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Density-matrix algorithms for quantum renormalization groups
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A formulation of numerical real space renormalization groups for quantum many-body problems is
presented and several algorithms utilizing this formulation are outlined. The methods are presented
and demonstrated using S = 1/2 and S = 1 Heisenberg chains as test cases. The key idea of the
formulation is that rather than keep the lowest-lying eigenstates of the Hamiltonian in forming a
new effective Hamiltonian of a block of sites, one should keep the most significant eigenstates of the
block density matrix, obtained from diagonalizing the Hamiltonian of a larger section of the lattice
which includes the block. This approach is much more accurate than the standard approach; for
example, energies for the S = 1 Heisenberg chain can be obtained to an accuracy of at least 10
The method can be applied to almost any one-dimensional quantum lattice system, and can provide
a wide variety of static properties.

I. INTRODUCTION

Shortly after Wilson developed his numerical renor-
malization group (RG) procedure to solve the Kondo
problem, there was considerable interest in applying
closely related techniques to a variety of problems. In
particular, it seemed that a number of quantum lat-
tice models (such as the Hubbard and Heisenberg mod-
els), particularly in. one dimension (1D), could be treated
with a real-space blocking version of this technique. It
was clear from the beginning that one could not hope
to achieve the accuracy Wilson obtained for the Kondo
problem in these other systems (cf. Sec. III), but it
was hoped that the method would yield qualitatively re-
liable results. Unfortunately, the approach proved to be
rather unreliable, particularly in comparison with other
numerical approaches, such as Monte Carlo, which were
being developed at the same time. Until very recently,
the method was only used occasionally.

Recent developments in renormalization group algo-
rithms have changed this picture completely. The first
significant advance came in the understanding of the ef-
fect of boundary conditions on the basic renormalization
group procedure. The standard approach of neglecting
all connections to neighboring blocks during the diago-
nalization of the block Hamiltonian introduces large er-
rors which cannot be corrected by any reasonable increase
in the number of states kept. However, by varying the
boundary conditions on a block, and keeping states from
several diagonalizations with different boundary condi-
tions, one can eliminate these errors, at least for single-
particle problems. The second advance came in the devel-
opment of a technique suitable for many-particle systems,
using a formulation in terms of density matrices. For
systems such as 1D Heisenberg spin chains, the density-
matrix approach makes the numerical renormalization
group approach not just qualitatively reliable, it makes it
substantially more accurate and powerful for calculating
many zero temperature properties than current quantum
Monte Carlo approaches.

The main goal of this paper is to describe in some
detail the density-matrix algorithms. The approach was
presented in summary form in an earlier paper, but in in-
suKcient detail to allow a nonexpert reader to develop his
own programs for these calculations. These algorithms
are somewhat more complicated than typical exact diag-
onalization or Monte Carlo algorithms, and a number of
unfamiliar ideas are involved. By reading this paper, we
hope that someone with some experience in exact diag-
onalization calculations can develop their own density-
matrix program. We will illustrate and demonstrate the
approach on S = 1/2 and S = 1 Heisenberg antiferro-
magnetic spin chains. We will present a few new results
for properties of these chains, but only as examples of the
power of the methods. More results on the properties of
Heisenberg chains will appear in subsequent papers.

In the next section, we discuss the standard real-space
renormalization group approach. In Sec. III, we discuss
previous uses of the standard methods. In Sec. IV, we
then present the density-matrix approach, and show that
it is optimal in a certain sense. In Sec. V, we present
the infinite and finite lattice density-matrix algorithms.
In Sec. VI, we discuss the measurement of a number of
static quantities in these algorithms. In Sec. VII, we
present some results for Heisenberg chains and discuss
the effects of various boundary conditions on the pro-
cedure. In Sec. VIII, we conclude and discuss future
prospects.

II. STANDARD APPROACH

We first describe in detail the standard RG approach
in the simplest possible context, a real-space blocking ap-
proach for a 1D lattice system. The notation and many of
the central ideas will be very similar in the density-matrix
approach described later. The Hamiltonian considered
here could describe a spin system, such as the Heisen-
berg model, or an interacting electron system, such as
the Hubbard model. The approach is relevant for zero
temperature, and one obtains the ground state and some
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low-lying excited states.
One begins by breaking the 1D chain into finite identi-

cal blocks. It is usually convenient to start at the first it-
eration with blocks consisting of just one site. We will la-
bel the blocks B and the block Hamiltonian H~. H~ con-
tains all terms of H involving only sites contained in B.
For example, for the Hubbard model at the first iteration,
where B consists of one site, H~ = Un, gn, g p(n—;g+n;g)
For the Heisenberg model at the first iteration, H~ ——0.

Rather than describe B and H~ in the usual way by
listing the sites of B and using second-quantized oper-
ator expressions for H~, we describe B by a list of the
many-body states on the block, and by quantum numbers
and matrix elements between these states. We store the
number of states m, and for each state we list all quan-
tum numbers which are to be used, such as S and S for
a spin system, or N~, %~, and S for an electron system.
H~ is represented as an m x m matrix. In order to recon-
struct H, additional information is needed besides H~.
The additional information describes the interactions be-
tween blocks. For a Heisenberg system with interaction

when one puts four blocks together, as we do below), and
we have not used S to further reduce the dimension of
H~~. (The value of S for a state can easily be inferred
by degeneracies for diB'erent values of S, .)

The lowest-lying eigenstates u, ;,o. = 1, . . . m, of H~~
are the states used to describe B' (BB~ B') Th.e new
block Hamiltonian matrix H~ is diagonal. However, in
the more general case where the states kept, the u, are
not eigenstates of H~~ we can write

H~ ——OH~~Ot,

where the m x m matrix 0, ,„, = u', , ; i.e. , the rows
of 0 are the states kept. If 0 were square, this would
be a unitary transformation. Since 0 is not square, the
transformation truncates away (integrates out) the high
energy states.

