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Magnetic order in the periodic Anderson model
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We study the ground state of the symmetric, finite-U, periodic Anderson model using a mean-
field slave-boson theory of the Kotliar-Ruckenstein type. At half filling (two electrons per site) we
find a charge gap at all U ) 0 and a transition from the paramagnetic to an antiferromagnetically
ordered (AF) state at a critical value of the on-site interaction U for given hybridization V. The AF
state is found to be lowest in energy within the manifold of spiral magnetic states. Results for the
energy, hybridization matrix element, and local moment compare well with quantum Monte Carlo
results for finite systems. Lowering the density induces a smooth crossover from AF to ferromagnetic
(F) order via a spiral phase. Closely above — filling a first order transition from F to AF order is
found. The insulating state at — filling is shown to be described by an AF Heisenberg model.

I. INTRODUCTION

The periodic Anderson model (PAM) is thought to
describe the essential physics of many transition-metal,
rare-earth and actinide metallic compounds including the
so-called heavy-fermion systems. The model has also
been proposed to describe the cuprate superconductors.
It is one of the archetypical models of correlated fermions
on a lattice, consisting of a band of "light, " uncorrelated
electrons coupled to a band of heavy strongly correlated
electrons. Despite intense efforts to determine the prop-
erties of the model, controlled results are scarce and many
questions remain. For one, the well-known physics of the
single-impurity Anderson model, i.e. , the formation of
magnetic moments and their screening by the Kondo ef-
fect is expected to prevail for sufBciently large exchange
coupling J of the conduction electrons to the local mo-
ments. On the other hand, for small values of J the local
moments are expected to order, in most cases antiferro-
magnetically, at temperatures far above the Kondo tem-
perature, such that the Kondo effect is prohibited by the
presence of the strong antiferromagnetic local field. It
has proved to be difBcult to incorporate these two oppos-
ing trends in any theoretical formulation. Methods that
have been used for the single impurity case to obtain ana-
lytically exact results like the Bethe-ansatz method or
numerically exact results using Wilson's renormalization-
group transformation cannot be generalized to the lat-
tice case. A different and less well explored regime is
that of small density of electrons in the conduction band
and a singly occupied low-lying f level. For this case
ferromagnetic order has been predicted recently. '

Over the past few years new powerful analytical tools
have been developed, which may allow a qualitatively
correct description of correlated Fermi systems. These
are the so-called slave boson theories, which make use
of auxiliary particles to effect the bookkeeping of site
occupations required in any lattice model with strong
on-site interaction. The initially proposed slave-boson

representations use only one scalar slave-boson (in
the infinite repulsion limit) and are able to provide a qual-
itatively correct account of the Kondo effect. However,
the slave boson being a spin scalar, the antiferromagnetic
interaction between local moments is not easily recovered
in this language. The alternative is a slave boson repre-
sentation employing spin-carrying slave bosons, like the
representation introduced by Kotliar and Ruckenstein
and its symmetry-conserving generalizations. We shall
use the latter method in this paper. In particular, we
will discuss the paramagnetic and spiral magnetic mean-
field solutions, the latter including antiferromagnetic and
ferromagnetic states as well. Since there is no small pa-
rameter in this strong-coupling theory (except for 1/N in
%-orbital generalization of the model), there is no obvi-
ous inherent quality criterion available. We therefore rely
on comparison with numerically exact results for finite-
size systems.

II. MODEI AND METHOD

In this paper we will study the Anderson lattice model
with two orbitals per site and spin degeneracy N = 2,
defined by the Hamiltonian

H= —t ) ct c,. +V) (ct f; +Hc)
(ij),cr %ACT

+«) n,'. +U) nf„nf„.
'tsar

Here the c,. and f, create elec.trons in conduction elec-
tron and f electron Wannier states at site i with spin pro-
jection o. t is the conduction-electron nearest-neighbor
hopping element and (ij) denotes a pair of nearest neigh-
bors, V is the on-site hybridization matrix element, ef is
the energy of the f orbital and U is the Coulomb inter-
action matrix element for two electrons with spins g, $
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occupying the same Wannier state. In the limit of large
U, the interaction term is the dominating term in Eq.
(1). It is therefore useful to introduce a representation
of the f electron operators in terms of auxiliary parti-
cles, which serves to linearize the Coulomb interaction
terms. In the following we will use the slave-boson repre-
sentation introduced by Kotliar and Ruckenstein and
generalized in Ref. 13. Within this formulation the f
electron field operators are represented by a combination
of S = — pseudofermion operators s; and scalar slave-
boson operators e, d, p for the empty, doubly occupied
as well as the charge part of the singly occupied states
and a three component vector operator p = (pi, p2, ps)
for the spin part of the singly occupied state:

- —1/2
(1 —dtd) 1 —2ptp

- -i/2
R = (1. —etc)1 —2ptp

- i/2

M = 1+etc+ dtd+ ) ptp„
P

Here z, L, B are 2 x 2 spin matrices and p
—g p„w„s, with w„, p, = 1, 2, 3, the Pauli matrices and
7o tge unit matrix. The slave particle operators are sub-
ject to the constraints

ete, +dtd;+) p!„p,„=1,
iver

= zino'I sia'&
sicrl s~~ = 2 &'~ ~J ~~'~1 + ~~~'di di~ (4)

where

and

z = etL M ~B+p~L M 8 d

p,. xpi=O.

In terms of the auxiliary operators the Anderson Hamil-
tonian (1) takes the form

II = ) —t) (c,+ c, + H.c.) + V) (c,. z; s; +- H.c.) + U d,. d;+ n,
~

e, e, + d,.d;+ ) p,.„p;„—1
Z 7"O' CT C7 P

+As l ) s, s; —) p, sp;s —2d;d; I +P; ' ) w s, , s; —p, sp; —p, p;s I +p;(p, x p;)). (5)

The quantities o.;, P,~, and p,„are Lagrange multiplier
fields (for details of the method see Ref. 13).

The system of interacting fermions and bosons de-
scribed by Eq. (5) does not appear to pose a simpler
problem than the original one. However, mean-field ap-
proximations on the slave-boson Hamiltonian are more
likely to capture the essential physics of the model than
Hartree-Fock theory on the original electron Hamilto-
nian does. The simplest mean-field theory is obtained
by assuming all Bose and Lagrange multiplier fields to
be space- and time-independent averages. Assuming a
paramagnetic state, this leads to the so-called Gutzwiller
approximation discussed in Ref. 14, by Varma, Weber,
and Randall, and others. ' At erst sight, a sur-
prising feature of this solution is that the characteris-
tic energy scale Tk obtained in this approximation is
not given by the single impurity Kondo temperature,
T~ W exp[ U/4V N(e~)] as—might have been ex-
pected [W is the bandwidth and N(e~) the density of
states (DOS) of conduction electrons at the Fermi level]
but rather by something like the square root of this.
Whether this is an artifact of the approximation or rather
represents a true feature of the lattice model as opposed
to the impurity model, as has been argued, remains to
be seen. Some support for the latter view comes from in-
terpretation of quantum Monte Carlo results for a finite
Anderson lattice.

where NL, is the number of lattice sites and p is the
chemical potential. The Erst term involves a sum over
wave vectors in the first Brillouin zone, and Xg
(ckt, si, t, ck+~~, si,+~g) is a four-component spinor field.
The energy matrix Ep is defined as

(ev —p
Vz+

0
( Vz

Vz+
et+Ho —p

Vz

0
Vz

&k+q P
Vz+

Vz

Vz+
ef + po Jll)

(7)

In this paper we study the spiral magnetic mean-field
solutions of Eq. (5) for the case of a hypercubic lat-
tice. This is defined by taking the spin-independent
fields ei, poidi, o.; to be spatially uniform, but assum-
ing a spiral magnetic pattern for the spin-dependent
fields p, = p(cosP;, sing;, 0), P; = q R, , where R;
is the position vector of lattice site i and similarly
P, = P(cos P, , sing, , O). The mean-field Hamiltonian
then takes the form

II —llN = ) X~tfi, X@

+NL, (Ud —Pp(po + p + 2d )

+2Ppop+ n(d'+ e'+ p'+ p', —1)),
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where

cp+ + dp

1 —d —p+ 1 —c —p

ep + dp+

1 —d —p 1 —c —p+

w —0.8

+
—1.2

and ek = 2t P— i cos(k a) is the dispersion of the con-
duction band. The mean-field parameters e, d, p, po, p~ =
po 6 p and n, P, P are determined by requiring that the
mean-Beld- free energy

