study the Langevin dynamics of Aux lines of high-T, superconductors in the presence of random
quenched pinning. The hydrodynamic theory for the densities is derived by starting with the microscop-
ic model for the Aux-line liquid. The dynamic functional is expressed as an expansion in the dynamic or-
der parameter and the corresponding response field. We treat the model within the Gaussian approxi-
mation and calculate the dynamic structure function in the presence of pinning disorder. The disorder
leads to an additive static peak proportional to the disorder strength. On length scales larger than the
line static transverse wandering length and at long times, we recover the hydrodynamic results of simple
frictional diffusion, with interactions additively renormalizing the relaxational rate. On shorter length
and time scales line internal degrees of freedom significantly modify the dynamics by generating wave-
vector-dependent corrections to the density-relaxation rate.

I. INTRODUCTION

Unlike conventional, low-temperature superconductors
high-T, superconductors exhibit strong Auctuations due
to the combined effect of the small coherence length g,
anisotropic layered structure, and high temperatures. It
has been argued that the Abrikosov vortex lattice melts
as a consequence of these enhanced thermal Auctua-
tions. ' Quite recently there has been experimental evi-
dence ' that in clean crystal samples (in the absence of
twin boundary pinning) the Abrikosov flux lattice melts
via a first-order phase transition. " In the Aux-liquid state
the vortex lines are free to move through the sample (ex-
cept for their mutual repulsion) and will collectively drift
in the presence of an external transverse current. This
Aux-line motion will then in turn generate a finite voltage
and lead to a nonzero linear resistivity.

The phase diagram is changed if one includes the
effects of disorder. Depending on the type and strength
of the disorder, the vortex liquid state will persist down
to an irreversibility line associated with a possible
second-order phase transition to a vortex-glass, ' or
Bose-glass state. ' The melting of the Aux lattice has
clearly very important consequences as most vividly illus-
trated in Fig. 1 where the mean-field phase diagram is
contrasted with the phase diagram which includes effects
of thermal Auctuations and disorder.

Because the Aux-line liquid phase occupies a large por-
tion of the H-T phase diagram, much of the efforts have
been directed toward a better understanding of the prop-
erties of this phase in the presence of disorder. There has
been considerable progress in understanding the static
properties of Aux lines in the liquid phase. ' The resulting
phase is well described by a collection of directed Aexible
lines with a line tension related to H, &. The lines traverse
the sample in the direction of the applied magnetic field

0 Tc

H„

VOR
GL

PH

(b)
Tc

FIG. 1. (a) Mean-field phase diagram of type-II superconduc-
tors. (b) Schematic picture of a phase diagram of high-T, super-
conductors, which includes effects of thermal Auctuations and
disorder.

and at finite temperatures wander throughout the sample
analogously to the Brownian motion executed by atoms
or small molecules in conventional isotropic liquids. This
flux-line liquid in the presence of point disorder is depict-
ed in Fig. 2. The Aux-line states depicted in Fig. 1 have
been extensively studied in many experiments. Early ex-
periments used the Bitter technique in which the location
of the Aux-line ends emerging from the sample is resolved

H„

0163-1829/93/48(14)/10357(25)/$06. 00 10 357 1993 The American Physical Society



10 358 LEO RADZIHOVSKY AND ERWIN FREY 48

Z il

L

~ I

~ ~

:0

FIG. 2. Schematic picture of fiux lines in high-T, supercon-
ductors in the presence of pinning disorder (indicated by black
circles). Conformation of the ith line is described by a two-
dimensional vector r; (z, t ).

by sprinkling magnetic powder on the sample surface. '"
The disappearance of the regular, hexagonal pattern as
the field or temperature are increased is suggestive of
melting of the Abrikosov Aux lattice. These experiments
only directly probe the surface configuration of flux lines
and therefore do not exclude a possibility of melting
confined to the surface. Indeed theoretical analysis
shows that the surface interaction always dominates in
determining the decay of translational correlations in the
asymptotic long-wavelength limit. ' However, such large
length scales have not been probed by the decoration ex-
periments. Later vibrating-reed experiments by Gammel
et al. have found a signal suggestive of the melting tran-
sition. Although very difficult, more direct measure-
ments of the bulk properties of the Aux-line liquid are
possible. In principal, the structure function of the in-
teracting line liquid can be measured using neutron-
scattering techniques. These experiments can directly
probe the density correlations in the line liquid, which
are governed by very different physics than ordinary
liquids of point particles with an isotropic structure func-
tion. ' Also, recently, revolutionary electron holographic
techniques have been used to image the motion of Aux
lines in thin Pb films. This probe, which can image Aux
lines in real time, can be used to study mixed states also
in high-T, superconductors, and can provide invaluable
information about the dynamics of Aux lines. '

The interactions between lines, thermal fluctuations
and the effects of disorder are clearly very important and
are the main physical features that must be taken into ac-
count by the theory. Significant progress has been made
by map'ping the problem of Aux lines onto the quantum
statistical mechanics of interacting 2D bosons, where the
roles of A, temperature, and mass of the bosons are
played by the temperature, the inverse sample thickness
and line tension, respectively. With this mapping much
of the insight gained from the study of systems like heli-
um was taken over to the problem of line liquids. When
the lines are long, (i.e., the sample along the applied field
direction is thick), the temperature is high, and the 2D
density is large, such that a typical line wandering dis-
tance is larger than the average interline spacing, a highly

entangled line liquid results. However, the entanglement
should persist only if the line crossing barriers are
significantly larger than the thermal energy. Although to
date no detailed analysis of line crossing barriers exists,
simple estimates give U, /k~ T,&,

—10—30, which
translates into very slow relaxational rates. The entan-
gled phase corresponds to the Bose-condensed phase in
the boson picture.

The static structure function for the interacting Aux
lines has been previously computed within the Bogo-
liubov approximation taking advantage of the boson map-
ping. ' The contours of constant scattering intensity form
a butterAy pattern with two peaks, and is quite different
from the structure function of isotropic fluids of particles.
At long wavelengths, away from any critical transitions,
the theory of the vortex liquid can very well be described
by a "hydrodynamic" model in terms of density fields,
with phenomenological nonlocal coefticients. The advan-
tage of starting with a microscopic description, however,
is that the long-wavelength description of the liquid can
be understood in terms of a more basic, microscopic
model, thereby providing a more detailed understanding.

Although the boson mapping has been instrumental for
understanding the static long-wavelength behavior of line
liquids, unfortunately, there does not appear to be an ob-
vious extension of this mapping to study the real hydro-
dynamics. Some progress has been made through phe-
nomenological approaches in which the dynamic equa-
tions of motion are written directly for the coarse-grained
density fields, using the static free energy, with phenome-
nological nonlocal coefficients determined by the static
structure function.

As for the statics it is useful to obtain the description
of the dynamics, starting with equations of motion for in-
dividual interacting Aux lines, and to derive the dynamics
for the observable hydrodynamic quantities like density.
The goal is to construct a kinetic theory of Aux-line hy-
drodynamics analogous to that of point liquids, which
was useful in understanding hydrodynamics of simple
liquids many years ago. With this approach it should be
possible to calculate the hydrodynamic parameters such
as (line-liquid viscosity, if it exists) which arise completely
from the Aux-line interaction and entanglement effects
and from the single-line microscopic friction. The bare
diffusion parameter will be an input to the theory, and is
related to the real microscopic coupling of Aux lines to
the underlying crystal lattice, the Bardeen-Stephen fric-
tion coe%cient. '

A question of renormalization of the bare diffusion
coefFicient of a tagged line by the presence of the Aux-line
liquid and the interaction with this liquid through ex-
cluded volume interaction is also of interest and is related
to the line-Auid viscosity. It is expected that if disorder is
strong enough and the system is in an entangled regime a
localization phenomena will take place, driving the renor-
malized diffusion constant to zero.

In this paper we take a step toward a description of the
Aux-line liquid in terms of a kinetic theory of line liquids.
We introduce a formalism that is useful for microscopic
calculations of the dynamics in the Aux-line liquid phase.
The hydrodynamics of the Aux-line liquid is studied by



KINETIC THEORY OF FLUX-LINE HYDRODYNAMICS: 10 359

starting with the microscopic description of the interact-
ing Aux lines in terms of the Hamiltonian that includes
the repulsive interline interactions and in the presence of
quenched pinning disorder that couples to the density of
lines. We expect that entanglement effects are in princi-
ple automatically incorporated in the full theory derived
with this kinetic approach. The repulsive interaction will
inhibit the lines from passing through each other and for
high line densities will result in slowing down of their dy-
namics due to these constraints. It is not clear, however,
what simplest approximation to the resulting interacting
field theory will retain these effects.

This paper is organized as follows. In Sec. II we intro-
duce our microscopic model for the dynamics of X in-
teracting lines in the presence of quenched disorder, and
in Sec. III formulate the dynamics in terms of a more
convenient Martin-Siggia-Rose (MSR) description. In
Sec. IV the hydrodynamic description is discussed and
the microscopic model is partially recast in terms of the
density fields. In Sec. V, by using the method of auxiliary
fields, we integrate out the microscopic degrees of free-
dom and derive the effective MSR dynamic functional
thereby obtaining a hydrodynamic description of the in-
teracting Aux-line liquid. In Sec. VI we approximate this
theory by truncating the expansion of the hydrodynamic
functional at quadratic order, and within this approxima-
tion calculate the interacting dynamic structure function
in the presence of disorder. We analyze this dynamic
structure function in various regimes in Sec. VII, and
derive the corresponding static structure function demon-
strating that it agrees with the result obtained via the bo-
son mapping method. We find that on time scales longer
than Rouse time (time required for the single-line excita-
tion of size L to relax elastically) or equivalently on
length scales larger than the transverse line wandering
length, the noninteracting (single fiux line) dynamics is
dominated by the center-of-mass mode with a k relaxa-
tional rate. In this regime we find that the interacting
structure function reduces to that of hydrodynamic fric-
tional diffusion, consistent with the phenomenological
model of Marchetti and Nelson. ' The interactions be-
tween the lines additively renormalize the relaxational
rate generating a crossover between the noninteracting
and interacting dynamics. This crossover occurs at a
Aux-line length L =I,~, and is physically related to the
entanglement length defined in Ref. 1. On wavelengths
smaller than the transverse wandering length and for
times shorter than the Rouse time we find that the nonin-
teracting dynamics is controlled by the internal modes.
In this regime we obtain a complicated wave-vector-
dependent renormalization of the dynamics summarized
by the interacting structure function. In Sec. VIII we
take the phenomenological approach to the hydrodynam-
ic description of the Aux-line liquids and compare with
the results of the kinetic approach derived in Sec. VII.
Appendix A describes an independent derivation of the
static structure function using the methods of auxiliary
random fields. In Appendixes B and C we derive the
nonlinear terms in the expansion of the hydrodynamic
functional and hydrodynamic Hamiltonian, and analyze
the single-line dynamics in various regimes.

II. DYNAMICAL MODEL

M) 0 0

0 0 M3

(2.2)

For these anisotropic layered compounds the line tension
is considerably smaller e=eM, /M3, ' where M, is the
in-plane anisotropic mass, and M3 = 10 M& is the much
larger effective mass describing the weak Josephson cou-
pling between the planes. ' The above formula for e ap-
plies when the fiux lines are dense (noA, ~))1, where A, ~ is
the in-plane London penetration depth, and no the aver-
age density of vortex lines per unit area). In the opposite
limit noA, ~ &&1 the electromagnetic coupling between the
planes is important and one gets @=e/ln~.