In order to obtain new matrices for S&, S„, etc. , it is
necessary to use 0 again. First, one must construct the
operators for S&, S„, etc. , for BB, which we denote by
Sg ) S ) etc. For example

S; S,+g ——S;S,+, + —(S+S,.+, + S, S++~),
1

2 2+1
S

~ ~ i ~ i2122)2g22
= [Sg]. .. b;„ (4)

one needs to store m x m matrix representations of S2,
S,+.

, and S2 for i equal to both the left and right end sites
of B. (In practice, one need not store S, , since it can be
obtained by taking the Hermitian conjugate of S+.) For
a Hubbard model one would have to store matrices for
c, and c, , with 0 =g and $, in order to reconstruct the
hopping term P (c,.+~ c, + c,. c,+q ).

The standard procedure is summarized in Table I. At
the beginning of an iteration one forms the Hamiltonian
for two blocks joined together, H~~. BB has m states.
The states are labeled by 2 indices, ii i2. For a Heisenberg
system with J = 1 the m x m matrix for H~~ is given
by

[Hgy/]. . ., ,, = [H/]. .. 8;„,+ [H/]. .. 8;„

+ [S„'], ,, [Sg], ,, + — S+, [Sq

S„'
-' 2l 22 j2~ 22

Then the new matrices for B' are given by

S~ ——OSq Ot,
etc.

After these new operator matrices are formed, we can
replace B by B' and start the next iteration. The it-
eration is continued until the system is large enough to
represent properties of the infinite system. As our main
concern here is the iterative diagonalization procedure
discussed above, we will not discuss the analysis, using
fixed points, relevant and irrelevant operators, etc. , of
the efFective Hamiltonians obtained with the procedure.

III. PREVIOUS USES

+-, [S;3..., LS j...,
where r represents the rightmost site of the left block,
and l the leftmost site of the right block.

In diagonalizing H~~ it is useful to separate the basis
states by quantum numbers, since H~~ is block diag-
onal. It is very simple to use S or %g and %g in this
way. Utilizing the total spin S is more tedious (especially

We will not attempt to give a comprehensive review of
previous uses of this approach; rather, we will discuss a
handful of studies which illustrate successful and unsuc-
cessful applications.

Wilson's approach to the Kondo problem is closely re-
lated to the method described here, despite some im-
portant differences. One difference is that rather than
joining two identical blocks, the degrees of freedom as-

TABLE I. Standard numerical renormalization group algorithm for a 1D quantum system.

2.

4.

Isolate two blocks BB, and form H~~.
Diagonalize H~~, obtaining the m lowest eigenvectors u
Form matrix representations of S&, etc. , for BB from the corresponding matrices for B.
Change basis to the u, keeping only the lowest m states, using Hzi ——OH&&O, etc. , with
O(o.;ig, i2) = u.. ., , o. = 1, . . . , m.
Replace B with B'.
Go to step 1.
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sociated with a single interval (an "onion layer" ) were
added to the system at each iteration. The analogous
procedure for a 1D system would be to add a single site
to a block at each iteration. From a computational point
of view, this has a d.istinct advantage in that many more
states can be kept (m can be made larger) since at each
iteration a system with nm states, as opposed to m,
must be diagonalized, where n is the number of states on
a single site (n = 4 for Hubbard models, n = 2S + 1 for
spin models).

The most important difference between the Kondo sys-
tem and a 1D system is that the couplings between ad-
jacent layers or "sites" decreases exponentially in the
Kondo system, whereas it remains constant for a 1D sys-
tem. This exponential decrease is the key to the success
of the method for the Kondo system and. related impurity
systems. More discussion concerning how the detailed
form of the Hamiltonian makes the numerical approach
accurate are given by Wilson.

Bray and Chui applied the approach described in the
previous section to the 1D Hubbard model. The results
were quite discouraging. Even when a large number of
states were kept (m = 1000), results for the energies of
the lowest few levels were off' by 5—10%%up for 16 site chains.
Results for 32 sites or larger were not considered reliable
and were not presented. The origin of the difIiculties was
not clearly understood.

Other uses of this general approach since then have
included the work of Pan and Chen and Kovarik. Very
recently Xiang and Gehring applied a slight variation of
the method of the previous section to the 1D Heisenberg
model. Their method added a single site to a block at
each iteration, rather than doubling the block size each
time. (The algorithms we present below also add a single
site to a block. ) This improvement gave results rather
more encouraging than those of Bray and Chui; keeping
about 200 states they obtained an error of about 0.5%%uo in
the ground state energy. This can be compared to our
results below, where keeping fewer states we obtain the
ground state energy to at least nine digits.

There have also been a number of analytical real-space
RGs applied to the 1D Hubbard and related models.
These methods keep only a handful of states, and one
generally only expects to obtain qualitative features.
These will not be discussed further here.

Lee used a numerical RG method to study 2D Ander-
son localization. Since the model studied was noninter-
acting, a two-dimensional calculation was feasible. It was
clear from an examination of the density of states that
the algorithm was not especially accurate. However, Lee
argued that the errors would simply result in the system
being in another realization of the random potential. Lee
concluded that there was a critical amplitude for the ran-
dom potential which induced localization. However, not
long after Lee's work, Lee and Fisher found that the
2D model is logarithmically localized even for arbitrarily
small randomness using a different approach. This result
is now generally accepted.

In summary, the standard. numerical RG approach gen-
erally performs poorly. The exceptions to this rule in-
volve Hamiltonians which can be put into a special form.