0.0 1.0

0.0 1.0 2.0 3.0

2.0 3.0

F = —T 5 in[i + exp( —Ei,~o/T)j
k, crea

+NI. [Ud —Pp(Po+. P + 2d ) +. 2PPoPj

be stationary. Here p = (1—d —e —p2o) / is used, elim-
inating the first constraint. The quantities Ek, where
o. =1', g labels the spin and o. = 6 is a band index, are the
four eigenvalues of the energy matrix SI, . We note that I'
is minimum with respect to variations of the "internal"
degrees of freedom e, d, po but is maximum with respect
to the "external" fields P, Po. The stationarity condition
on E is expressed by the saddle point equations

=0 (1O)

III. NUMERICAL RESULTS
OF MEAN-FIELD THEORY

We have determined the stationary point of the free en-
ergy Eq. (9) numerically at zero temperature and for a
hypercubic lattice in dimensions d = 1, 2, 3, in the sym-
metric limit ef = —U/2. The hybridization parameter
was chosen as V = 0.375t - 2, which is small compared to
the bandwidth W = 4dt. All values of U to be quoted
later will be in units of 2t. Rather than solving the
saddle-point equations, we minimized and maximized I'
in the subspaces of physical and Lagrange parameters,
respectively.

We Brst consider the case of half filling, i.e. , two elec-
trons per site. We Bnd that if magnetic ordering oc-
curs, the antiferromagnetic state is most stable within
the manifold of spiral states in the parameter space con-
sidered. An instability of the paramagnetic state with
respect to magnetic order has been anticipated in Ref.
14. In particular within the framework of variational
calculations the ferromagnetic state has been considered
recently in Ref. 19, whereas antiferromagnetic order was
considered in Refs. 20—22.

In Fig. 1 the scaled ground-state energy for d = 1 di-
mension is shown as a function of U. The result of the
present calculation (solid line) is seen to compare well
with quantum Monte Carlo results (circles) by Blanken-
becler et al. (Ref. 23). For comparison, we also show the
result for the paramagnetic mean-field solution (dashed-
dotted line). The uppermost curve (double-dot —dashed

FIG. 1. Scaled ground state energy of the PAM at
half filling (n = 2) versus (U/2t) for d =1 dimension
(t = 0.5, V = 0.375t 2); this work (—); paramagnetic
Gutzwiller approximation (——. —); simple slave-boson
theory (—"—); inset: comparison with AF Hartree Fock.
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FIG. 2. Average of the squared local magnetization ver-
sus (U/2t) for d = 1(t = 0.5, V = 0.375t . 2, n = 2). This
work (—); paramagnetic Gutzwiller approximation (—. ——); simple slave boson theory (—" —); strong-coupling
expansion ( ); weak coupling expansion ( —— ); inset:
comparison with AF Hartree Fock.

line) is the result of the simple slave-boson mean-field
theory, Refs. 10 and 11.

In Fig. 2 the average of the square of the local mag-
netization (m, ) for d = 1 is plotted versus U. Again our
result for the antiferromagnetic phase (solid line) follows
the quantum Monte Carlo (QMC) data closely. The lim-
iting behavior for weak ( ) and strong coupling is also
shown, as is the result for the paramagnetic phase. The
simple slave-boson theory is again far oK

In Fig. 3 the efFective hopping transition element onto
the localized f level is shown for d = 1. This is a more
sensitive quantity than the ground-state energy. Our re-
sult follows the QMC data fairly well, while the param-
agnetic result is substantially oK The simple slave-boson
theory fails badly for this quantity.

Next, we determined the magnetic phase diagram in
the V —U plane for half Blling and for hypercubic lat-
tices in d = 1, 2, 3 dimension, as shown in Fig. 4. In
one dimension there is of course no true long-range order.
There the mean-Beld description should be taken as simu-
lating short-range magnetic order, which apparently con-
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FIG. 3. Average of the hybridization operator versus

(U/2t) for d = l(t = 0.5, V = 0.375t 2, n = 2). Coding
of curves as in Fig. 2.

FIG. 5. Sublattice magnetization M, versus U/2t for
d = l(t = 0.5, V = 0.375t 2, n = 2). f-electron contribu-
tion ( ) and total magnetization ( ) is shown.

tributes to the ground-state energy in an important way.
The phase boundary is roughly linear, indicating that the
transition occurs at a critical value of the exchange cou-
pling constant J = V [I/

~
ey

~

+ 1/(U + Ef)] —4V /U,
J = 0.036W in d = 3 dimensions. This is in quali-
tative agreement with the behavior of the correspond-
ing Kondo lattice, for which a transition between the
Kondo screened paramagnetic Fermi-liquid state and an-
tiferromagnetically ordered state has been predicted Ref.
3 when the Kondo energy scale T~ W exp( —W/J) is
equal to the Ruderman-Kittel-Kasuya- Yosida (RKKY)
spin interaction scale I J /W. The value of J, ap-
pears to be somewhat higher, as a consequence of the
higher-energy scale T& characterizing the paramagnetic
state in this approximation.