The second term in Eq. (2.1) incorporates the Aux-line
interactions. We treat the regime in which the line coor-
dinates vary slowly with z, although with our formalism
we can easily extend our treatment beyond this regime.
This leads to the interaction energy which can be ex-
pressed in terms of a pair potential which is local in z,
and in the London limit is given by

V(r)=
2 2 [Ko(lrl/~) —Ko(lrl/g')],

4'o

8m. A,
(2.3)

The statistical mechanics of Aux-line liquids is very
different from that of a liquid of point vortices because
the lines are long and connected. Compared to these im-
portant topological properties the detailed internal struc-
ture of an individual Aux line is relatively unimportant.
The essential physics of the Aux-line liquid can therefore
be described by the conformation and position of each
line. These configurations of vortex lines are character-
ized by a set of X functions R, (z) =(r, (z),z), where r;(z)
specifies the position of the ith line in the (x,y) plane as it
wanders along the direction of the applied magnetic field

Hllz through the sample of thickness L (see Fig. 2). The
probability of an equilibrium configuration of N interact-
ing lines in the presence of disorder is given by the
Boltzmann weight exp( —&/k~ T) with

N
L, 1

N

f dz(B, r, ) + —g f dz V[r;(z ) —r~ (z ) ]

+ g f dz U(r, (z),z) . (2.1)

The first term describes the elastic energy of X nonin-
teracting lines with the line tension e, which for isotropic
superconductors is given in terms of the London penetra-
tion length A, and the ratio v=X/g by e=(Po/4m', ) in~,
with the fiux quantum go=bc/2e =2 X 10 G cm and g
the superconducting coherence length and the vortex-line
core thickness. Here we are working in the regime for
which e can be approximated by a constant, although
with our formalism we can easily treat the case of a non-
local elastic energy.

The anisotropic superconductors can be well described
by an effective-mass tensor diagonal in the coordinate
system with the z axis aligned with the c axis of the crys-
tal
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(~/2x)' e for x~~,
E (x)= ' —ln(x) for x~0 . (2.4)

In Eq. (2.3) we have introduced a short-distance cutoff,
the superconducting coherence length g.

The final term in Eq. (2.1) is the contribution of the
pinning impurities to the free energy of the vortex line
liquid. For simplicity we will take the quenched disorder
interaction U(r) to be Gaussian with zero mean,

U(r, z) =0, (2.5a)

U(r„z, ) U(rz, z2) =F(r, —r2, z, —z2), (2.5b)

where F(r, —r2, z, —z2) encodes the strength and range
of disorder correlations. We will later specialize to point,
line, and plane disorder. These three cases appear to be
the most relevant experimentally as we discuss below,

where Eo(x) is the modified Bessel function with the
asymptotics,

with oxygen vacancies and interstitials playing the role of
point disorder, columnar defects and grain or twin boun-
daries as the line and plane disorders.

The model introduced above has been used, in some-
what more specialized form to describe the static features
of the vortex liquid. ' Nelson and co-workers used the bo-
son mapping to compute the interacting static structure
function in the dense phase where the density fluctuations
are small and mean-field theory is a good description.
Using renormalization group methods, they were also
able to treat the dilute line liquid near H, 1, where the
fluctuations are strong. By matching to the dense phase,
where the mean-field theory is accurate they computed
the fiuctuation-corrected constitutive relation B(II) and
the static structure function near H„. This work was
further extended to include the effects of point pinning
disorder on the static structure function in this phase.

Since we are seeking a hydrodynamic description of the
Aux-line dynamics we re~rite the interaction and disor-
der terms in a convenient form,

g f dz V[r, (z, t) —r, (z, t)]=f V(r, —r2) g 5' '[r, r;(z, t—)]5' '[rz —ri(z, t)],
I' 2'

= f V(ri —r~)n(ri, z, t )n (rz, z, t ) XL V(0)—,
11)12)Z

N N

f dz U(r, (z, t))= f d r dz U(r) g 5' '[r —r;(z, t)],
i=1 i=1

= f d r dz U(r)n(r, z, t) .

(2.6a)

(2.6b)

In above we defined f = f d r dz. The self-energy
term XLV(0) in Eq. (2.6a), appropriately cutoff by g, can
be absorbed into the line tension energy, and we will
therefore ignore it in the following analysis. The form of
Eqs. (2.6) suggests that interactions in the liquid phase
are naturally described in terms of the line density

N

n(r, z, t)= g 5' '[r —r, (z, t)] .
i=1

Here we use the model defined by Eqs. (2.1) and (2.5) to
study the dynamics of the Aux-line liquid. We take the
kinetic theory approach and write down the microscopic
dynamic equations for each of the interacting lines. We
assume that at this basic level the line fluctuations are
overdamped and are therefore governed simply by
Model-A-type Langevin dynamics

B,r, (z, t)= —D +g, (z, t) .
6

(2.7)
5r, z, t

For simplicity we assume that the noise g, is Gaussian
with zero average, and covariance

(P(z, t g,'(z, t ) }=2Dk, T5„5.„
X 5(t t')5(z —z'),—a, b =1,2 .

(2.8)

The parameter D is the microscopic kinetic coefficient
proportional to the inverse of the Bardeen-Stephen fric-

tion coefficient, '

no~A
YO

2 z~2 n (2.9)

with gi as the superconducting coherence length in the
copper-oxide planes and o., is the normal-state conduc-
tivity. D describes the effective drag on a Aux line due to
the interactions of the normal core electrons with the un-
derlying solid. In the simplest case of center-of-mass-
dominated dift'usion of noninteracting Aux lines D is pro-
portional to the macroscopic diffusion coefficient (see Sec.
VII). The above dynamics of fiux lines is quite similar to
the dynamics of polymer melts, with the important
difference that for Aux lines there is no solvent. Since the
vortex lines are not moving in any quid solution, Rouse
rather than Zimm dynamics applies, and D is a con-
stant. However, we expect significant changes in the hy-
drodynamic parameters of the line liquid coming from
the pinning disorder and Aux-line entanglement, when
there are significant barriers to line crossing.

In Eq. (2.7) we have for simplicity ignored the com-
ponent of the line drag normal to the Aux velocity v,
which can be accounted for by adding Az BX,r;(z, t) to
the left-hand side of Eq. (2.7). This term determines the
Hall angle OH, according to tanOH=A, ' and is generally
quite small.
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III. MARTIN-SIGGIA-ROSE FORMULATION
OF THE MODEI. co[/, (z, t ) ]—exp — f dt f dz

~ g, (z, t )~, (3.1)
4Dk~ T

We would like to derive a hydrodynamic description of
the line liquid in terms of coarse-grained variables like
the density of the Aux lines, starting with the microscopic
model presented in Sec. II. This procedure is most con-
veniently implemented using Martin-Siggia-Rose (MSR)
formalism ' which allows the solution to the Langevin
equation to be formulated in terms of a constrained path
integral.

The idea is that instead of solving the Langevin equa-
tion for the conformation variables r;(z, t ) in terms of the
random forces g;(z, t ) and then computing the correla-
tions functions by averaging over the noise with the
Gaussian weight

one can consider r, (z, t) as the basic stochastic field with a
path probability density 8'[r;(z, t)] defined by

W[r, (z, t )]2)r, (z, t) =co[/, (z, t )]2)g, (z, t) (3.2)

and eliminate the random forces in favor of the confor-
mation variables. This is accomplished via a constrained
path integral over the noise with the Langevin equation
as the constraint.

To implement the procedure of MSR we note that the
noise average of any observable 0[r,.(z, t ) ], with fiux-line
conformational variables r;(z, t ), as the solution of the
Eq. (2.7), ean be expressed in terms of a constrained path
integral,

(6(r;))=fXlg;(z, t)X)r;(z, t)J[r;] Q 5 B,r (z, t)+D g;(z—, t) 0(r;)exp5&
5r (z, t)

dz dt, z, t

(3.3)

Here JXlg, (z, t)2)r, (z. , t ) denotes a path integral over the noise and the conformation of the fiux lines with the implied

discretization of z and t to define the path integral. The quantity J[r;] is the Jacobian of the transformation from

g;(z, t) to r;(z, t) imposed by the functional 5 function. It ensures that the path probability density W[r;(z, t)], with
which the averages are computed, is still normalized to 1, i.e., ( 1 ) = l.

We eliminate the functional 5 function by performing the integral over g, (z, t ) and obtain

(0(r, ) ) = fNr, (z, t )J[r, ]6(r, ) exp — f dz dt B,r,'(z, t )+D1 6&
4Dk~ T 5r (z, t)

2

(3.4)

Further, it is convenient to perform a Gaussian transformation in order to "linearize" the argument in the exponential,
the dynamic functional. This is accomplished by introducing auxiliary fields i;(z, t ), usually called the response fields
due their utility in computation of response functions as will become clear below (see Appendix C).

( 6(r, ) ) = f2)F;( zt )f2)r, (z, t )J[r, ]6(r; ) exp( —8;z [F;,r; ]), (3.5)

where 4;z [F;,r; ] is the dynamic functional for a particular realization of disorder,

L
8z[F;,r;]=f dt dz r,'(z, t)Dk&T r,'(z, t)+i r.,

'. (z, t) B,r (z, t)+D (3.6)

It is convenient to work in Fourier representation. We reserve q for the wave vector in the z direction, k for the trans-
verse wave vector, and co for the frequency variable (see below). Since the fiux-line ends are freely fiuctuating, these
boundary conditions are naturally satisfied by the discrete cosine-Fourier transform with F;(z, t ) and r, (z, t ) given by

dc'r(z, t)= ro(co)+2 g cos(q„z) r(q„, co) e'"'
2& q„)0

(&„0—&)
e '"' cos(q„z )2 "' r(q„, co ),

q„,co

(3.7)

where q„=n~/L and we have been careful to separately treat the center-of-mass, q, =0, mode. This separation will
turn out to be essential in order to recover the correct hydrodynamic result at long wavelengths (see Appendix C).

To examine the explicit form of cF,& [F, , r, ], we split it up into three contributions corresponding to the three terms of
the Hamiltonian in Eq. (2.1),

8z[F;,r;]=Zo[F;,r;]+cF;[F;,r, ]+Pz[F;,r;] . (3.8)
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(i) Po[T;, r; ] is the dynamic functional for the noninteracting Aux lines,

+oI&; r;]=Lf g [r (q„,co)Dkg'rr, "(q„, co—)+r (q„,co)(co+iDeq„')r, '(q„, —co)]2 "'
&n

R;(q„,co).G(q„,co).R, (q„, —co), (3.9)

wheref—:g f d k/(2~) f dco/(2~),
n

and we defined,

R;(q„,co) = [F,(q„,co), r, (q„,co)],
2Dk~ T

G(q„,co)=L2 "' —co+ia eq,

cu+ia eq„

(3.10a)

(3.10b)

Dg g—f dt f dz f (k f, )V(k)e'
i =1 j&i

(3.1 1)

where V(k) is the Fourier transformed flux-line interac-
tion, Eq. (2.3)

V(k)= f d rV(r)e (3.12a)

0o

8 2g2 k2+ g
—2

(3.12b)

(ii) cti, [p, , r;] is the contribution to the total dynamic
functional due to the interaction between flux lines,

8;[r;,r, ]

(iii) 8d[i';, r;] is the disorder contribution to the total
dynamic functional, in which we again transformed to
Fourier k space,

8d[F;,r;]= Dg—f dt f dz f (k F, )U(k, z)e'
i=1 0 k

(r (z, t)r ( z', t)) =0 . (3.14)

The averages of physical observables as well as the
correlation functions of these observables can now be ex-
pressed in terms of functional derivatives of the generat-
ing functional with respect to external fields that couple
to these observables. For example, n-point correlation
function of an observable 0(r;,F;) can be obtained from
the generating functional Z [h (z, t ) ],

(3.13)

The Jacobian function J[r; ] in Eq. (3.3) depends on the
discretization scheme of the path integral. It is simplest
to adopt the causal discretization procedure in which the
Jacobian is a constant, independent of r, and can be omit-
ted, provided that simultaneously the ambiguous equal-
time correlator is defined to vanish, (see Refs. 26—29 for
the details).

&[h('t)]= f&~(z, t) f~r, (z, t)exp —8d[r, , r, ]+ fdt f dzo[r;(z, t),p(z, t)]h(z, t)
0

by functionally differentiating n times with respect to h (z, t),

(g[r, (z, , t, ),F, (z, , t, )] 6[r;(z„,t„),t;(z„,t„)])= 5"Z[h(z, t)]
5h zi, ti ' ' 5h zt„[h(z, , t,. ))=o.