IV. DENSITY-MATRIX APPROACH

The fundamental difFiculty in the standard approach
discussed in Sec. II lies in choosing the eigenstates of
H~~ to be the states kept. Since H~~ contains no con-
nections to the rest of the lattice, its eigenstates have
inappropriate features at the block ends. This is clearly
illustrated in the work of White and Noack, who sug-
gested two alternatives to the standard approach. These
methods shared a common feature: The states that were
kept were not the eigenstates of H~~. They differed
in how the states to be kept were chosen. In the first
method, the combination of boundary conditions (CBC)
approach, the lowest-lying eigenstates of several different
block Hamiltonians were kept. The several block Hamil-
tonian differed only in the boundary condition applied
to a block; e.g. , one Hamiltonian might have periodic
boundary conditions applied and another antiperiodic.
The rationale for this was that quantum fluctuations
in the rest of the system effectively apply a variety of
boundary conditions to the block. States from any sin-
gle boundary condition cannot respond properly to these
fluctuations. By applying a representative set of bound-
ary cond. itions, which is in some sense "complete" enough
for the problem at hand, one obtains a set of states which
are able to respond to these fluctuations. This approach
proved very effective for the simple single-particle prob-
lems studied by White and Noack, as well as for Anderson
localization models.

The CBC approach appears to be ill suited to inter-
acting systems. It is useful to consider a noninteracting
many-particle system, such as the Hubbard model with
U = 0. An arbitrary state of this system can be described
in terms of the single-particle wave functions of each of
its particles. Some of these single-particle wave functions
may have nodes at the ends of a block, and some may
have antinodes.

It is easy to choose boundary conditions with gener-
ate block states where every particle on the block has a
node or every particle has an antinode, but it is difFicult
to get different boundary behavior for different particles.
In order to properly represent the block, the states kept
not only need to allow for different end behavior for dif-
ferent particles; they must represent a complete range of
boundary behavior.

This general line of reasoning is supported by numer-
ical tests on Heisenberg chains. We have tried to find a
simple set of boundary conditions which can be used to
treat the S =

2 Heisenberg chain. We tried combina-
tions of periodic and antiperiodic couplings between the
ends of the block, as well as varying the magnitude of the
coupling between the ends of a block. We were unable
to find any set of boundary conditions which was at all
satis factory.

The other approach suggested by White and Noack,
the superblock method, forms the basis for the density
matrix approach. In the superblock method, one diag-
onalizes a larger system (the "superblock"; the name is
analogous to "supercell, " as used in electronic structure
calculations) composed of three or more blocks which in-
cludes the two blocks B'B which are used to form B'. The
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wave functions for the superblock are projected onto BB',
and these projected states of BB are kept. For a single-
particle wave function, this projection is single valued
and trivial. The superblock method works quite well in
the single-particle model, with the accuracy increasing
rapidly with the number of extra blocks used. However,
for a many-particle wave function, the "projection" of a
wave function onto BB is many valued, and, in fact, a
single many-particle state for the entire lattice generally
"projects" onto a complete set of block states. However,
some of these states are more important than others; the
density matrix tells us which states are the most impor-
tant. (The reader is urged to review Feynman's intro-
duction to density matrices before proceeding further. )

It is very natural to use the density matrix to choose
the states which we wish to keep. Consider first the fol-
lowing argument by analogy. For an isolated block at
finite temperature, the probability that the block is in
an eigenstate o. of the block Hamiltonian is proportional
to its Boltzmann weight exp( —PE ). The Boltzmann
weight is an eigenvalue of the density matrix exp( —PH@),
and an eigenstate of the Hamiltonian is also an eigenstate
of the density matrix. Since lowest energy corresponds
to highest probability in the Boltzmann weight, we can
view the standard RG approach as choosing the m most
probable eigenstates to represent the block given the as-
sumption that the block is isolated. (Alternatively, we
can view the rest of the lattice as a heat bath at an effec-
tive inverse temperature P, to which the system is very
weakly coupled. ) However, in reality the block is not iso-
lated, the density matrix is not exp( —PR~) [it is defined
through Eq. (12) or (16) below], and eigenstates of the
block Hamiltonian are not eigenstates of the block's den-
sity matrix. For a system which is strongly coupled to the
outside universe, it is much more appropriate to use the
eigenstates of the density matrix to describe the system
rather than the eigenstates of the system's Hamiltonian.
Thus a natural generalization of the standard approach
is to choose to keep the m most probable eigenstates of
the block density matrix.

This argument can be made much more precise. In
particular, we can show that keeping the most probable
eigenstates of the density matrix gives the most accu-
rate representation of the state of the system as a whole,
i.e. , the block plus the rest of the lattice. Let us as-
sume we have diagonalized a superblock and obtained
one particular state Ig), probably the ground state. Let
Ii), i = 1, . . . , E be a complete set of states of BB (the
system) and

I j), j = 1, . . . , J be the states of the rest
of the superblock, i.e. , the "universe. " We can write
Iv)) = P, vtr, ~Ii&Ig&. We will assume for simplicity g;~-

is real. We wish to defi.ne a procedure for producing
a set of states of the system Iu ), n = 1, . . . , m, with
Iu ) = P, u; Ii), which are optimal for representing vP in
some sense. Because we allow only m states, we cannot
represent Ig) exactly if E ) m. We wish to construct an
accurate expansion for IQ) of the form

In other words, we wish to minimize

by varying over all a ~ and u, subject to (u Iu )
b . Without loss of generality, we can write

where v = (jIv ) = K a ~, with K chosen to set

P . Iv
I

= 1. Switching to matrix notation, we have

8=) Iv)~ —) a u v,

and we minimize 8 over all u, v, and a, given the
specified value of m. The solution to this minimization
'problem is known from linear algebra. We now think of
@;~ as a rectangular matrix. The solution is produced by
the singular value decompositionis of Q,

g=UDV

where U and D are E x Z matrices, V is an Z x J matrix
(where j = 1, . . . , J, and we assume J ) E), U is orthog-
onal, V is column orthogonal, and the diagonal matrix
D contains the singular values of g. Linear algebra tells
us that the u, v, and a which minimize 8 are given
as follows: the m largest-magnitude diagonal elements
of D are the a and the corresponding columns of U
and V are the u and v. (We emphasize that the singular
value decomposition is not being used here as a numerical
method, only as a convenient factorization which allows
us to use a theoretical result from linear algebra. )

These optimal states u are also eigenvectors of the
reduced density matrix of the system as part of the uni-
verse. This reduced density matrix for the system de-
pends on the state of the universe, which in this case is
a pure state Ig). [The universe could also be in a mixed
state (see below) or at finite temperature. ] The density
matrix for the system in this case is given by

(12)

We see that

p=UD U

i.e. , U diagonalizes p. The eigenvalues of p are m = a
and the optimal states u are the eigenstates of p with the
largest eigenvalues. Each m represents the probability
of the system being in the state u, with P iv = 1.
The deviation of P = P i u from unity measures
the accuracy of the truncation to m states.

