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The electric and thermal conductivity of weak itinerant-electron ferromagnets in the presence of spin
Auctuations and disorder is calculated and the validity of the Wiedernann-Franz law in these systems is
discussed. We used the Keldysh-diagram technique to obtain the expression for the conductivities of the
clean system as well as the correction due to disorder. The electric conductivity shows a maximum at a
low temperature, which characterizes the crossover behavior from the disorder-dominated region to the
spin-Auctuation region. The thermal conductivity (~/T) also has a maximum at the crossover tempera-
ture. The contribution due to spin Quctuations and the quantum correction due to disorder violate the
Wiedemann-Franz law while the Drude term restores it as disorder increases. The experimental results
for conductivities in disordered weak itinerant ferromagnets in a very low-temperature range are not
available. However, we find that our results agree well with the resistivity of amorphous Ni75P]6B6A13,
which considered to be a nearly ferromagnetic metal.

I. INTRODUCTION

Weak itinerant-electron ferromagnets such as Ni3Ga,
Ni3A1, (NiPd)3A1, ZrZnz, Sc3In, Ti(BeCu)2, etc. , have
been known for decades. ' These materials have a num-
ber of distinctive properties in common. They undergo a
transition from highly paramagnetic to weakly ferromag-
netic metals as the composition of the system is varied or
by doping the system with impurities near to their
stoichiometric composition. For example, Nio 75+„
Ga025 is highly paramagnetic for x &0.006 and is a
weak ferromagnet for x )0.006. ' These alloys have a
low transition temperature T, (50 K and a low satura-
tion moment compared with conventional ferromagnetic
materials, such as Fe, Co, and Ni. They have a large
specific-heat coefficient and their low-temperature resis-
tivity and magnetization show a quadratic temperature
dependence with a relatively large coefficient. The transi-
tion from highly paramagnetic to weakly ferromagnetic
phase can be expressed in terms of Stoner parameter
ao=—(1—Up~) changing from positive value to negative
value. Here pd is the d-electron density of state at Fermi
level ed and U is the on-site Coulomb interaction. When
the composition or concentration of impurities is varied
in these materials, the density of states at the Fermi level

p changes and the value of eo determines the ground state
of these materials at zero temperature. The discussion in
this paper applies to systems with ~ao~ && 1. For the pure
case, the temperature variation of various physical prop-
erties of these materials has been explained qualitatively
and in some cases quantitatively using the spin-
Auctuation theory. The reason for the success for such a
theory is that because of low saturation moment and low
T„ these systems can always be considered to be in the
vicinity of magnetic phase transition. The amplitude of
transverse and longitudinal spin fluctuations with small
momentum q and frequency co is enhanced due to the
Stoner enhancement factor I /ao. The temperature varia-

tion of various quantities is then expected to be governed
by these fluctuations. The dynamics of these fluctuations
is, therefore important to help explain the various observ-
ables. A brief description of this theory is given in a re-
cent review by one of us and for more details we refer
the readers to an earlier monograph by Moriya.

However, for impure systems or systems away from the
stoic'hiometric composition a clear description of various
physical properties of these alloys is lacking. For exam-
ple, the spin-fluctuation theory predicts a T dependence
for spin susceptibility at the low temperatures in the
paramagnetic phase of these materials. This has been ob-
served in many systems. But in some cases, for example,
in Ni3Ga, Ni3Al, " and in (NiPd)3A1, the spin suscepti-
bility at low temperatures deviates from this T behavior.
In these alloys, it is observed that the deviation is sys-
tematic and it reduces as the Ni concentration of the sys-
tem approaches towards the stoichiometric composition
(i.e., 75%%uo of Ni). It is also observed that the residual
resistivity of these alloys has the lowest value at the
stoichiometric composition and it increases as the com-
position moves away from the stoichiometric one. '" Re-
sidual resistivity is a measure of the disorder present in
the system. These observations suggest that the deviation
seen in the spin susceptibility is due to the disorder and
there is, therefore, a need to modify the spin-Auctuation
theory to take into account the effect of disorder. This
has become possible recently because of a substantial
modification in our understanding of disordered metals
during the past decade. ' It has been observed that the
quantum nature of impurity scattering has profound
consequences on the low-temperature electronic and
magnetic properties of these metals. The characteristic
parameter which describes this quantum nature of impur-
ity scattering is 1/ez~, where ~ is the lifetime of electrons
in the presence of impurities. A perturbative expansion in
l/e~~ has been realized to consider the effects of low-
lying diffusive modes (diffusions) and particle-particle
backscattering (cooperons) on transport and various oth-
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er properties. Motivated by these observations, in our
earlier work' we have calculated the effect of disorder on
various magnetic properties such as spin susceptibility,
magnetization, Arrott plots, etc. , of these alloys in the
presence of spin fluctuations. We found that the spin sus-
ceptibility vary as V T for temperatures T ((rd ', where
1 d is the average collision time of d electrons due to im-
purities. This explains the deviation seen in the spin sus-
ceptibility of these alloys at low temperatures. ' The
agreement with the experimental results of Ni3Ga, Ni3Al,
and (NiPd)3A1 is good. So it is reasonable to ask how the
transport properties also are modified by disorder in the
low-temperature region. Keeping this in mind we calcu-
late electric and thermal conductivity in the presence of
both disorder and spin fluctuations. For simplicity, we
consider only the effect of diffusions on the transport
properties. It is possible to calculate the effect of coope-
rons also, that will, however, change various temperature
coefficients but will not introduce a new temperature
variation.