(3.15)

(3.16)

In neutron-scattering experiments, the neutrons in-
teract with the magnetic field of the flux lines. The re-
sulting scattering intensity is therefore proportional to
the Fourier transform of the two-point correlation func-
tion of the magnetic field. ' ' The London equation re-
lates the Fourier transform of the magnetic-field com-
ponents, along and perpendicular to z, to the flux-line
number and tangent density n ( k, q, t ), (k, rq, t ), respec-
tively

B,(kqt) =, , n(k, q, t),
1+A, M (k+q )

(4. la)

Hence, all the information about the dynamics of the
fl.ux-line liquid is encoded in the generating functional
which we will study in the hydrodynamic limit, below.

IV. DERIVATION OI HYDRODYNAMIC DESCRIPTION

Bi,(k, q, t)= 4o P h(k)rh(k, q, t)
1+1, (M3k +M )

N

n(r, z, t)= g 5' '[r —r, (z, t)], (4.2a)

N Qr.
r(r, z, t)= g 5' '[r —r, (z, t)] . (4.2b)

Bz

Hence, inelastic neutron-scattering experiments are a
direct probe of the dynamic structure function of in-

1+A. M (k +q )

(4.1b)

where P h(k)=5, h
—k, kh/k, P h(k)=k, k&/k, and

with the densities related to the flux-line position,
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teracting flux lines, i.e., of the flux-line density-density
correlation function.

The transport coe%cients like flux-line liquid viscosity
and friction can also be extracted from the dynamic
structure function of these line liquids, and hence can be
compared with the experiments that measure resis-
tance. ' The interacting dynamic structure function also
enters into the perturbative calculation of disorder
corrected flux-flow velocity in the high velocity regime.
It has been argued that this relation holds beyond its ex-
pected regime of validity, down to low flow velocities.
The dynamic structure function is therefore directly re-
lated to the current-voltage curves.

Because it is the fiux-line density n(r, z, t) rather than
the microscopic conformation field r;(z, t) that is mea-
sured in most of the experiments, it is more natural to
work with the hydrodynamic density variables. By start-
ing with the microscopic theory defined by 8;d [F;,r; ],
Eqs. (3.8)—(3.13), and integrating out the microscopic
conformational degrees of freedom r, (z, t ) and F, (z, t ),
with the constraint that the densities n(r, z, t) and corre-
sponding response field n (r, z, t ) remain fixed, we derive
the dynamic functional of the density fields. With this

I

form of the dynamic theory the density correlation and
response functions are easily computable and the approx-
imations that are necessary can be more easily physically
motivated, because the density and its correlations are
directly observable.

We begin by introducing a density response field
n(r, z, t),

N

n(k, z, t) =k&TD g [k F, (z, t)]e (4.3)

in addition to the physical density field n (r,z, t ) already
introduced in Eq. (4.2a). The response field n(r, z, t) will
earn its name by generating dynamic density response
functions (see below and Appendix C). Here we will only
study correlation and response functions of the number
density field and therefore will trace over the tangent
density field v(r, z, t ) that is related to the fiuctuations of
the magnetic field in the ab plane, Eq. (4.2b).

We reexpress the interaction parts of the dynamic
functional, Eqs. (3.11) and (3.13), in terms of the density
fields,

N N

~, [r;,r;]=iD f f & 8' '[r —r, (z, t)] g r 8' '[r' r, (z, t)]V—(r —r'),
EZ 11 )

~

) 01~J=

n rz, t n r', z, t Vr —r'1

t, z r r

(4.4a)

(4.4b)

and the disorder contribution,
N

d [rd;, r;]=iD f g F; 5' '[r —r, (z, t)]U(r, z),
tzr, ) Bl;

(4.5a)

flux-line identities,

fp(r, z, t)=p(k=O, z, t)=0,
r

fp(r, z, t)=p(k=O, z, t)=0,
r

(4.7a)

(4.7b)

1
n r z, t U r z

k~ T ~zr
(4.5b) and ignoring the remaining constant terms that do not

effect the dynamics, we obtain the interaction part of dy-
namic functional in Fourier space,

It is important to remember that in the above equations
n(r, z, t) and n(r, z, t) are not fields independent of the
fundamental microscopic fields F, (z, t ) and r;(z, t ) and at
this point are only a notational convenience.

Although the mean-field theory of the flux-line liquid
hydrodynamics is described by the average densities
no=(n(r, z, t)) and no=(n(r, z, t)), it is the fiuctua-
tions about the mean density that are nontrivial and are
probed by the scattering experiments. We therefore in-
troduce fields,

4, [r, , r, ]= f p(k, q, co) V(k)p( —k, —q, —co)
1

k~ T k, q, ~

(4.8a)

p k, q, co
1

2k~ T kq~

X V &(k)p&( —k, —q, —co),

(4.8b)
p(r, z, t)=n(r, z, t) na, —

p(r, z, t ) =n (r, z, t )
—no,

(4.6a)

(4 6b)
where we define,

describing the deviations from the average uniform densi-
ties no = (n(r, z, t ) ) and no = (n (r, z, t ) ).

It is convenient to work in the canonical ensemble in
which the number of fiux lines N is fixed (i.e., total mag-
netic field through the sample is constant), and for fixed
sample area A, no=N/A. Substituting Eqs. (4.6a) and
(4.6b) into Eqs. (4.4) and (4.5), using the conservation of

(4.9a)

V(k)
(4.9b)

For the disorder contribution to the dynamic functional
we obtain,
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4„[F;,r;]= f P(k, q, co)U( —k, —q)5(co)
1

kB T k, q, co

(4.10a)

1
p k, q, ~ u —k, —q, —co

k~T kq ~

(4.10b)

where we defined disorder vector,

Z[h(r, z, t ) ]=Z„[h],

R exp — R z, t

+ przt hrqt
r, z, t

where,

(4.13a)

(4.13b)

u(k, q, co) = [ U(k, q, co)5(co), 0] . (4.11) 8[R(z, t )]=80[R]+ot;„,[p], (4.14)

As discussed in Sec. III, we construct the dynamic gen-
erating functional for the computation of density correla-
tion and response function, by choosing the operator
8 (f, , r; ) =p (r, z, t ) and coupling an external field

h (r, z, t ) to this density observable,

8;„,[p]= f p (k, q, co)K ti(k, q, co)
1

2k~ T k, q, ~

Xpp(
—k, —q, —co ),

with

(4.15)

Zd [h(r, z, t)]=f2)R exp —8;d [R(z, t)] K(k, q, co) =
F(—k, q )5(co)Iks T V(k)

V(k) 0 (4.16)

+ przt hrz t
r, z, t

(4.12)

In the dynamic functional, expressed in terms of densi-
ties, the disorder field, that couples linearly to the density
field, can be integrated out exactly. It is important to
note that in the dynamic formulation presented here we
can integrate over the quenched disorder directly at the
level of the dynamic generating functional Zd[h]. This
is to be contrasted with static calculations where one
must first compute the physical observables such as free
energy or correlation functions for particular realization
of disorder and then perform the average over the disor-
der (see Appendix A). This leads to the usual problems of
disorder averaging lnZd or Zd (since the static averages
have to be normalized by the partition function Zd ),
problem usually handled using the "replica trick. " In the
dynamic calculations presented here no such complica-
tions arise because the "dynamic partition function"
Zd [h =0]= 1, a constraint enforced by the MSR Jacobi-
an in Eq. (3.3). We then integrate out the quenched dis-
order exactly, using the assumption of Gaussian disorder,
Eq. (2.5). Upon averaging Zd[h] over the quenched
pinning potential u, we obtain

The interaction and disorder contributions have now
been expressed as a quadratic function of the density
fields p . However, the computation of the dynamic gen-
erating function Z[h] is still nontrivial because (i) the in-

dependent variables are R and not p, and (ii) the nonin-
teracting part of the dynamic functional do[R] cannot be
trivially rewritten in terms of the density fields. To make
progress however we can proceed with an uncontrolled
variational approximation. We replace cto[R] by an an-

satz that is Gaussian in the density fields

80[R]~cto[p ]= f p (k q co)1 ti (k q co)
2np k, q, co

Xp&( —k, —q, —co),

(4.17)

and use a measure 2)p instead of XR in the functional
integral. The matrix I &

is determined by requiring that
the correlation functions of the Gaussian ansatz agree
with the original noninteracting theory where the aver-
ages are performed with measure 2)R exp( —Po[R]). The
simplest requirement is that the structure functions in
two theories agree. This completely fixes I &

=S &,

where S
&

is the structure function for a single fIux line.
Combining with 4;„, this approximation then gives the
full dynamic functional,

+[p ]= f p (k, q, co)[noK &(k, q, )+cok&TS t3
'(k, q, co)]p&( —k, —q, —co),

2k' Tnp k, q, ~
(4.18)

from which all the dynamic correlation and response
functions of density fields can be computed.

In the next section we will treat the full dynamic func-
tional more rigorously. We will show how the above ad
hoc approximation emerges as a result of truncation of a
systematic expansion of the dynamic functional in the
density fields.

V. DECOUPLING FLUX-LINE DYNAMICS
(METHOD OF AUXILIARY RANDOM FIELDS)

As we have already noted the density fields p(r, z, t)
and p(r, z, t) are not independent of the fundamental mi-
croscopic fields F, (z, t) and r,.(z, t) and at this point are
only a notational convenience. The computation of the
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generating function in the above equation is made non-
trivial by the highly nonlinear flux-line interactions V(r),
when expressed in terms of the kinetic fields F; (z, t ) and
r;(z, t). To obtain interaction corrections to the nonin-
teracting lines dynamics via a straight perturbation
theory in powers of V(r) is possible but is a nontrivial ex-
ercise. We note however that this interaction is simply
quadratic when expressed in terms of the density fields.
The idea is then to transform the functional integral from
the microscopic variables to independent density fields.
This can be accomplished using the method of auxiliary
random fields that has been previously applied to treat
both statics and dynamics of polymers and is described
below.

We introduce a set of transformations that transform
the functional of R(r, z, t ) into a functional for the densi-
ty fields. We accomplish this by introducing an indepen-
dent auxiliary density field f(r, z, t) constrained by the
functional 6-function to equal the physical density fields
p(r, z, t ) for all r, z, t,

Z[h(r, z, t)]=f2)Re

X f2)g Q 5[/(r, z, t) p(r, z,—t)]
r, z, t

(5.1a)

= faye '"'
&~(y —p)), ,

where the average is Derformed with the Gaussian dy-—e(0[k jnamic measure e ' of N noninteracting flux lines,
with 80[R] given by Eq. (3.9). We observe that with this
transformation the troublesome interaction is indeed
quadratic in f(r, z, t) and therefore in this sense can be
treated nonperturbatively. The nontrivial part of the cal-
culation reduces to the computation of the average of the—80[R]functional 6 function with the Gaussian measure e

Using the functional representation of the 5 function
we obtain,

(5. lb)

(5(r/ —p)~=(ff)ge )0
i Pf —t Pp

(5.2a)

(5.2b)

+ f@(r,z, t) h(r, z, t) (5.4)

in terms of the hydrodynamic functional 8[/, P],
cF[@,P]=d;„,[@]+n I [P] i f P @, —(5.5)

with the contribution nol [P] coming from the average of

Noting that p(r, z, t)=g~,p, (r, z, t), with p, (r,z, t) as
the single-line density, and since the average for each line
is identical, Eq. (5.2) further reduces to,

&~(q p) &,= f~c.—
ombiningg this result with interaction contribution to

the hydrodynamic functional in Eq. (5.1) we obtain the
dynamic generating function

Z[h]= f2)ff2)/exp —8[/, P]

+ . . .r."~„+( i)—
(5.6)

where I ' ' . . . is a connected correlation function of a
1 2 m

single-line density fiuctuations p&[R&], and in coordinate
space x =(r,z, t) is

(m)laa u «i x2 xm)
1 2 m

=A&p (x)p (xz) . p (x ))o, (5.7)

where the area factor 2 was inserted for convenience. In
the above we have also dropped the single-line label 1 on
p&, since for a while, we will be dealing with a single-line
density and no confusion should arise. The cumulant
functions I' '

. . . (x „xz, . . . , x ) can be systemati-
1 2 m

cally computed for any m (see Appendixes B and C).
We note that the density field g appears only linearly

and quadratically in Eq. (5.4) and therefore can be in-
tegrated out exactly. This leads to the dynamic function-
al that is expressed not in terms of the physical densities
g but in terms of the auxiliary fields P, conjugate to f.
Since the hydrodynamic functional is derived in the pres-
ence of sources h the density-correlation functions and
response functions of g can still be easily computed as
functional derivatives with respect to these sources [see
Eq. (3.16)]. Upon integrating out @we obtain,

Z[h]= fXye '(~")- (5.8)

where

k~T
cf[P,h ] =no I [+]

— f (i P +h )IC tt' (i Pp+ h p ) .