To summarize, in the previous two paragraphs we have
shown that when the entire lattice is assumed to be in
a pure state, the optimal states to keep are the m most
significant eigenstates of the reduced density matrix of
the block BB, obtained from the wave function of the
entire lattice via Eq. (12).

We can also consider the universe to be in a mixed
state. This is the natural assumption for a system at
finite temperature, and it is also useful to assume a mixed
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state when one wishes to obtain several of the lowest-
lying states: If we put the lattice with equal probability
into each of several states, then the block states obtained
from the density matrix will equally well represent each
of these lattice states. We represent the mixed case by
saying that the lattice has probability TVA. to be in state
~Q"). If the system is at a finite temperature, then the
Wk are normalized Boltzmann weights. In this case the
appropriate definition for the error in the representation
is

(14)

Note that we are interested in determining a single set
of optimal u, whereas we allow the rest of the universe
additional freedom to choose a difI'erent v for each state
k. Minimizing over the u, v"', and a", we find

pu = Q)~u )

with

(16)

= ) Wk(a")
k

This equation for p is the definition of the reduced density
matrix when the universe is in a mixed state, and the u
are the eigenstates of p.

Thus the conclusion when the universe is in a mixed
state is identical to the result for a pure state: The op-
timal states to keep are the eigenvectors of the reduced
density matrix with the largest eigenvalues.

V. DEN SITY-MATRIX ALGORITHMS

Incorporating the result of the previous section in a nu-
merical renormalization group algorithm involves a fun-
damental change in the way the calculation is carried
out. In the standard RG approach, to find the states
to be kept, one diagonalizes only the system BB, which
becomes B'. In the density-matrix approach, in order
to obtain any reasonable approximation to the density
matrix, it is necessary to diagonalize the Hamiltonian
of a larger system which includes BB, namely, some
sort of superblock, and then use the eigenstates of the
superblock to determine the density matrix. The den-
sity matrix is then diagonalized, and its most significan
eigenstates are the states kept. The number of eigen-
states of the Hamiltonian of the superblock used to pro-
duce the density matrix can be as small as 1; this single
state produces a density matrix for BB which has many
eigenstates to be used as block states to be kept.

A density-matrix algorithm is defined mainly by the
form of the superblock and the manner in which the
blocks are enlarged (such as by doubling the block,
B' = BB, or by adding a single site, B' = B + site),
and by the choice of superblock eigenstates used in con-
structing the density matrix (e.g. , the two lowest-lying

S, = 0 states). An eigenstate of the superblock Hamil-
tonian is called a target state if it is used in forming the
block density matrix. The most efFicient algorithms use
only a single target state (usually the ground state) in
constructing the density matrix. By targeting only one
state, the block states are more specialized for represent-
ing that state, and fewer are needed for a given accuracy.
Probably the most important characteristic of a density-
matrix algorithm is the rate at which the accuracy in-
creases with the number of states m. We have found that
the accuracy of the representation of the target states in-
creases roughly exponentially with rn, , at least for open
boundary conditions. The coefIicient governing the in-
crease of accuracy with m, is largest with a single target
state.

Several considerations enter in the construction of the
superblock to be used in an algorithm. Generally it is
more eKcient to enlarge the block by adding a single
site, rather than doubling a block, for the same reasons
as in the standard RG approach (see Sec. II). A block
can be represented more accurately with a given m, if it
connects to the rest of the chain only on one end, rather
than both ends. A block can connect to the rest of the
chain by only one end if it is on an end of a chain with
open boundary conditions. If periodic boundary condi-
tions are used, it is not possible for a block to connect
on only one end. Below we give results of calculations
which show that the open boundary condition case per-
forms much better than the periodic boundary condition
case. Our intuitive picture for this numerical result is the
following: Roughly speaking, each eigenstate of the block
density matrix represents the response of the block to a
particular quantum fluctuation in the rest of the chain.
A block with two ends which connect to the rest of the
system must respond to nearly independent fluctuations
near each of the ends. In the case of a long block, where
the ends are nearly independent, if m states are required
to accurately describe a single end to a given accuracy,
then approximately m states would be required to accu-
rately represent both ends. In other words, if for a given
accuracy open boundary condition require m states, pe-
riodic boundary conditions require roughly m states.

Figure 1 shows the superblock configuration used for
most of the calculations reported here. We adopt the
notation Bg ~ B&, for this configuration, where Bg repre-
sents a block composed of / sites, B& is a reflected block
(right interchanged with left) of length P, ~ represents
a single site, and the total length of the superblock is
I = E+ E'+ 2. Here B' = By+i is formed from the left
block plus a single site, i.e. , By+i ——Bg. Open boundary
conditions are used. The right-hand block and site B&,

B,

Bl+I

FIG. 1. The configuration of blocks used for the density
matrix calculations considered here. The rectangles represent
blocks containing 3 and l' sites, and the solid circles represent
single sites.
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are only used to help form the density matrix for Bg+q., in
the construction of the density matrix, the states of B&,
are traced over. This configuration can be used in two
difFerent ways: in an infinite chain method, in which the
chain size increases by two at each step, and in a finite
chain method, in which the chain size is fixed.