The magnetism in these alloys is basically due to the
presence of the unfilled d shells of Ni, Sc, Zr, Ti, etc. But
these d shells do not contribute to the transport because
the mobility of these electrons are small compared to that
of conducting s electrons. Mills and Lederer' have in-
troduced a simple model consisting of s and d-band elec-
trons and the conduction electrons are scattered by the
spin fluctuation of the d electrons via the s-d exchange
interaction. In weak itinerant ferromagnets it has been
observed that the resistivity reduces with the application
of magnetic field. ' This is due to the fact that the mag-
netic field suppresses the spin Auctuations of the d elec-
trons. This negative magnetoresistance seen in these sys-
tems confirms that the main contribution for the resistivi-
ty is due to the spin fluctuations besides the impurities.
As a model for the impurities, we take a random poten-
tial u (r) with zero mean value (( u ) =0) and a correlator
(u(r)u(r')) =N;u 5(r —r'), where ( ) denotes the
averaging over various realizations of impurity positions.
N; is the concentration of the impurities and v is its
strength. The d electron spin Auctuation has been calcu-
lated in our earlier paper ' using a self-consistent ap-
proach in the presence of disorder.

The plan of the paper is as follows. In Sec. II we ob-
tain the kinetic equation for distribution function follow-
ing Keldysh's nonequilibrium diagram technique. ' In
this technique the Green's functions and self-energies are
represented by 2X2 matrices. The off-diagonal corn-
ponent of the Green's function (Keldysh component) con-
tains the information of the nonequilibrium distribution
function. The collision integral is expressed in terms of
self-energy and it is obtained using a standard many-body
technique. This technique has been applied to include
the effect of disorder by Altshuler. ' He obtained the tem-
perature dependence of conductivity of impure systems
by taking into account the interference between the pho-
nons and impurity scattering mechanism. We extend this
technique to include the effect of spin fluctuation and dis-
order and obtain the expression for conductivities for the
pure systems and the correction due to the impurities. In
Sec. III, the self-energy in the presence of disorder and

II. THE KINETIC EQUATION

In the Keldysh-diagram technique' for nonequilibri-
um process, the electron propagator 0 and its self-energy
2 are represented by matrices,

Gr Gk yr yk
and 2=

0 G' 0 X'

where the superscripts r, a, and k represent retarded, ad-
vanced, and Keldysh component, respectively. In general
the diagonal components of 0 characterize the states and
the Keldysh component gives the information on the oc-
cupation of these states. In the absence of external fields,
the system is in equilibrium and the Keldysh component
of the equilibrium Green's function is given by

Go(p) =ho(e)[GO(p) —Go(p)], (2)

where ho(e) =—1 —2fo(e) and fo(e) is the equilibrium Fer-
mi distribution function. The Keldysh component in
general is proportional to the nonequilibrium distribution
function h (p). Here and in what follows we use a four-
component notation for p = [p, eJ and consider
A'=k~ =1.