(5.9)

The above equations define the hydrodynamic field
theory of flux lines derived directly from the microscopic
interacting single-line dynamics. No approximations
have been made up to now, and both the flux-line interac-
tions and interaction with disorder have been treated ex-
actly. To fully solve the hydrodynamic theory we need to
compute the generating function Z[h] by integrating
over P. Since the resulting theory has a form of an in-
teracting field theory, it cannot be solved exactly. How-
ever, one could try to treat the nonlinear interactions per-
turbatively with various techniques. In the long-
wavelength limit (which can, in principle, be studied with
sufficiently low angle neutron-scattering experiments) the
P fiuctuations can be treated with renormalization-group
methods as was done for the statics of polymer solutions
by Ohta and Nakanishi. This procedure would lead to
renormalized vertex functions I' ' corrected by the
thermal fiuctuations of P. As will be shown in Sec. VI,
some of the flux-line fluctuations and interactions are
nontrivially taken into account even if we truncate the
hydrodynamic functional at the quadratic order. The re-

the 6 function in Eq. (5.3) and is expressed in terms of a
single flux-line cumulant expansion,

2 3

f 0A I'."+, fPAP, I'.",
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suiting truncated theory can be solved exactly, allowing
calculations of dynamic and static properties of the in-
teracting Aux-line liquid.

VI. GAUSSIAN APPROXIMATION
TO THE DYNAMIC FUNCTIONAL

In Sec. V we derived the expression for the dynamic
generating functional. It is expressed in terms of an
infinite series of interactions in the auxiliary field P and,
in principle, allows for calculation of any hydrodynamic
correlation function of the Aux-line liquid. Near H, &,

where the magnetic field is weak and the Aux-line liquid is
dilute, the fluctuations in the density fields are large, i.e.,
comparable to the average line density. In this critical
region the nonlinear interactions must be carefully taken
into account. Using renormalization-group methods the
dynamics of dilute line liquids can be studied, as was
done for the statics. ' Similarly, near H, 2, ~here the Aux-
line liquid is dense, the vortex cores begin to overlap, the
effects of nonlinear interactions are large and
renormalization-group treatment is again needed to take
the nonlinearities into account. Here, however, we
study the dynamics of a semidilute Aux-line liquid, away
from such critical regions, i.e., in the regime where
H„«H «H, z. In this regime no is large, hence the
method of steepest descents applied to Eqs. (5.8) and (5.9)

allows us to treat Z[h] in mean-field theory. The non-
linear interactions can then be treated in perturbation
theory, but in this semidilute regime we do not expect
qualitative corrections to the results of our mean-field ap-
proximation. In this section we will therefore use a
Gaussian approximation for computation of Z[h] by
truncating expansion of the dynamic functional Eq. (5.6),
at quadratic order in P.

The remaining 1 'fI(k, q, co) vertex function has a clear
physical interpretation of a matrix whose (2,2) and (2, 1)
components are the noninteracting dynamic structure
function S (k, q, co) and response function S (k, q, co) of
the fiux-line liquid, as can be seen from Eq. (5.7).I' &(k, q, co) is computed and analyzed in various regimes
in Appendix C. With the truncation at quadratic order
we obtain the interacting structure and response func-
tions S &(k, q, co) in terms of the noninteracting ones
S &(k, qco)=I'ii(k, q, co) and therefore will be able to
study the effects of Aux-line interactions and quenched
disorder on the dynamics of the Aux-line liquid.

In the Gaussian approximation it is more convenient to
return to Eq. (5.4) and integrate out the P field, thereby
producing a hydrodynamic functional d[g] expressed
directly in terms of physical density fields g. Upon per-
forming all the calculations in Fourier space (q and k are
reserved for wave vectors in the z and the transverse
directions, respectively) we obtain,

Z[h] = f~yexp f [ —
—,p (k, q, co)IC &(k, q, co)p&( —k, —q, —co)+p (k, q, ro)h (

—k, —q, co)]-
k, g, co

(6.1)

IC &(k, q, co)= IC &(k, q, co)+ (S ) &'(k, q, co) .kT ~ ''
n,

(6.2)

An integration over f leads to the dynamic generating function within the Gaussian approximation,

Z'[h]=exp —f h (k, q, co)K &'(k, q, co) h&( —k, —q, —co)
k, g, co

(6.3)

Functionally diff'erentiating twice with respect to external field h(k, q, co), we obtain the interacting correlation/response
function matrix S &(k, q, co) =K

& (k, q, co),

0 S(k,q, co)
S (k, q, co) = S( —k, —q, —co) S(k, q, co)

(6.4)

where S22=S(k, q, co) and Siz =S(k,q, co) are the interacting hydrodynamic structure and response functions, respec-
tively, for the Aux-line liquid in the presence of disorder,

S(k, q, co)= F(k, q)5(co)IS (k, q, co)I nol(k~T) +noS (k, q, co)

I
V(k)S'(k, q, ~)no/k T+1I'

V(k)noIS (k, q, co)I /kiiT+noS (k, q, co)
S(k, q, co)=

I V(k)S (k, q, co)no/kii T+ 1I

(6.5a)

(6.5b)
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Note that in Eq. (6.4} the S
& i component vanishes,

(g(r, z, t)P(r', z', t')) =0. This is a consequence of the
Auctuation dissipation theorem and causality, and implies
that dynamics of the density field gz encoded in the
effective dynamic functional in Eq. (6.3) can equivalently
be described by a linear differential equation for the den-
sity field f.

VII. DETAILS OF THE DYNAMIC
STRUCTURE FUNCTION

In this section we will analyze the dynamic structure
function S(k,q, co ). Information about the behavior of
S(lt, q, co ) can be obtained from S ( k, q, co ) by using ffuc-
tuation dissipation theorem (FDT),

(7.1)

The interacting dynamic structure function in Eq. (6.5a}
is expressed in terms of the noninteracting structure and
response functions, S (k, q, co),S (k, q, co) of the vortex
liquid and depends on the correlation function of the dis-
order F(k, q ) as well as the interline interaction V(k).

The details of a single-line dynamics are presented in
Appendix C. There are two regimes with very different
dynamic behavior that are separated by a characteristic
time, tR,„„=L /(De). The Rouse time is the time re-
quired for the center of mass of the Aux line to diffuse its
transverse radius of gyration. Equivalently, for times

larger than tR,„„the diffusion of the center of mass dom-
inates over the internal mode dynamics. The dynamics of
a single Aux line for t )&tR,„„and t « t~,„„is depicted
in Fig. 3.

We find that for times larger than the Rouse time,
tR,„„=L /(De) the diffusion is dominated by the
center-of-mass mode. In this case the average transverse
distance diffused is simply

rD (t)=+1/2([r 0(t) —ro(0)] )

=+2Dk~Tt/L ~t'" . (7.2)

=+2k T[(D/~e)t]'" t'", (7.3)

but now with an anomalous t dependence. This behavior
can be understood as two "random walks" on top of each
other; the Aux-line segment executes a random walk on
the Aux-line conformation, which can be thought of being
generated by a random walk (fictitious dynamics along
the z axis). For z))(Dot)'~ one gets "diff'usion" in the
timelike variable z. The corresponding square root of the
mean-square displacement +2k~ T~z ~/e corresponds to
the projected two-dimensional (2D) radius of gyration of
a ffux line of length

~
z

~

. At intermediate scales
z~(Dot)' the z, t dependence of the segment-
correlation function has to be taken into account, and
one finds

We note that the ffux-line diffusion coefficient Dkii T/L is

scaled down by L with respect to the point vortex
diff'usion constant Dk&T in the ab plane. This 1/L
behavior has been previously derived in the appendix of
Ref. 18 in terms of a simple model of point vortices cou-
pled in the z direction.

In the opposite limit, t & tR,„„,the flux-line diffusion is

dominated by the internal modes. For two points on the
ffux line separated by a distance z «(Det)'~ the auto-
correlation function becomes independent of z. This al-
lows us again to extract a transverse diffusion distance

rD(t )=+( I/2)( [r(z, r ) —r(0, 0)]')

4k~ T
( [r(z, t )

—r(0, 0)] ) = z
~fE' z' (7 4)

Ro(L)

FIG. 3. 2D-projected configuration of a diffusing Aux line for
{a) t))tR „„and (b) t &&tR,„„.In (a) the progression in time is
illustrated, with the inset showing a snap-shot configuration,
"diffusion" in z direction. For t )&tR „„the Aux-line diffusion
is dominated by the center-of-mass mode and the dynamics is
that of a rigid rod. The dashed line shows the trajectory of the
center of mass. In (b) the Aux line appears frozen with dynamic
fluctuations (due to the center-of-mass and internal modes)
small relative to its transverse size. The inset shows evolution
in time.

with f(x) shown in Fig. 4.
The dynamic crossover described above can be

equivalently extracted from the behavior of the co pole in
the noninter acting structure function. For
(k~T/e)k L &&1 the center-of-mass diffusion dominates
the hydrodynamics and the noninteracting relaxation
rate is I, (k)=DkiiTk /L. In the opposite limit of
(kiiT/e)k L ))1 the internal modes dominate the dy-
namics and lead to the relaxation rate
I ~=(kz T) Dk /(4e). This internal-mode relaxational
rate can be equivalently rewritten in the form of the
center-of-mass relaxational rate I & =Dkz Tk /L (k), with

an effective ffux-line length L(k)=4@/k~Tk . Not
surprisingly, L(k) is approximately the length in the z
direction corresponding to the xy length scale of k
The crossover from a dynamics dominated by the center-
of-mass motion to a dynamics governed by the internal
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1.0

0.9
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f(x}

0.6—

0.5

FIG. 4. Scaling function f(x) describing single fiux-line
diffusion due to internal modes, displayed on a double logarith-
mic scale.

In the wave vector regime, (k&T/e)k L «1, where
the center-of-mass mode dominates we obtain

2noaka Tk
S(k, q =O, co) =

co + [Dkti Tk (1/L+no V(k)/kz T)]
6(co)F(k, O)no/(kti T)+
( I /L +n o V(k ) /k~ T )

(7.5)

Concentrating on the first term which describes the dy-
namics in the absence of disorder we observe that the
center of mass, noninteracting relaxation rate I, (k) has
been additively renormalized by the interaction between
the Aux lines. We define an interaction length scale in the
z direction, Lt(k)=(no V(k)/k~T) ', and note that the
crossover between the noninteracting and interacting dy-
namics occurs when L )Lt(k), see Fig. 5.

Physically, Lt(k) is the fiux-line length (or equivalently
sample thickness) beyond which there are multiple in-
teractions between the Aux lines. For samples thicker
than Lt(k) (if the crossing barriers are large) significant
line entanglement will take place. This length is there-
fore analogous to the entanglement length discussed in
Ref. 1.