A. In6nite system method

In the first step of the infinite system method, we start
with a four site chain and diagonalize the Hamiltonian of
the superblock configuration Bq ~ Bz, where Bq and
Bz both represent a single site. We use the Davidson
algorithm for the sparse matrix diagonalization, but
one could also use the more well-known Lanczos method.
Using the target states calculated with this configura-
tion, we calculate a density matrix and form an effective
Hamiltonian for B2 ——Bq ~ . In the second step we diago-
nalize B2 B2, where we have formed B2 by reflecting
B2. We continue in this manner, diagonalizing the con-
figuration Bg ~ B&, and setting By+i ——Bg, and using
Bg+q and. its reflection in the next step of the iteration.
At each step, both blocks increase in length by one site,
and the total length of the chain increases by 2 at each
step of the iteration. The infinite chain method is usually
used when one is interested in ground state properties of
the infinite chain. Each step of the iteration pushes the
ends of the chain farther from the two sites in the center.
After many steps, each block approximately represents
one-half of an infinite chain. In order to represent one-
half of an infinite chain, B must not only contain many
sites itself; its effective Hamiltonian must be formed from
a system in which the rest of the chain has many sites.
The efFective Hamiltonian formed from the left-hand side
Bp ~ depends strongly on the right-hand. side B& . The
infinite chain algorithm converges in two senses simulta-
neously: in the length of Bg going to infinity and in the
sense that Bg is adapted to respond to an infinite chain
connected to it on the right.

Why not use the simpler configuration Bg ~ B&? In
other words, why make the right-hand side B& rather
than B&? If there is only one target state, and B& has vn

states, then from Eq. (12), the density matrix p for the
system Bg has at most m nonzero eigenvalues. Initially,
when B& (and Bg) consists of just a single site, it has only
a few states. With this method, the number of states in
By+i could not be larger than the nuinber in B& (which is
the same as the number in Br), unless one included states
with density-matrix eigenvalues of zero. In general, for a
robust method, the number of nonzero eigenvalues of the
density matrix should be larger than the number of states
kept, except in the first few steps when all states of the
block are kept. If more than one state is targeted, then
the BgB& configuration is presumably feasible, although
we have not tested it. In any case, the presence of extra
sites in the center which are not part of the outer blocks
makes the method more accurate, since B& is represented
by an approximate Hamiltonian, whereas the central sites
are represented exactly. Thus extra sites in the center
produce a more accurate density matrix. The penalty
for these extra sites is that the diagonalization of the
superblock is more work.

The infinite system algorithm is summarized in Table
II. The representation of the blocks is identical to that
of the standard algorithm: We describe a block by list-
ing how many states it has and the quantum numbers
for each state, and by storing matrices for H~, S, , etc.
Once the matrix 0 is constructed using the most signif-
icant eigenvectors of the density matrix, the change of
basis procedure it also identical to that of the standard
algorithm. For the purposes of organizing the algorithm,
it is easiest to think of the two sites in the middle as
blocks which can be treated similarly to the two outer
blocks, although they contain only a few states.

B. Finite system method

The finite system algorithm is designed to calculate ac-
curately the properties of a finite system of size L, which
we will assume for simplicity to be even. It is summarized
in Table III. It begins with the use of the infinite system
algorithm for I j2 —1 steps, so that the final superblock
used is of size L. In the infinite system method, there
is no need to store Bg once we have B~+q, we need only

TABLE II. Infinite system density-matrix algorithm for a 1D system.

5.

6.

10.

Make four initial blocks, each consisting of a single site, representing the initial four site system. Set up matrices
representing the block Hamiltonian and other operators.
Form the Hamiltonian matrix (in sparse form) for the superblock.
Using the Davidson or Lanczos method, diagonalize the superblock Hamiltonian to find the target state @(ii,i 2, i3, i4).
vP is usually the ground state. Expectation values of various operators can be measured at this point using @.
Form the reduced density matrix for the two-block system 1-2, using p(ii, i2, ii, i2) = P . . Q(ii, i2, i3, i4)g(ii, i2, i3, i4).z3)z4
Diagonalize p to find a set of eigenvalues m and eigenvectors u.. ., . Discard all but the largest m eigenvalues
and associated eigenvectors.
Form matrix representations of operators (such as H) for the two-block system 1-2 from operators for each separate
block [cf. Eq. (4)].
Form a new block 1 by changing basis to the u and truncating to m, states using H = OH 0, etc. If blocks
1 and 2 have mi and m2 states, then 0 is an m x mim2 matrix, with matrix elements O(a; ii, i2) = u.. ., , a = 1, . . . , m.
Replace old block 1 with new block l.
Replace old block 4 with the reHection of new block 1.
Go to step 2.
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TABLE III. Finite system density-matrix algorithm for a 1D system consisting of I sites. A calculation consists of several
iterations, indexed by I, with each iteration consisting of I —3 steps, indexed by l, where l is the size of the erst block.

2.
3.
4

7.

8.
9.
10.

(First half of I = 1.) Use the infinite system algorithm for L/2 —1 steps to build up the lattice to L sites.
At each iteration store the block Hamiltonian and end operator matrices for block 1. Label the blocks by their size,
Bg, E = 1, . . . , L/2
(Start of second half of I = 1.) Set / = L/2. Use Bg as block 1, and the re8ection of BI, g 2 as block 4.
Steps 2—8 of Table II.
Store the new block 1 as Bg+q, replacing the old Bg+q.
Replace block 4 with the reflection of Bl. g q, obtained from the erst half of this iteration.
If E & I —3, set E = E+ 1 and go to step 3.
(Start of iteration I, I ) 2.) Make four initial blocks, the first three consisting of a single site, and the fourth
consisting of the reflection of B'L, 3 from the previous iteration. Set Z = 1.
Steps 2—8 of Table II.
Store the new block 1 as Bg+q, replacing the old Bg+~.
Replace block 4 with the reflection of Bl. q 2, obtained from the previous iteration (if / ( L/2 —1) or the first
half of this iteration (if E ) I/2 —1).
If f. ( L —3, set E = I. + 1 and go to step 8. If 8 = I —3, start a new iteration by going to step 7. (Stop after 2

or 3 iterations. )

store the latest block. In the finite system method, we
need to store L —3 blocks, B~ to BL, 3, and the infinite
system method is used to get initial, approximate ver-
sions of Bq to BI.g2. After the system BL,/2 i BL&2
is used to form BL,y2, the next step is to use the config-
uration BL,g2 ~ BL, &2 2 to form BL,f2+i. This system,
and all the other superblocks to follow, contains I sites.
%'e continue to form the other blocks up to size I —3,
using the superblock Bg ~ BL, & 2 to form By+i. This
sequence of steps is the first iteration of the finite system
algorithm.