Our critical value for J is close to the value obtained. by
a Gutzwiller-type variational solution of the Kondo lat-
tice model. The above results at half filling are very
close to, or possibly even identical to, those of a re-
cent variational calculation for the PAM employing the
Gutzwiller approximation applied to a general antifer-
romagnetic state of the noninteracting system. Also
shown is the result of a Hartree-Fock calculation, which

2.4

2.0

is seen to badly overestimate the antiferromagnetic (AF)
region.

The sublattice magnetization M, of the f-electron sys-
tem and of the combined f-electron and conduction-
electron system in d = 1 dimension is shown in Fig.
5. M, is seen to rise very rapidly and to attain values

close to saturation for U/2t ) 6, approaching the lim-
iting value of M, = 1 as 1/U. The conduction-electron
contribution to M, is seen to be negative and small, com-
pensating part of the f-electron polarization.

Figure 6 shows the charge gap as a function of U in
d = 1 dimension. The gap is determined from the quasi-
particle band structure, which has two bands, the lower
band being filled at half filling. Doping holes into the
lower band immediately leads to a metallic state. The
behavior at large U is given by Es ~ = 2z+~V2/P 1/U

We now turn to densities away from half filling, down
to —fi.lling. For parameters such that the ground state is
antiferromagnetically ordered at half filling we find that
upon doping with holes the magnetic wave vector q de-
creases from its value g = 7r(d = 1) linearly with the
doping concentration (Fig. 7). In other words, the anti-
ferromagnetic phase transforms into an incommensurate
spiral phase. At a critical value of density n (U), q is
found to vanish, indicating a continuous transition to a
ferromagnetic state.
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FIG. 4. Phasediagram of the PAM at half filling (n=2) in
the (2V/W) versus 2U/W plane. The phase boundary sepa-
rating paramagnetic and antiferromagnetic phases according
toourworkford=l (———), d=2 (— —.—), andd=3
( ) dimensions is shown together with the Hartree-Fock
result ( . .).

0.0
0.0 2.0 6.0 1 0.0

FIG. 6. Charge excitation gap in d = 1 in units of 2t versus
U/2t (t = 0 5, V = 0.375.t 2, n = 2). The paramagnetic to
antiferromagnetic phase transition is indicated by the arrow.
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FIG. ?. Wave vector Q of the spiral magnetic order param-
eter in d = 1 in units of (lattice constant) versus concentra-
tion of electrons h in the conduction band, for various values
of U/2t(t = 0.5, V = 0.375t 2).

FIG. 9. Phase diagram in the 2t/U versus 6 plane at T = 0.
Spiralmagnetic, ferromagnetic, and antiferromagnetic regions
are indicated. The inset shows the behavior near b = 0.

In Fig. 8, the length of the spiral magnetization vector
is plotted as a function of density for various U. One
observes that the ferromagnetism is not saturated, but
increases towards saturation as the density is lowered (see
next section). The ferromagnetic phase found here is not
unexpected, as a ferromagnetic phase at and above 4
filling has been predicted for the Kondo-lattice model
Refs. 7 and 8. What is surprising at first sight, however,
is that we find the antiferromagnetic solution to be stable
at 4 filling and in a small region of densities above N =
1. This is shown in the phase diagram Fig. 9. The
transition from antiferromagnetism to ferromagnetism is
of first order. A very similar phase diagram is obtained
in Hartree-Fock theory. The reason for antiferromagnetic
order at 4 filling and ferromagnetic order for somewhat
higher filling factors will be discussed in the next section.

To conclude the presentation of numerical results we
show in Fig. 10 the occupation of the local level as a
function of density for various values of U. As to be
expected nf is close to unity and increases with increasing
U. Phase separation is not an issue for this model (in
contrast to the Hubbard model), as can be inferred from
the monotonical behavior of the chemical potential with
density shown in Fig. 11.