The expression for Lt(k) derived in the Gaussian ap-
proximation will be corrected by the higher-order in-
teractions appearing in the dynamic functional expan-
sion, Eq. (5.6). The fiux-line dilute regime can be treated
using renormalization group as was done for the statics in
Refs. 1 and 23. It is found that in the dilute limit the in-

modes [or equivalently from L to L(k) occurs when the
wavelength (transverse length scale) k becomes smaller
than the static transverse "diffusion" length +2k~ TL/e
(the 2D projected radius of gyration).

Substituting the expressions for the noninteracting
correlation and response functions in these two regimes
from Appendix C into Eq. (6.5a), we obtain the dynamic
interacting structure function in the Gaussian approxi-
mation.

A. Center-of-mass dominated regime

FIG. 5. Illustration of the interaction length L&(k) defined in
the text.

teracting theory becomes asymptotically free, with the
Aux-line interactions renormalizing to zero, logarithmic-
ally with length scale. Following the renormalization-
group equations down into the dense regime and match-
ing, gives the effective interaction V= 4m( &kT) /
e/1n( I/noA, ), which is independent of the original bare
interaction. In the dilute regime (dropping the unimpor-
tant logarithmic factor and constants of order unity) we
therefore obtain Lt =e/(2k~ Tno). This length is exactly
the entanglement length defined by the static transverse
wandering being on the order of the average line spacing.

For three-dimensional samples (L ~Dc ), the fiux-line
density relaxations are dominated by the interactions,
with the relaxation rate given by the rate for Aux lines
with length Lt(k),

Dk, Tk'
I R

Lt(k)

=no V(k)Dk, in the dense regime

(7.6a)

(7.6b)

nc(k~ T) Dk
in the dilute regime . (7.6c)

We thus find that, while for the noninteracting Aux line
the center of mass diffuses very slowly, with the rate van-
ishing as 1/L, the relaxations in the interacting line
liquid are independent of the Aux-line length L. In the in-
teracting theory the 1/L dependence of the diffusion
coefficient gets cutoff by the interaction (entanglement)
length L~. Within the Gaussian approximation we there-
fore find that the Aux-line interactions speed up the dy-
namics of the line liquid, probably because they lead to a
stiffer response to density inhomogeneities.

By comparing with the results of the static structure
function obtained with the Gaussian approximation (see
Appendix A and the second part of this section) we find
that flux-line liquid kinetic coefficients are not modified
and the renormalization of the statics is solely responsible
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B. Internal modes dominated regime

In the regime (k~T/e)k L ))1, where the internal
modes dominate we find

S(k, q, co) = 2noa(ki q )

co P (k, q)+y (k, q)
2

no+ 6(co)F(k, q )T

[ A (k)bo(k, q )]

[ I + (no V(k)/kz T ) A (k)bo(k, q ) ]

for the increase in the relaxational rate I, . Therefore,
within the Gaussian approximation no viscosity is gen-
erated. We expect, however, that this will be corrected
by higher-order interactions, which also become impor-
tant in the dense limit, near H, . It should be possible to

2

control these interactions via renormalization-group or
mode coupling theory. If the line crossing barriers
remain high, the additional effects of Aux-line entangle-
ment, not taken into account by the Gaussian approxima-
tion, will play a major role in the dynamics and probably
can be described by these higher-order nonlinearities.
We expect that entanglement and caging effects to be-
come important in the regime of high line densities and
large Aux-line crossing barriers, which is possible at inter-
mediate field strengths. These effects should have a slow-
ing down effect on the dynamics, and will compete and
eventually swamp the relaxational rate increase found in
Eq. (7.5).

dynamics, here due to the effects of the internal modes.
The second term in Eq. (7.7) is the elastic contribution

to the dynamic structure function arising from quenched
pinning disorder. This contribution leads to a time-
independent persistent contribution to the structure func-
tion. While the density correlations of the unpinned frac-
tion of lines decay in time as the lines move around, the
pinned density fraction has correlations that are time in-
dependent and have spatial correlations of the random
potential.

The linewidth y(k) has the explicit form

bo (k~ T)
y(k) =Qb& /b3 —no V(k)Dk + Dk

7T

(7.9)

Note that the k term is independent of the interaction
between the Aux lines and is therefore just related to the
internal dynamics of a single flux line. We find that no
interaction-generated viscosity appears. However, Aux-
line interaction modifies the relaxation rate of a single
line in an important way. y(k) describes the crossover of
the relaxation rate from the (k~ T) Dk /(4E) behavior of
a noninteracting line liquid to no V(k)Dk relaxation rate
of an interacting liquid. This crossover is similar to the
Bogoliubov crossover in statics. The interacting dynam-
ics is again diffusive and aside from some constants is
similar to the center-of-mass dominated regime con-
sidered in the beginning of this section.

C. Static structure function

where we have introduced

(7.7) The static structure function S, (k, q ) is an equal-time
density-correlation function, and therefore can be ob-
tained from the dynamic structure function,

b,
a(k, q)= A(k) I j, ,

3

(7.8a)

no V(k)
y(k, q ) =Qb, /b3I q 1+ A (k)bo, (7.8b)

BT

S,(k, q) =S(k,q, t =0)

S k, q, co

(7.10a)

(7.10b)

Applying these equations we obtain the interacting static
structure function of the vortex liquid in the presence of
disorder (see also Appendix A),

b, no V(k) A (k)
b3 kBT noS, (k, q)

I+no V(k)S, (k, q)/ks T

F(k q ) noS, (k, q )

(ks T) 1+no V(k)S, (k, q)/ks T

nokB Tk /e

q +(q~(k)/k~T)

S, (k, q)=
no V(k) A (k)

X 2b2+ (2bob2 b,)—T
2

(7.8c)

(7.1 la)

nok /e2 2

q +(q~(k)/k~T)
(7.11b)+F(k, q)

where qz(k) is the Bogoliubov spectrum of the corre-
sponding bosons, '

and A(k)=4e/(k~T&~k ) and I k=D(k~T) k /(4e).
The coeKcients b„are calculated in Appendix C and for
2Eq/(kz Tk )~0 are constants. The interacting dynam-
ic structure function above consists of two parts. The
first term is the thermal contribution to the density-
density correlation function and has the standard
Lorentzian shape. We note that the coefficient in front of
the co term depends nonanalytically on wave vectors k
and q and is therefore a breakdown of traditional hydro-
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q~(k)

k~T
k Tk

26

1 /2
no V(k)k+ (7.12)

The equations for the structure functions that we de-
rived here are valid for general type of disorder, charac-
terized by disorder correlation function F(k, q). The
physically relevant cases are as follows:

(i) Point disorder due to oxygen vacancies (uncorrelat-
ed);

F(r, z)=bo5' '(r)5(z),

F(k, q)=&o .

(7.13a)

(7.13b)

(ii) Columnar defects (line-correlated along z axis);

F(r, z) =~,5"'(r),
F(k, q)=&i5(q) .

(7.14a)

(7.14b)

(iii) Grain or twin boundaries (plane-correlated, with
normal n in xy plane);

F(r,z)=b,25(r n),
F(k, q ) =b 25[z.(k X n) ]5(q ) .

(7.15a)

(7.15b)

V(k)=, , kA, &&1,0o

8m

V(k)= . . .= V„kk, »1 .
4o

8~i, k

(7.16a)

(7.16b)

Equation (7.16a) is valid for H =H„where the lines are
much farther apart than A. , and Eq. (7.16b) holds for
H ))H, 1 where the average interline distance is smaller
than A, .

Specializing our general result for the interacting static
structure function, Eq. (7.11) to point disorder and to
short-range line interaction, we recover the result of Nel-
son and LeDoussal,

S, (k, q)= nok~ Tk /e

q +(q (ks)/k Ts)

n, k2/&

q +(q (ks)/k Ti)i
+60

2

(7.17)

They utilized the boson mapping to obtain this static re-
sult. For pure superconductors this result reduces to the
original result of Nelson and Seung, ' also obtained via
the boson mapping.

VIII. PHKNOMKNOLOGICAL HYDRODYNAMICS

As explained in the introduction, one can also take a
more macroscopic, phenomenological approach to derive
equations of motion for the hydrodynamic density
fields. ' We take this approach in this section with the
intent to subsequently compare the results of our kinetic

Equation (7.7) also depends on the interline interaction
V(k) and is valid for a general range of interactions or
equivalently for arbitrary line density. In the limits of
low and high line densities V(k ) reduces, respectively, to

N

n(r, z, t)= g 5' '[r —r, (z, t)], (8.1a)

N

t(r, z, t)= g d, r;(z, t)5' '[r —r;(z, t)], (8.1b)

together with the current fields j,"(r,z, t)=n uo, (r, z, t)
and j,b(r, z, t )

N

j,"(r,z, t)= g d, r,, (z, t)5' '[r —r;(z, t)], (8.2a)

N

j,'b(r, z, t)= g [B,r,, (z, t)B,r b(z, t)

d, rb(z—, t )d, r,, (z, t ) ]5' '[r —r;(z, t )],
(8.2b)

which transport the number and tangent densities
n(r, z, t), t, (r, z, t), respectively. As for the hydro-
dynamics of a liquid of point particles, the dynamics of a
line liquid is constrained by dynamic continuity equations
arising from local conservation of the density fields,

B,n (r, z, t )+B,j,"(r,z, t ) =0,
B,t.(r,z, t)+~),j,'„(r,z, t) —i),j."(r,z, t) =0 .

(8.3a)

(8.3b)

Furthermore, n (r,z, t ) and t, (r,z, t ) are not completely
independent. Continuity of Aux lines introduces a spatial
constraint between the number density and the longitudi-
nal part of the tangent density,

B,n(r, z, t )+B,t, (r, z, t )=0, (8.4)

which in the language of bosons plays the role of a tem-
poral continuity equation for the conservation of the bo-
son density along imaginary "time" iz Equati.ons (8.3)
and (8.4) can be easily verified by substitution using the
microscopic definitions in Eqs. (8.1) and (8.2). The dy-
namics of a Aux-line liquid is therefore governed by only
two (as opposed to three) hydrodynamic variables, the
number density n(r, z, t) and the transverse part of the
tangent density t (r, z, t ).

It is also enlightening to interpret the above continuity
equations in terms of the underlying electromagnetic
fields. At length scales much larger than the London
penetration lengths, k '))A, i, q '))A. , Eqs. (4.1) (or
equivalently, the long-wavelength limit of London equa-
tion) lead to a simple relation between the magnetic field
and the line densities,

B(r,z, t ) =zPon(r, z, t )+Pot(r, z, t ) . (8.5)

It is easy to see that Eqs. (8.3) are just the z and xy com-
ponents of Maxwell equation B,B/c+ V XE=O, with the
electric field E, which results from motion of Aux lines,
related to the current fields of Eq. (8.2). ' The spatial con-

theory derived in previous sections with the hydro-
dynamic approach.