The second and subsequent iterations use the blocks
obtained from the previous iteration as the right-hand
reHected blocks in each superblock. The erst step starts
by diagonalizing the superblock Bi ~ BL 3, where Bz
is a single site and is always known exactly, and BL 3
is obtained from the last step of the previous iteration.
Once a new Bg is formed, it replaces the old Bg, so that
only one set of blocks need be stored. Consequently, for
the second half of the iteration, starting with the su-
perblock BL,y2 i ~ B&&2 z, we use a block formed in the
current iteration, rather than the last iteration, as the
right-hand block. On the very last iteration, we usually
stop after the diagonalization of Bl,y2 i ~ B&&2 i, and
then use this wave function of the L-site system to mea-
sure various properties, such as the local magnetization
or correlation functions.

After a few iterations each Bg accurately represents
an l-site block which is the left-hand l sites of an L-site
chain. Usually the method converges by the middle of the
second iteration, although sometimes three iterations are
necessary.

An important improvement in efFiciency can be made
by keeping a difI'erent number of states m' in the right-
hand block from the number in the left-hand block m.
Fewer states are needed in the right-hand block because
this block is only used to help produce the density matrix,
whereas the left-hand block not only is used to produce
the density matrix; it is part of the new block we are pro-
ducing. Thus the left-hand block is more important, and

we should take m ) m'. This can be done quite simply
by keeping only m' states in both blocks in all but the
last iteration, and in the last iteration keeping m states
for the left block. Assuming we stop after diagonalizing

BLla —i system then this very last diago-
nalization will have m states for both blocks, and it will
be especially accurate. Typically we take m/m' = 2 or
3. If only one state is targeted, then one should not try
to make m & nm', where n is the number of states on a
single site, since the number of nonzero eigenvalues of the
density matrix cannot be more than nm' times the num-
ber of states targeted. We find that in typical cases, the
accuracy of the calculation for fixed m is approximately
the same using this procedure for any m' ranging from
m' —m/2 to m' = m. Of course, the calculation time
and storage is substantially less for smaller values of m'.

C. Periodic boundary conditions

To perform calculations with periodic boundary condi-
tions, a slight variation of the finite system method can
be used. In this case it is most convenient to use the
superblock configuration Bg ~ B&,~, with B&+i ——Bg.
This configuration is preferred over Bg B&, because it
does not have the two big blocks as neighbors. If the two
big blocks are neighbors, the sparseness of the Hamilto-
nian (measured by the average number of nonzero ma-
trix elements per row of the matrix) for the superblock
is greatly reduced (meaning more elements are nonzero).
The ofI'-'diagonal terms of the Hamiltonian matrix come
from operators such as S+S&, where r is the right-hand
site of a block, say block 1, and l is the left-hand site of
block 2. The term in the Hamiltonian for this operator
is of the form

The sparseness of this term is measured by the number
of nonzero terms as we vary ii and i2, keeping ii and i2
fixed. If both block 1 and block 2 are blocks containing
m states, the number of nonzero elements per row of
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the Hamiltonian matrix is proportional to m, whereas
if block 2 is a single site, the number is proportional to
m. In the case of periodic boundary conditions, these
considerations are relevant because block 4 is connected
to block 1, and thus one of these should be a single site.
Otherwise, the periodic case is nearly identical to the
open boundary case discussed above.

It is usually more convenient to choose points i and j on
diferent blocks, rather than keep track of complicated
operators such as [S'S&];„~. A convenient way to calcu-
late a correlation function such as this as a function of
j—k is to always put j and k at the same distance (within
a lattice spacing) from the center of the chain. As j —k
is increased, both points move outwards symmetrically
towards the ends of the chain.

VI. MEASUREMENTS

Properties of the I-site system can be obtained from
the wave functions of any of the L —3 superblock config-
urations, although we find that the symmetric configura-
tion (with both the left and right blocks of size L/2 —1)
usually gives the most accurate results. The procedure
is to use the wave function ~Q) resulting from the diag-
onalization of the L-site system to evaluate expectation
values of the form (g~A~g). Rather complicated opera-
tors can be evaluated fairly easily, but dynamical infor-
mation is not easily obtained. In order to measure A one)

must have kept operator matrices for the components of
A. For example, to measure the on-site spin density S'-

for all sites j, one must keep track of matrices ~S ~

g J't1 Z1 )

for all sites in block 1, and similarly for blocks 2, 3, and 4
(regarding the single sites in the middle as blocks 2 and
3). At each step of each iteration, these operators for
blocks 1 and 4 must be updated using analogues of Eqs.
(4—6). One then obtains the expectation value using

): ~:,......[S]...,~„„....,

X1'C2'L3'L42, 1

etc. This procedure gives exact evaluations of (g~A~g)
for the approximate eigenstate ~g).