IV. ANTIFERROMAGNETIC AND
FERROMAGNETIC ORDER
AT AND NEAR —FILLING

In the case that the local level ef is far below the con-
duction band, i.e., for U &) TV in the symmetric case,
where R" is the conduction-band width, we can expect
the local f states to be exactly singly occupied for — fill-
ing (one electron per site). We have an insulating state of
the charge transfer type, with a gap in the charge excita-
tion spectrum E~ = —(U —W). The manifold of ground
states defined. in this way is highly degenerate with re-
spect to the spin configuration. As usual, spin exchange
interactions mediated. by virtual transitions into charge
excitated states will remove the degeneracy. The lowest-
order exchange process involves excitation into the con-
d.uction band, hopping to a nearest-neighbor site and de-
excitation into the local level, for both of the exchanged
electrons, e.g. , a sixth-order process. The efFective Hamil-
tonian is that of the antiferromagnetic isotropic S =
Heisenberg model

H= J~) S, S~.
('~)

1.00

0.9 0.98

c: 0.95

0.7 0.93
U=

0.2 0.4 1.0
0.90

0.0 0.2 0.4 0.6 1.0

FIG. 8. Total magnitude of spiral magnetization versus
conduction electron density 6 for various values of U/2t.

FIG. 10. Occupation number of the f-level versus b for
various U/2t values.
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—0.6

—0.8

localized levels are bound into singlets, and the remain-
ing ferromagnetic moment per lattice site is given by
m = 2 —n & 1. This behavior is indeed observed in
Fig. 8.

—1.0 V. CONCLUSION

—1.2
0.0 0. 1 0.2 0.4

FIG. 11. Chemical potential versus b for various U/2t.

In the limit
~

ef ~= U/2 )) t, V, the exchange constant
is found as J~ t V / ~

ey
~

. (For a discussion of the
hopping expansion in the PAM see also Ref. 25.)

Additional electrons have to go into the conduction
band. Analysis of the atomic energy states shows that
the ground state of the two electron system is a spin
singlet of energy

Es = — ef —(ef + 16V )
' ef-=1 2 2 1/2 ~ 4V

2

The first excited state is a spin triplet at ET ——ef and
the remaining two states are at energy E 0. For low
density such that the Fermi energy in the Es band. is
less than E~ —Es the singlet pairs are tightly bound
and move in the spin background of the unpaired lo-
calized spins. This situation is reminiscent of the t-J
model, if the singlets are identifi. ed with the holes doped
into the half-filled band and J~ is identified with the ex-
change interaction J there. The kinetic energy of the
holes is minimized for a ferromagnetic background. The
energy gain per site LE~ in the ferromagnetic state
as compared to the paramagnetic state is of the order
of the singlet to triplet excitation energy per singlet or
AE~ 4(V / ~

ef ~)8, where 8 = n —1. This has to be
compared with the energy gain in the antiferromagnetic
state induced by direct exchange interaction LEAp J~.
The phase transition from the AF to the F state is ex-
pected to occur when AEF LEAI-, or

We have studied the magnetic structure of the ground-
state of the symmetric Anderson model on a hypercu-
bic lattice within the manifold of spiral magnetic states,
using a slave-boson mean-field approximation. At half-
filling (n = 2), we find two phases: an antiferromag-
netically ordered state, favored among the magnetically
ordered states, and the paramagnetic state. The line sep-
arating their regions of stability is given by the critical
value of the exchange constant J = 4V /U = 0.036W.
Both phases have a gap in the charge excitation spectrum
and are therefore insulators.

For densities less than half-filling incommensurate spi-
ral magnetic order appears. The wave vector of the spiral
is found to decrease continuously with decreasing density
from q = (a, . . . , vr) (AF order) at n = 2 (for J ( J )
along the space diagonal of the cubic Brillouin zone to
q = 0, defining a critical density nz. For densities lower
than nq saturated ferromagnetic order appears in that
the localized f-electron spins are ferromagnetically or-
dered, while the electrons in the conduction band are
polarized in the opposite direction, screening part of the
ferromagnetic moment, which is thus found to grow lin-
early with decreasing density. At a second critical den-
sity, close to quarter filling (n = 1), we find a transi-
tion into an antiferromagnetically ordered state. This
AF phase is shown to be induced by a higher-order su-
perexchange mechanism, governing the spin dynamics in
the insulating state at quarter filling. It thus cannot be
found in the Kondo lattice model, which follows from
the Anderson model via a Schrieffer-WolK transforma-
tion, and is only valid in lowest order in the hybrization.

The good agreement of our results with quantum
Monte Carlo studies at half fi.lling suggests that the phase
diagram obtained in this work gives a qualitatively cor-
rect picture of magnetic ordering in the PAM.
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