As already emphasized in Sec. IV, on long time and
space scales the important, slow degrees of freedom that
characterize the Aux-line liquid are the number and
tangent densities of the vortex liquid,
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+v, (r,z, t) . (8.6)

The terms on the left-hand side of the above equation
represent the frictional and viscous forces acting on the
Aux lines, which are balanced by the pressure gradient
forces, the external forces f„, and a random noise force
appearing on the right-hand side of the equation. f„,
might include the Lorentz force, f,„,= —nogoz X j, due
to the charge current j, coupling to the magnetic field of
the Aux-line liquid. Here we are interested in the equilib-
rium regime, f,„,=0. We take v, (r, z, t ) to be a Gaussian
zero-mean noise with the correlations determined by the

I

tinuity equation, Eq. (8.4), is equivalent to V 8=0.
A closed set of hydrodynamic equations is obtained

when we supplement the continuity equations with the
constitutive equations for the currents. The constitutive
equations are a statement of Newton's second law, cast in
terms of the hydrodynamic variables. The relations
equate the rate of change of the velocity to the forces act-
ing on the Aux-line liquid. These forces include the fric-
tional forces, due to Aux lines interaction with the under-
lying lattice and weak disorder, and the pressure gra-
dients due to nonuniformity in the density of the vortex
liquid. For simplicity we will treat the case of small Hall
angle and therefore neglect the component of the velocity
response perpendicular to the forces. At long times, and
for large frictional forces the velocity fields quickly decay
to their steady-state value and the inertia term can be ig-
nored. The resulting time-independent constitutive rela-
tion equates the frictional forces, proportional to velocity
fields, to the pressure forces, expressed in terms of the
density fields. A simplified equation for the velocity of
the number density current is given by

5
(y r)P'~~ —rt, B, )—v, (r, z, t ) = —noB,' 5n r, z, t

+noB, +f;"'(r,z, t)5&
5t, r, z, t

fluctuation dissipation theorem,

( v, (k, q, co)vb(k', q', co') )

=k+T(y+gk +71,q )(2') 5' '(k+k )'

X5(q+q')5(co+ co')5,h, (8.7a)

k, rk2
S'(k, q ) =

k K, (k, q)+q K2(k, q)
(8.9a)

2

T,'b(k, q ) =P,b(k ) +P,b(k ) S'(k, q ) . (8.9b)

This allows us to reexpress Eq. (8.8) in terms of the static
structure function S'(k, q) and the transverse part of the
tangent density-correlation function Tr(k, q),

(v, (k, q, co)) =0 . (8.7b)

For the hydrodynamic description it is sufhcient to as-
sume that the effective hamiltonian &[n, t] is an expan-
sion in powers of hydrodynamic variables n(r, z, t) and
t(r, z, t), which for simplicity we truncate at the quadra-
tic order. It is more convenient to expand in terms of
fiuctuations p(r, z)=n(r, z) —no and r(r, z)=t(r, z) —to
around the average values np tp so that the linear terms
can be eliminated. Ignoring disorder (because its effects
can be easily included) and assuming translational invari-
ance, we obtain in Fourier space,

&[p(k, q ), r(k, q )]=I —[K,(k, q )p2+K2(k, q )2],1

k, q

(8.8)

where the functions K&(k, q) and Kz(k, q ) are related to
the static density-correlation functions. Imposing the
constraint of Eq. (8.4) in Fourier space,
qp(k, q) = —k ~(k, q) to reexpress & in terms of indepen-
dent hydrodynamic variables, we easily compute the stat-
ic structure function, (p(k, q )p( —k, —

q ) ), and the
tangent correlation function (r, (k, q)rb( —k, —q))

k~T
&[p(k, q), r(k, q)]= Jk, q 2

2

S, '(k, q) — Tz. '(k, q) p +Tz. '(k, q)~
k

(8.10)

Combining the above equation with Eqs. (8.6), (8.4),
and (8.3a) we find that the dynamic equations for
n(k, q, t) and t(k, q, t) decouple. Here we will only con-
centrate on the hydrodynamics of n(k, q, t), which is
governed by a simple Langevin equation,

B,n [+n okT (Dk, )qkS, '(k, q)]n =g(k, q, t), (8.11)

where we defined the hydrodynamic diffusion coefIicient
D '(k, q)=y+gk +g, q and the noise g(k, q, t)
=inoD(k, q )k.v(k, q ), which is also Gaussian with zero-
mean and the correlations determined by those of v, Eq.
(8.7),

(g(k, q, co)g(k', q', co')) =k~TD(k, q)k n (o2~)~

X5' '(k+k')5(q+q')5(co+co'),

(8.12a)

I

(g(k, q, co) ) =0 . (8.12b)

These equations then lead to the hydrodynamic structure
and response functions previously derived in Ref. 20:

2nok~ Tk D(k, q )
SPhenom( k

co + [n ok~ Tk D(k, q ) IS,(k, q )]

(8.13a)

nok~Tk D(k, q)S~"'"' (k, q, co)=
ico+nok~Tk D(k, q)IS, (k, q)

(8.13b)

We are now in a position to compare the results of the
phenomenological model of hydrodynamic with our
kinetic theory of the Aux-line liquid. Making the com-
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parison in the physically most relevant regime dominated
by center-of-mass motion, Eq. (7.5), we find the following
identifications,

D~noD(k, q =0),
no V(k) noD(k, q =0)

D —+
L kii T S, (k, q =0)

(8.14a)

(8.14b)

(8.15a)

1 1

L Li(k)
(8.15b)

Equation (8.15a) is physically appealing in its
identification of the phenomenological friction coefficient
y with the inverse of the kinetic diffusion coefficient D.
Equation (8.15b) leads to the static structure function, in
agreement with the result obtained from boson analogy.
The above equations show that at least within the Gauss-
ian approximation, in the center-of-mass dominated re-
gime the dynamics is modified only through the statics,
i.e., the kinetic coefficients are not renormalized in this
order of approximation.

IX. CONCLUSIONS

In this paper we have formulated the dynamic theory
of the Aux-line liquid phase directly from the kinetic
theory of individual, interacting Aux lines. We have used
the resulting theory to study the dynamic structure and
response functions of the line liquid in the presence of
various types of pinning disorder. In order to solve the
theory we employed a Gaussian approximation to the dy-
namic functional, which should be valid at intermediate
Aux-line densities or fields H, «H «H, , where the

1 '2'
effects of large Auctuations are not as important.

We expressed the interacting dynamic structure func-
tion in terms of the single-line structure functions. In the
long-time limit, t ))tR,„„and/or for transverse wave-
lengths larger than the line wandering, the center-of-mass
mode dominates over the internal mode, and we recover
the hydrodynamics of rigid rods. While for noninteract-
ing lines the diffusion coefficient vanishes as L ~~, the
interactions between the lines lead to an increase in the
relaxation rate of the line liquid. The diffusion rate
remains finite for any L, with L cutoff by the interaction
length Li(k). In the dense limit Li is determined by the
interactions, with the two-body interaction giving only a
first-order estimate to this length. A detailed calculation
that takes into account higher-order interactions is re-
quired in this dense limit. In the dilute regime, the
renormalization-group calculations lead to a line interac-
tion that vanishes as an inverse of a logarithm of the
length scale and the microscopic interaction drops out.
In this case LJ becomes just the entanglement length

As we already observed in Sec. VII, no viscosity is gen-
erated within the Gaussian approximation employed here
and we are only able to establish a simple relations be-
tween the parameters of our kinetic model and the phe-
-nomenological theory,

no

D

defined in Ref. 1. In either case for t » tR,„„,our results
are therefore in agreement with the phenomenological
model of Marchetti and Nelson, but unfortunately the
Gaussian approximation is not accurate enough to gen-
erate the viscosity of their model from our kinetic theory.

In the opposite limit of short times and/or
k&Tk L/e»1, we find that the internal modes dom-
inate. In the presence of interactions we find that the k
relaxation rate of a noninteracting flexible line liquid
crosses over to a diffusive k relaxation rate. In contrast
with the phenomenological model, however, a wave-
vector-dependent coefficient of the co term is generated.
This coefficient -k and by this constitutes a break
down of conventional hydrodynamics due to the internal
mode Auctuations.

We find that the Gaussian approximation successfully
reproduces the static Bogoliubov "spectrum" previously
obtained via boson analogy. For the statics this approxi-
mation is therefore equivalent to an infinite summation of
all ladder graphs in the single-line picture, and then treat-
ing the resulting field theory in the mean-field approxima-
tion. The dynamic results of this approximation have the
structure of the dynamic random-phase approximation.
In addition to the effects discussed above this approxima-
tion leads to a disorder-generated perturbative correction
to the dynamic structure function, which agrees with the
phenomenological approach.

It is well known that preserving the discreteness of the
flux lines is crucial for the correct treatment of low-
temperature ordered phases such as the vortex glass and
Bose glass. It is likely that in the liquid phase, however,
much of the dynamics can be described in terms of the
density fields which coarse-grain over the discrete line
coordinates as we have done here. In this description
slow dynamics for high line crossing barriers and entan-
glement can, in principle, be incorporated by higher-
order nonlocal interactions in the densities, although only
in some average sense. Also line crossing and recombina-
tion are present in the theory and can be controlled in an
average sense by the strength of the repulsive Aux-line in-
teraction. This description of a flux-line liquid can be im-
proved by also introducing a local tangent field that keeps
track of the local orientation of the Aux lines as we do for
the statics in Appendix A.

We expect that the results derived in this paper will be
corrected by the higher-order interaction which can be
taken into account using renormalization-group or mode
coupling methods. These corrections will undoubtedly
lead to renormalization of the kinetic coefficients. We
also expect that the slow dynamics resulting from the
lines being caged by its neighbors and from Aux-line en-
tanglement effects, can be reproduced by these higher-
order interactions. It is quite likely, however, that these
effects will turn out to be nonperturbative. It is also pos-
sible that the k correction to the diffusion coefficient will
be absent even beyond the Gaussian approximation. The
interactions might generate only nonanalytic terms in k
and therefore the Aux-line liquid viscosity will be strictly
zero, leading to a breakdown of the phenornenological
model described in Sec. VIII. In any case we believe that
the formulation of hydrodynamics in terms of kinetic
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theory of lines introduced in this paper will be useful for
a more detailed understanding of Aux-line liquid phase at
and possibly away from equilibrium.

ACKNOWLEDGMENTS

%'e would like to thank Professor David Nelson, Pro-
fessor Daniel Fisher, and Professor Bert Halperin for
numerous stimulating discussions and for the critical
reading of the manuscript. This work was supported by
National Science Foundation, through Grant No.
DMR91-15491 and through the Harvard Materials
Research Laboratory. L.R. acknowledges support from
Hertz Foundation. The work of E.F. has been supported
by the Deutsche Forschungsgemeinschaft (DFG) under
Contracts No. Fr. 850/2-1, 2.

APPENDIX A: CALCULATION OF THE INTERACTING
STATIC STRUCTURE FUNCTION

N N

f dz(B, r, ) +—g f dz V[r;(z) —r (z)]
2 . =1 lw =1

N
+ g f dz U(r;(z), z) . (A 1)

Analogously to the dynamics calculation we want to
derive a macroscopic Hamiltonian in terms of number
and tangent densities p(r, z ) = n (r, z ) —no and
r(r, z)=t(r, z) —to, where,

n(r, z)= g 6' '[r —r;(z)], (A2a)

N Qr' (2)t(r, z)= g 5' '[r —r;(z)] .
BZ

(A2b)

In this appendix we derive the interacting static struc-
ture function of Eq. (7.11) within the static equilibrium
formulation, directly from the microscopic Hamiltonian
Eq. (2.1), using methods similar to the ones used in the
main text to obtain the dynamic structure function.

We begin with the microscopic Hamiltonian,

The tangent density field can be written as a sum of its
longitudinal and transverse parts, r(r, z)=r (r, z)
+r (r, z) with r, (r, z)=P brI, (r, z) and r, (r,z)
=P,~ rb(r, z), where P, i, (k)=6,b

—k, kblk and P,b(k)
=k, kb/k, in Fourier space.

As already mentioned in the derivation of dynamics,
the longitudinal part of the tangent density field v (r, z ) is
related to the number density n(r, z) by the "continuity
equation, "

p(r, z )+V„.r(r, z ) =0,a
BZ

(A3)

gf[r, ]=& [r, ]+&;„,[p, r], (A4)

where ~0[r, ] is the Hamiltonian of N noninteracting
lines, the first term in Eq. (Al) and,

&,„,[p, ]=rf p(r, z )p(r', z ) V(r —r')
r, r', z

+ pr, z Ur, z (A5)
r, z

Since we are after the description in terms of the density
fields, we construct a generating functional by introduc-
ing external fields h(r, z) and h, (r, z) that couple to
p(r, z) and r (r,z), respectively,

which is a statement that the Aux lines do not end within
the sample, or equivalently in terms of the magnetic field
is the Maxwell equation V.B(r,z)=0. This equation is
clearly trivial for r (r, z), but gives a relation between
p(r, z) and v (r,z). Clearly then it is not necessary to
keep track of the longitudinal part of the tangent density,
since its correlations can be easily obtained from those of
the number density using Eq. (A3). We derive an
eAective Hamiltonian in terms of static density fields
p(r, z ) and r (r, z ) by starting with the microscopic Ham-
iltonian Eq. (Al) and integrating out microscopic degrees
of freedom r;(z ) as we did for the dynamic calculation.