For a correlation function such as (@~

S'S& ~g), the eval-
uation depends on whether j and k are on the same block
or not. If they are on diferent blocks, say, block 1 and
block 4, then one need only have kept track of [S'];„.
and [S&];„~,and one has

VII. RESULTS

In this section we give a brief survey of results, with
the intention of illustrating features of the algorithms
rather than giving a study of the model systems. Figure
2 shows the density-matrix eigenvalues m for a 32 site
system for both open and periodic boundary conditions,
and for both S = 1/2 and S = 1, targeting one state.
The figure shows the eigenvalues only for one particular
size of block 1, but similar results are obtained at other
steps in the iteration. The falloK of m is most rapid
for the open S = 1/2 case. The figure shows that it
is possible to obtain an accuracy (truncation error) of
better than 10 in this case, keeping only m = 20 states.
The S = 1 open case shows a slightly slower fallofF, with
an accuracy of 10 obtained with I, = 48. The periodic
cases fall oÃ more slowly than either of the open cases.
Keeping m = 50 states yields an accuracy of roughly
an —5 —610 —10 . Even more accurate treatment of periodic
systems is quite feasible; we have been able to keep as
many as m = 200 states in a calculation of a 60 site
system. Degeneracies in the m are clearly visible, which
come from spin symmetries. One must adjust I, so as not
to split a degenerate set of levels, since this will destroy
spin symmetries that would otherwise be preserved.

In Fig. 3 we show the relative accuracy of the ground
state energy of a 28 site S = 1/2 system as a function of

10o

(41S;Sil&) =
b1 L2 43 L4 X1 Z4

'I 'I
W 2y2g1gl4 L g $211y I. &]1414 P Ky22 7324''

(20)

10 i

10—2

10 3

c, S=1
, S=1/Z
=1
=1/~

If j and k are on the same block, one should not use 10-4

8 IS;S'l0) =
41 22 'C3 '5421 Z1

' I ' I I

10 5

10 6

10 7

10 30 40 50

FIG. 2. Density-matrix eigenvalues to vs eigenvalue in-
dex n for a 32 site system for both periodic and open bound-
ary conditions, S = 1/2 and S = 1. The eigenvalues were
obtained from the BJ5 ~ BJ5 system. The steplike struc-
ture comes from the presence of spin degeneracies. Addi-
tional near degeneracies in the 5 = 1 cases come from the
presence of nearly free S = 1/2 effective spins on the ends of
S = 1 blocks. The errors in the calculation is determined by

, which can be estimated from the figure.
(@IS;S~l&)= ). (22)

t 1 2 g 'C 324 'E 1

This expression does not evaluate the correlation function
exactly within the approximate state ~g). The sum over

I should run over a complete set of states, but does
not, whereas the sums over the other variables need run
only over those states needed to represent ~g), since they
appear as a subscript in either the ~@) on the left or on
the right. To evaluate this type of correlation function,
one needs to have kept track of (S S&],„rthroughout the. .

calculation. One then evaluates
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the number of states kept. The error for the periodic case
was obtained from comparison with an exact diagonaliza-
tion calculation; for the open case, we used the renor-
malization group calculation itself with m = 60, which
we believe reproduces the ground state energy to better
than 10 . (For smaller systems, we have verified that
the open case really is this accurate by comparison with
our own exact diagonalization calculations. ) Again, we
see that the open boundary condition case is extremely
accurate even for a relatively small m. The relative er-
ror in the energy is somewhat larger than the truncation
error indicated by the density-matrix eigenvalues. The
fallofF in the error in the energy is much slower for the
periodic case; it is dificult to achieve an accuracy of bet-
ter than 10 in this case. Figure 4 shows similar results

10 i

10 ~

10 3

FIG. 3. Relative error in the ground state energy AE/E
for a 28 site S = 1/2 system as a function of the number
of states kept m, for periodic and open boundary conditions.
The exact energy was obtained from Ref. 16 for the periodic
case, and from the renormalization group calculation itself
with m = 58 for the open case.

for a 16 site S = 1 system, which is close to the largest
system currently feasible with exact diagonalization. As
in the S = 1/2 case, the error for the periodic case was
obtained from comparison with an exact diagonalization
calculation, and from the renormalization group calcu-
lation itself with m = 140 for the open case. The accu-
racy for S = 1 case shows the same overall behavior as
the S = 1/2 case, although it is slightly less accurate.

Using periodic boundary conditions, we calculated the
gap Ll. between the ground state, which has S ' = 0,
and the first excited state, which has S 1& as a
function of lattice size, Fig. 5. For the S = 1/2 systems
we used m = 80, and for the largest S = 1 systems we
used m = 200. The gap for the S = 1 system clearly
tends to a 6nite value as I —+ oo, in agreement with
Haldane's conjecture that integral-spin Heisenberg chains
are gapped. The gap in the S = 1/2 system tends to 0
as L M oo, in agreement with the Bethe ansatz exact
solution of the model. These results predict an infinite
system gap for the S = 1 chain of 0.411(1). Using open
boundary conditions (of the "soft" type discussed below)
we have obtained what we believe is the most accurate
value of A to date: A = 0.4105(l).

It is clearly more accurate to use open boundary condi-
tions than periodic in these calculations, but a bulk sys-
tem is generally better described using periodic bound-
ary conditions. It is important to understand. the effect
of an open boundary on these systems. The efFect of an
open boundary is most easily seen for an S = 1/2 sys-
tem by measuring the local bond strength (S~ S~+i) as
a function of site index i. In Fig. 6(a) we show the local
bond strength for a 60 site system. The open boundaries
cause a strong alternation in the bond strength which
decays very slowly. (We emphasize that this is the effect
of the boundaries; errors in our calculation are negligi-
ble. ) This effect is easily understood using the valence
bond picture of the ground state of the S = 1/2 system.
In the valence bond picture, the ground state is viewed
as a resonance between two different states, one having
strong singlet bonds on the even numbered links of the
chain, and no bonds on the odd links, and the other with
strong bonds on the odd links, and none on the even.

0.5

1O-4

&105
1O-6

0.4

0.3

0.2

50 100 125
0.1

FIG. 4. Relative error in the ground state energy E for a
16 site S = 1 system, as a function of the number of states
kept m, for periodic and open boundary conditions. The exact
energy was obtained from Ref. 17 for the periodic case, and
from the renormalization group calculation itself with m =
140 for the open case.