The microscopic Hamiltonian can be rewritten (aside
from irrelevant constants) in the suggestive form in terms
of the relevant density fields,

Z, [h h ]=f~r, (z) exp — &[r,(z)]+f [p(r, z)h(r, z)+r(r, z) h, (r, z)]
1

k, T r, z
(A6)

We introduce unity inside above expression in the form of functional 6-functions, constraining the auxiliary fields
q(r, z ) and g,(r, z ) to equal the physical densities fluctuations, respectively,

Z„[h,h ]=f~r, (z)exp —p&o[r] —p&;„,[p, r]+ f [p(r, z)h(r, z)+r(r, z).h, (r,z)]
r, z

X f&pg)f, Q 5[/(r, z) —p(r, z)]6[/ (r, z) & (r z)]
r, z

—f&p&p exp —p~. [g p ]+f qh+ fy, h, (5[g(r,z) —p(r, z)]5[@,(r, z) —r (r,z)])o (A7)

. (AS)

The interactions and disorder are quadratic and linear functions of auxiliary density fields and the nontrivial part of
the calculation reduces to averaging the functional 5 functions with the Boltzmann weight exp[ —P&0] of X nonin-
teracting lines. These averages decouple to single line averages,

N
(5[g(r,z) —p(r, z)]5[/, (r, z) —r (r,z)])o= f2)$2)p, exp i f (pit+/, g, ) ( exp[ i f (pp, +p, .r, )])o—
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Inserting the above equation into Eq. (A7) we obtain the partition function (for a fixed realization of disorder) in
terms of an effective Hamiltonian expressed as an expansion in macroscopic density fields,

Zd[h, h, ]=f2)QXlf, fX)$2)f, exp —&[/, g„P,f,]+f (gh+g, .h, ) (A9)

where the effective Hamiltonian is given by

&[q,y„y, y, ]=m,„,[y]+n, r[y, y, ]+if (yq+y, .y, ), (A 10)

with the new contribution noI [P,P, ] coming from the average of the 5 functions in Eq. (Ag) and is expressed in terms
of a single Aux-line cumulant expansion of p1 and ~, , in Fourier space,

oo
(

~

)( I + m)—r[44]=g (, ) f, „
I, m

I+m I+mI, '. ,'. , (k&, q) k(+, q&+ )(2m) 5' g k, 5 g q,
ql+m "t+m ' m

i =1 i=1

X P( —k„—q, ) P( —k(, —q()

X4...(
—k(+) —q(+) ) 0,.(

—k(+ q(+— (Al 1)

where the sum over a; is implied. I (,I™.'. , is a connected correlation function of a single-line density fluctuations p1
and w&", and in Fourier space is

I+m I+mI,".,'. , (k„q, k(+, q(+ )(2') 6' ' g k,. 5 g q;
i =1 i=1

=A&p(k„q, ) . p(k, , q, )r, (k, +„q,+, ). r, (k(+,q(+ )~0 (A12)

As in dynamics we have inserted an area factor 3 for
convenience and dropped the single-line label 1. The ver-
tex functions I", . .'. , can be systematically computed

for any l, m. We calculate some of the vertex functions
for both statics and dynamics in Appendixes B and C.

Within the Gaussian approximation we truncate
I [P,P, ] at quadratic order in the densities. We observe
that I' ' '(k, q)=S, (k, q), I ', b' '(k, q)=T, ,b(k, q), andI", "(k,q ) are single-line number and tangent static
structure functions [with notation S, (k, q) and T, ,b(k, q)
from Ref. 1], derived in Appendix B and discussed in the
main text,

~[it), g']= f [ —,'P(k, q)A '(k, q)g( —k, —q)
k, q

+ 'g;(k, q )B,—b '(k, q )gb( —k, —
q )

+ it)( k, q ) U( —k, —
q )], (A14)

noka Tk /e
A(k, q)=

q +(q (sk)/k Ts)

k~ Tno
B,„(k,q ) =P,b

(A 158)

(A15b)

where A(k, q ) and B,b(k, q) are the static interacting but
disorder-free two-point correlation functions of p and w„

k2k~ T/er(2, 0)(k )
q +(k k~T/2e)~

k~Tr.","(k,q) =

r('"(k, q) =0 .

(A 138)

(A13b)

(A13c)

and qs(k) is the Bogoliubov spectrum given by Eq. (7.12)
in the main text.

We use above Hamiltonian to derive the interacting
static functions in the presence of disorder
S'(k, q ) = (p(k, q )p( —k, —

q ) )0 and

T,'b(k, q)=(r, (k q)rb( —k, —q))

=T, (k, q)P,b+T, (k, q)P, b

The fact that I ','')(k, q) and all the cross-correlation
functions vanish for the transverse part of the tangent
density Geld ~, is a result of the independence of ~, from
p. Mathematically it is true to all orders because any
cross-correlation function of ~, is a tensor with at least
one index a which must be carried by k, . This means
that all the cross-correlation functions are purely longitu-
dinal and when contracted with P,b (for every r, ) au-
tomatically vanish.

Integrating over the auxiliary fields it(k, q) we obtain
an effective Hamiltonian expressed solely in terms of the
physical number and transverse tangent density fields,

noka Tk2~e
S, (k, q ) =

q +(q~(k)/k~T)

nok /e
+F(k, q)

q +(q~(k)/k~T)

'2

(A 168)

The longitudinal part of T,'& can be obtained from
S'(k, q ) by using fiux-line continuity Eq. (A3). Averaging
over the annealed density fields, followed by the average
over the quenched disorder we obtain
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T, (k, q)= kg TEl p
(A16b)

APPENDIX B:
CALCULATION OF THE NONLINEARITIES
IN THE STATIC CUMULANT EXPANSION

2

T, (k, q)= S, (k, q) . (A16c)

Equation (A16a) is in complete agreement with static lim-
it of the interacting dynamic structure function obtained
in the main text, Eq.(7.lib). For short-range disorder
and fiux-line interaction, F(k, q) =b,o and V(k)=$0/Srr,
respectively, and the above equations reduce to the re-
sults of Ref. 23 obtained using the boson mapping.

In this appendix we calculate the coeKcients of the
nonlinear interactions which appear in the cumulant ex-
pansion of the Hamiltonian in Appendix A.

We begin with static problem and calculate the static
single-line correlation functions of the density fields p and
r, defined by Eq. (A12). It is convenient to work in the
space of (k, z). We evaluate the following static correla-
tion function,

2 l+mr. . . .. (k„z, k. +, ,z. +, )
(2~)

i=1

=(,(k„),(k, )p(k, , ) p(k, ))

= (8, r, (z, ) 8, r, (z )exp[ —i[k, r(z& )+ . +k +& r(z +I )]] )0,

(8 la)

(Bib)

where the averages are performed with a Boltzmann weight of a single line and the superscript T extracts the transverse
part of the average.

The above average can be easily computed by using the following Lemma that holds for Gaussian averages,

l
( Y~) /2(X, Xe ) = g(XX) +(Yx) . . (Yx) e

l WJ

(82)

where X; and Y are Gaussian random variables with respect to the measure used. The above equation can be easily
proved by rewriting the left-hand side as a multiderivative with respect to l parameters of an exponential generating
function,

Y Y+P,.X,.(X, . X,e )O=B„B~~(„) 0(e ' ')o

=B„.. 0 ~(„) oexp[( Y )0/2+( Yp;X;)0+((p,x, ) )o/2],

(83a)

(83b)

where we used a property of averages of Gaussian vari-
ables ( exp( P ) )o

=exp( ( P )o/2 ). Performing the
differentiation and evaluating the result at Ip;] =0 we
obtain Eq. (82).

Returning to the original problem, Eq. (Bl), we make
the identification X; =d, r, (z, ) and Y= —i+I+Pk;.r(, ),

obtaining,

(84a)

Using this expression we find,

iq(z, . —z. )

C(z, —z, )
—C(0)= I '

q 6g

2E

(86a)

(86b)

l+m I+m
k,'(r'(z, ) )0—g k, k, (r(z, ) r(z, ) )o

(84b)2I+m
k, C(0)

i =1

From Eq. (85b) we observe that C(0)=L = A ~ ~ and
therefore this first factor leads to a 6 function as
L, A ~~ and imposes momentum conservation in the xy
plane for all the correlation functions.

The (X, Y) and (X,X.) averages can be similarly eval-
uated,

l+m—2 g k, k, [C(z, —z, ) —C(0)],

where the r(z; ) averages are isotropic,

—,'&.(., )'(;)),=C(., —;)
iq(z, . —z. )

(84c)

(85a)

(Bsb)

l+m
(X;Y)o= id, g (r(z, )k, —r(z, ))0

j=1

l+m
i g keg(z, —z ),—

j=1

where

(87a)

(87b)
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g(z,. —z )=—,'8, (r(z;) r(z ) )

dq Slllq (z& zj )

0 2&

1
sgn(z, —z ),

2e

with sgn(z ) = 1 for z & 0 and sgn(z ) = —1 for z (0:

(B8a)

(B8b)

(B8c)

(X,X, ),=8, a, (r(z, ).r(z, ) &,

=2I e"" "
=25(z; —z ) .

(B9a)

(B9b)

(B9c)

Combining the above equations inside Eq. (Bl) we find
for odd I the cumulants vanish and for even I we ob-
tain,

™(kl zl kl+ zt+
m/2

[P, , 5(z& —z2)P, , 5(z3 —z&) P, , 5(zm&2 &

—z~&2)+ All pair combinations]

kBT™
Xexp g k k z,. —z

i&j
(B10)

I' ' '(k, z „—k, z2 ) = exp — k lz, —zz I

20) kB T
2 (B1 la)

For Gaussian approximation that we are concerned with
in the main text we obtain,

Eq. (A3), while as for the statics, the transverse part of
the tangent correlation function is probably not affected
by the Aux-line interaction or disorder.

In order to calculate the averages in Eq. (Cl) we intro-
duce "Rouse modes, "

1', ', '(k, z, , —k, z2)= P, , 5(z( z2)
1 2 1 2

k, T,
Xexp — k lz&

—zeal, (Bllb)

1 L
r(q, t)= — dzcos(p z)r(z, t),

0

r(z, t)=ro(t)+2 g cos(p~z)r(q, t),
q&1

(C2a)

(C2b)

r.""(k,z„—k, z, ) =0 . (B1 lc)

These expressions when Fourier transformed to q space
give Eqs. (A13) of Appendix A.

where p =~q/L and L is the length of the Aux line.
ro(t ) denotes the center-of-mass mode. From the single-
line dynamic functional 80[r, r], Eqs. (3.9) and (3.10), one
can derive the following correlation functions for the
Rouse modes,

APPENDIX C: NONINTERACTING FLUX-LINE
LIQUID DYNAMICS

In this appendix we apply methods similar to Appen-
dix B to calculate the dynamic cumulants

a t b
kBT —Dep Itl

( r'(q', 0)r "(q, t ) )o= e ' 5 .5,b,
2L Epq

2DkB T
( [ro(t) —ro(0)][ro(t) —ro(0)] &0= Itl5,b,L

(C3a)

r.",'(x„x, ) = (p. (x, )p„(x, ) ), , (Cl)
(C3b)

where x = (k, z, t ) and a, b = 1,2. The procedure is simi-
lar to the one used for statics. The averages are per-
formed with the exponential of the single Aux-line dy-
namic functional Po[r, r], Eqs. (3.9) and (3.10), instead of
with the static Boltzmann factor. As explained in the
main text in the derivation of hydrodynamics we traced
over the tangent density field and its corresponding
response field. The longitudinal part of the dynamic
tangent correlation function can be extracted from those
of the number density field by using fIux-line continuity

I

([r'(z, t) —r'(z', 0)][r (z, t) —r (z', 0)])0

—De 2ltl(r'(q', 0)r "(q, t))o= — 0(t)e ' 5,5,~,2L
(C3c)

(r', (0)r (t)) = — 8(t)5, —
L

(C3d)

(ro(0)rt(t))0=0 . (C3e)

Using the above equations we deduce for the segment-
correlation function of the internal modes

=6,b

2DkB T 2L kB T —Dep~ltlltl+ 2 g 2 [ —,'[cos(2p~z)+cos(2p~z')]+cos[p (z+z')]eL q&i Eq

kBT —Dep ltl+ g I 1 —cos[p (z —z')]e
2 2 (C4)



48 KINETIC THEORY OF FLUX-LINE HYDRODYNAMICS: 10 377

This has to be inserted in the corresponding expression
for the single-line correlation function S (k, z, z', t )

=r(g(k, z, z', t )

I ' '(k, z, z', t)=(p( —k, z, t)p(k, z', 0))

=expt —
—,'k ([r(z, t) —r(z', 0)] )oI . (C5)

piete gamma function I (a,x) as

1 1 1 1f(y )=—+ —I
2 4v'~ 2' 4y

with the asymptotic representations

(C8)

~Iz —z'f, , (C6)
(z —z')

where

f(y)= —I [1—e " cosx] .
1 ~dx

77 0
(C7)

The function f (y ) can be written in terms of the incom-

Since we are dealing with a finite-size system there is no
translational invariance with respect to the z axis, and
therefore correlation functions like Eq. (C5) depend ex-
plicitly on z and z'. But, except for the small region
where z and/or z' are close to one of the ends of a fiux
line the second term in Eq. (C4) can be neglected. This is
due to the rapid oscillations of cosine terms such as
cos(2p z). In the rest of this appendix we will neglect
those contributions and hence get expressions which de-
pend only on the relative coordinate (z —z').

For t ~ «~,„„=L2/De the summation g~» is rapidly
converging. If t (&tR,„„the sums can be replaced by in-

tegrals

L 1 —DEp ltl
I 1 —cos[p (z —z')]e

7T q) &

1+ + 0 ~ ~

4y
for y ))1,

f(y)= (C9)—+ — e ~(1 —6y+ . ) for y (( I .
2~'" -i'
~Fr

With the latter definitions we find for the two-point func-
tion

Dk~ Tk2
I 22'(k, z, t ) = exp —

I
t

k T
2 (clo)

Since f(0)= —,', we recover the static result of Appendix B
as we must for the equal time, t, —t- =0, correlation func-
tion.

Next we consider the single-line response function

S'"(k,z, z', t ) = I",, '(k, z, z', t )

= (p( —k, z, t)p(k, z', 0) )o,
again in a regime where z and z' are not too close to one
of the ends of the Aux line. We find

I z('(k, z, t)=iDkz Tk —,
' (F(0,0).r(z, t))oexp

Dks Tk'
I
t

I
k Iz If

E z'

=B(t)k DksT —+1 1

4~D, I«I

r",,'(k, z, t) =r,",'(k, z, —«) .

1/2

e
—z l(4Del t I j

DkaTk
2

kmT DeI«I
I
z IfL z2

(C 1 la)

(Cl lb)

For the correlation function I (,~'(k, z, t ) one gets

r(( (k, z, t ) = (Dks Tk)' exp —— It —k' Iz If(2) 2
DksTk 2kaT

E z'

kX —(7'(z, t) F(0,0)) — [(F(z, t r)(z, t)) —(F(z, t) r(0, 0)) ]2
' ' 4

X[(F(0,0) r(z, t))o—(F(0,0) r(0, 0))o] (C12)

All the terms inside the large parentheses in Eq. (C12)
vanish. (F(z, t) F(0,0))0=0 as can be seen from Eq.
(3.10b), and the equal-time correlators (F(z, t).r(z, t))0
and (i'(0, 0) r(0, 0))o vanish by the causality together
with our choice of causal-time discretization, Eq. (3.14).
Finally, the remaining term

(&(z, t) r(0, 0))0(F(0,0) r(z, t)) 00,

r", , '(k, z, t) =O . (C13)

We now observe that I (22'(k, z, t ) and I'&~@'(k,z, t ) satisfy
the standard fiuctuation dissipation theorem (FDT),

because it is proportional to B(t)B( t), which vanishes-
by the definition of B(t ) and by the choice of causal-time
disc retization. Therefore,
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a, l ~,',~(k, z, t)=rI', ~(k, z, t) —I.I,~(k...—t) (C14) ak~ Tk
5'(k, z, t)~„.. .„,=9(t)

This is the reason why in the main text we called p, =p
the response field of the physical density field pz=p and
called I 22'=S and I z&'=S the correlation and response
functions, respectively.

Now we discuss the correlation functions in various
limiting cases. For k&Tk L/e«1, where the wave-
length is much larger than the static transverse "radius of
gyration" +2k sTL/ eof the flux line, the dominant
term in Eq. (C10) is the first term. This term describes
the center-of-mass motion of a single Aux line. We find
exponentially decaying correlation functions

ak, Tk'
S ( kz, t)~„„2,, = exp — t~, (C15a)

ak, Tk'
X exp — /t

/L

(C15b)

All the other terms are of order O(k L ) and can there-
fore be neglected.

For k&Tk L/e))1, where the wavelength is much
smaller than the radius of gyration, the internal modes,
i.e. , the second term in Eq. (C10), dominate provided t is
not too large. For times t ~tR,„„the center-of-mass
motion becomes the dominant contribution again, since
the contribution from the internal modes scales as U't for
large times [note f(y ))I)-&y ]. Hence we get for
t « tR „

S'(k' ')'k Tk2ii ))i='xp "' "f z
(C16a)

, k, T z', ka T artS (k, z, t ) ~ k Tk~~&, =0(t )k VD /~et exp — exp —k z
~f (C16b)

Finally, we study the Fourier transforms of these noninteracting structure and response functions to be used in the
main text to calculate the interacting counterparts. In the center-of-mass limit one gets a Lorentzian shape for the
correlation function (f(q =0)= J odz f(z)),

2LI, (k)
S (k, q=0, co) k~Tk L/ E(1(2+1 2 (k)

LS'k =0
Tk t-I«&i —i~+I (k)

(C17a)

(C17b)

with the line width

ak~ TI, (k)= k (C18)

In the limit where the internal modes dominate we find

S (k, q, co)= J dt e' 'j dx cos(q'(/tx)e
ksT v~k 0 0

(C19)

where we have introduced the scaling variables co=co/I k, Q =2qe/(k~ Tk ), and I"k=(k&T) Dk /(4e), the nonin-
teracting dynamic relaxation rate. We have also defined a function m (x ) by

1 1 xm(x ) =x+x —I2v'~ 2' 4
(C20)

Expanding in powers of co we obtain

S (k, q, co)= g i "b„( kq)co"
irk' „=o

(C21)

with the coefficients

„+& )„I d &4 cos[(2n +2)arctan(qx /m (x ) ) ]
0 [(qx) +m (x)]" (C22)
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with the expansions

for q))1
b„(q,k) =

b„Q—b„' for q «1,
where the coefficients are given by

b„=2" '(2n+ I)!!f dx e " m(x)
0

(2n +3)!
ax e x m(xj

nI o

(C23)

(C24a)

(C24b)
LL

3.0

2.0

1.0

The expression for S (k, q, co) can now be easily ob-
tained from the above expression for S (k, q, co) and the
FDT, Eq. (C14). In the limit of small frequencies one
gets to leading order 0.0

0.0
I I I

1.0 2.0 3.0 4.0 5.0

S (k, q, co)= [bo(q)+ib, (Q)co b2(q)—co ],
hark'

(C25a)

S (k, q,co)=,[b, (Q) —b, (p)Q']
m.k

FIG. 6. Scaling functions F for a fixed value of ~=1.0 and a
series for k [=0.0001 (solid), 0.5 (dotted), 1.0 (dashed), 2.0
(dot-dashed)].

where we have introduced the quantities

4 b', (q) /b, (Q)

I k kaT &~k' ~'+b, (q)/b, (q)

(C25b) and

4 b, ~ (k, q)
A, (k, q)=2

kgT "i/hark b' (k q)
(C27)

In the limit (co~0) the Fourier transform S (k, q, co)
can also be written in the Lorentzian form

b, (k, q)
~single( k 1 q ) ~k (C28)

21 „„i,(k, q)S (k, q, co)= A, (k, q) ~ +r„„,„(k,q)
(C26) In the limit 2qe/(k~ Tk ) && 1, A, (k, q ) reduces to

4 b i 6(qe/kg Tk—) b i
A, (k, q) =2

kgT &hark b3 2(qelk&Tk—) b's

k k~T b) /b3=2 t me (k k&T/2e) +q [3bi l2bi —b3/2b3]
(C29)

where b„,b„' are constants of order O(1). The formula
for A, (k, q ) is quite similar in form to the static structure
factor of noninteracting lines

Finally, we discuss the Fourier transform of the
single-line correlation function in the limit q =0

k'k~ T/e
S, (k, q)=

+(k k~T/2e)
(C30)

S (k, q=O, co)= f dz f dt e' 'S (k, z, t) . (C32)

In the same limit the linewidth reads
2

k k~T
I „„„(k,q)=I k 26

Upon introduciny the scaling variables co =co/
[I k(1+@ )], k =k Lk~T/(4e), and «=I itR „„,
where the latter variable gives the ratio of the Rouse time
to the decay time of density Auctuations, we obtain

b, /b3

(k k~T/2e) +q [bi /2bi —b3/2b3]
S(k, q =O, co) = F(k, co, lr)

I
I „(1+k )

(C33)

(C3 1) with

I

2F(k, co, lr) = — drcos(cur)exp
v'Ir o

dy exp ' )/r/(I+i ) m[y—'1/ (1+k )/r] ' .
1+k
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The above scaling analysis of the single-line correlation
function shows that there are two time scales. First,
there is the time scale for the dynamics of the internal
modes given by t;„„,„,t =1/I z. Then there is a time scale
tR,„„=L /(De), which gives the crossover time above
which the dynamics starts to be dominated by the
center-of-mass mode. Furthermore, we have a length
scale RG =+2ks TL/e, which describes the projected
2D radius of gyration.

For k &(1, i.e., for wavelengths much larger than the
2D projected radius of gyration, the dynamics is deter-
mined by the center-of-mass motion, and we find for the
scaling function

where the coeKcients ap, a& and the exponent y depend
on k and ~. In the limit of small k the scaling function F
turns into a Lorentzian with y =2 and a p

= 1.264,
a, =1.0, which just corresponds to the Lorentzian shape
in the center-of-mass limit [compare Eq. (C17a) and Eq.
(C35)j. The exponent y decreases with increasing k. The
best nonlinear At for k ' =0.0001 gives ap =2.93,
a

&
=5.93, and y = 1.344. Hence, the line shape crossover

can essentially be characterized in terms of the effective
exponent y. The typical linewidth I (k, L ) of the correla-
tion function is given by the condition co = 1, i.e.,

1 —eF(k, co, lr) =
1 + co

(C35)
(C37)

which corresponds to Eq. (C17a), provided Ic is small, i.e. ,
the Rouse time is small compared to the typical relaxa-
tion time for internal modes.

For k &&1 the internal modes dominate the dynamic
structure factor. In Fig. 6 the scaling function F is shown
for a fixed value of ~= 1.0 and a series for k
(=0.0001,0.5, 1.0,2.0). For any value of ~ and k the
curves are rather well represented by

which describes the crossover from a dynamics deter-
mined by the internal modes to a dynamics governed by
the center-of-mass motion.

We note that S (k, z, t ) and S (k, z, t) from Eqs. (C10)
and (Cl 1) satisfy the static limit sum rules, as they must,

S, (k, q)=S (k, q, t=O)

ap
F(k, co, ~) =

1+a co
(C36)

S k, q, m

S, (k, q)=S (k, q, co=0) .

(C38a)

(C38b)
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