0.0
0.00 0.02 0.04 0.06 0.08 0.10

FIG. 5. Gaps Ag between the ground and first excited
states for S = 1/2 and S = 1 systems with periodic boundary
conditions versus the inverse length of the chain 1/L
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Simple variational estimates show that this type of state
is greatly preferred over a Neel ordered state. This pic-
ture strongly suggests that the system can be perturbed
very easily into one of these two dimerized states. The
open boundary conditions favor a strong bond on the
outermost links, since that is the only way the end sites

can participate in a bond.
If the system has an odd number of sites, one end favors

the strong bonds on the even links, and the other favors
them on the odd links; thus the system is frustrated. In
Fig. 6(b) we show the local bond strength on a 61 site
system. The system shows the odd links with stronger
bonds on the left, and the even links stronger on the right.
For other system sizes the behavior is nearly identical to
that shown for I = 60 in the sense that there are never
more than a few links in the center with almost no bond-
strength alternation present, and there is approximately
linear falloff of the bond strength in the central region.
We interpret this behavior as evidence of a mobile domain
wall (soliton), with a nearly uniform probability to be at
any particular site in the central region. If one averages
over the various positions of the domain wall, one obtains
results consistent with the figure.

If we desire the accuracy of open boundary conditions,
but not the bond-strength alternation which is absent
in the bulk system, it is possible to considerably weaken
the alternation using "soft" boundary conditions. In Fig.
6(c) we show results from an especially simple version of
these boundary conditions. In this case we weakened
the two outermost exchange constants J from their bulk

0 3

(b) L=61, S=1/2, Open BCs
—1.2

—0.4
+

M
M —0.5

—0.6

—1.4
+

M —1.5

L=60, S= 1, Open BCs

10 20 30 40 50 60

10 20 40 50 60

—0.3

—0.4
+

M

M —0.5

(c) L=60, S=1/2, Open BCs
&59-6O 0.6

0.2

(b) L=60, S=1, Open BCs
S tot —

g

—0.7
10 20 40 50 60

—0.2

FIG. 6. Local bond strength for (a) 60 site and (b) 61 site
S = 1/2 chains with open boundary conditions. The systems
try to have strong single bonds at the outermost links of the
chain; this induces a domain wall in the odd-length chain. In
(c), the bond-strength alternation is diminished by weakening
the local value of the exchange constant J on the outermost
links.

—0.4
10 20 30 40 50 60

FIG. 7. Local bond strength (a) and local value of S, (b)
for a S = 1 system with 60 sites. The S = 1/2 efFective spina
on the ends of are clearly visible in (b), which shows one of
the low-lying triplet states just above the ground state.
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FIG. 8. Density-matrix eigenvalues m vs o. for a 32 site
S = 1/2 system with open boundary conditions, with various
numbers of target states. When a greater number of states
are targeted for a 6xed value of m, the size of the m which
are discarded is increased, and there is a reduction in the
accuracy. The eigenvalues were obtained from the R&5 ~ oR~z
system.

value J = 1. The strength was chosen to minimize the
bond-strength alternation in the center. In the limit that
these outermost couplings are zero, the even sublattice
is favored, whereas in the usual case the odd sublattice
is favored. Clearly for some intermediate coupling the
alternation is nearly absent; in this case it is for J =
0.236. More work needs to be done to understand these
soft boundary conditions.

The boundaries of an open system pose much less of a
problem for an S = 1 system, and in addition, are of sub-
stantial interest. Spin-spin correlation functions decay
exponentially in this system, and the eÃect of the open
ends is also reduced exponentially as we move towards
the interior. Figure 7(a) shows the local bond strength
of an S = 1 chain. Within the central region of the chain,
the bond strength is constant to very high accuracy. The
open ends of S = 1 chains act as effective spin 1/2's.
These spin 1/2's bind very weakly through the chain to
form a singlet and triplet. The singlet is the ground state
for even numbered chains, and the triplet is the ground
state for odd numbered chains. Figure 7(b) shows the
local spin magnetization for one of the triplet states of
a 60 site chain, which has the spin 1/2's on both ends
pointing up. As reported earlier, the magnetization of
the ends is 0.532, as opposed to exactly 1/2 for a real
spin 1/2.

The renormalization group method is most accurate

when only one state is used as a target. Figure 8 shows
the behavior of the density matrix eigenvalues m of a
typical system as the number of target states is varied.
It is possible to target 15 or more states and still retain
reasonable accuracy for a system with open boundary
conditions. In this way it is possible to map out the
low-lying elementary excitations of a many-body system.

VIII. CONCLUSIONS

The density-matrix algorithms for numerical renormal-
ization group calculations of 1D systems are very pow-
erful. They provide extremely accurate results for the
ground state and low-lying excited states, and can be
used to calculate a variety of static quantities. The meth-
ods can be applied to a wide variety of systems, and work
is currently underway to apply the methods to strongly
interacting fermion systems, such as the Hubbard chain
and the 1D Kondo lattice. In this paper we have concen-
trated on the description of a few algorithms, rather than
giving detailed results for Heisenberg chains. We plan to
publish a survey of a variety of properties of Heisenberg
chains shortly.

These methods are somewhat complex and there are
substantial variations possible in the construction of al-
gorithms. More work needs to be done in exploring these
variations. For example, one could use a momentum-
space basis instead of real-space basis in setting up the
calculation. This was recently done without the density-
matrix formulation for a 4 x 4 Hubbard lattice. Ap-
plying the density-matrix formulation in this case would
probably substantially improve the calculation. One
could apply the real-space method to coupled chains and
to two-dimensional systems; one would expect less ac-
curacy than in 1D but one might still obtain valuable
results. Other areas for future study include applying
magnetic fields to calculate static susceptibilities, study-
ing disordered 1D systems, and studying various types of
soft boundary conditions for use with open systems.
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