In general, the external perturbation destroys the
translational invariance in space and time coordinates
and one then introduces mixed or Wigner representation.
In the presence of external fields, one makes an ansatz for
the Keldysh component of the Careen's function and in
the Wigner representation it is written as' ' '

G "(p)=h(p)[G "(p)—G'(p)]

+—IG "(p)+G'(p);h(p)] .
2

spin fluctuation is calculated. The disorder renormalizes
the electron-spin-Auctuation vertex and its importance is
considered by taking the effect of diffusions on the vertex.
This makes the vertex function diffusive for ql «1 and
su~ && 1. In this limit it is possible to write the self-energy
and the vertex function as a sum of pure spin-fluctuation
contribution and the disorder correction. This enables us
to obtain the expression for the conductivity in the clean
limit as well as the correction term due to disorder from
the same self-energy diagram. This is the advantage of
the present approach over the standard procedure ap-
plied to the Boltzmann equation. The expressions for
the conductivities are derived in Sec. IV. In the clean
limit, we reproduce the results of Ueda and Moriya. '

They obtain the same expressions using the standard pro-
cedure. The disorder corrections are important only for
temperature T «~, and in this region the electric con-
ductivity varies as &T and it has a positive temperature
coefficient. This means that on adding the pure and dis-
order correction for conductivity, a maximum is obtained
at low temperature. In the disorder region the thermal
conductivity varies as T, the Wiedemann-Franz law is
violated, and the Lorentz number becomes temperature
dependent. In Sec. V, we analyze the results of our calcu-
lation numerically and discuss its implications for various
alloys and amorphous systems.
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The second term in Eq. (3) represents the generalized
Poisson bracket. In the present problem, in the presence
of electric field E and temperature gradient V T, the Pois-
son bracket is given by

jA;B]=eE. V B— V A
Ba Ba
BE BC

T BA BB

The kinetic equation in the presence of electric field and
temperature gradient is then written as

v 7T +eE h(p) =I[h],B B

BT BE

where I [A] is the collision integral, which can be ex-
pressed in terms of the self-energy. In general, the self-
energy is a functional of the distribution function h (p)
explicitly through Eq. (3) and hence it contains the Pois-
son bracket terms. To simplify the notation, we separate
the self-energy X=f0+52 and the collision integral
I [h]=IO[h]+5I[h], where 52 and 5I[h] are the terms
of the self-energy and the collision integral, which con-
tain the Poisson brackets, respectively. Then the col-
lision integrals are given in term of the self-energy by

and

Po(p) = rI; p—[h].

P, (p) =r(I; [h ]+I;„[h]+5I;„[h] ) . (10)

The expression for collision integrals are obtained from
the self-energy from Eq. (6) and given in Sec. III.

In the presence of weak electric field and temperature
gradient the electric and thermal current to the linear or-
der in fields are given by

J=L~~E+L~gV T

is the electron propagator in the presence of the impurity
scattering. The electron lifetime due to elastic impurity
scattering [Fig. 1(a)] is given by r '=2mp, N, v .

Nonequilibrium distribution function is obtained by
solving the kinetic equation Eq. (5). This is done itera-
tively by expanding

& (p) =~,(e)+P,(p)+ P,(p),
where $0(p) is the correction to ho(e) due to the impurity
scattering [Fig. 1(a)] and P, (p) due to the scattering of
electrons from the spin fiuctuations of d electrons [Fig.
1(b)]. The expression for Po(p) and P&(p) are obtained
from the corresponding collision integrals and are given
by

Io[h] =i Xo(p) —ih (p) [Xo(p) —Xo(p) ],
5I [h ]=i 5X "(p) ih (p—) [5X"(p)—5X'(p) ]

+ —,
' [Xo(p)+Xo(p);&(p)] . (6)

U=L~EE+L~~V T,
respectively. From Eq. (11), the electrical conductivity o
and thermal conductivity ~ follows immediately;

To further simplify the notation we henceforth drop the
subscript 0 from the self-energy and the collision integral.
Once the Green's function and its self-energies are ob-
tained, the nonequilibrium distribution function can be
determined by solving Eqs. (3)—(6).

The Green's function in the presence of spin Auctua-
tions and disorder is obtained by considering the self-
energies given in Fig. 1. The total self-energy is written
as 2 =2; +2;„, where the first term 2; is the self-
energy due to the impurities [Fig. 1(a)] and the second
term 2;„due to the inelastic scattering of electrons from
the spin fiuctuations of the d electrons [Fig. 1(b)]. In or-
der to simplify the calculation we expand the Green's
function to the linear order in the self-energy as

G'(p)=G;(p)+G (p)X;„(p) .

and

LrzLEv-
L&&-

LEE
(12)

J= —e dp vh p ImG' p

and

In order to obtain different components of the response
functions Lzz, etc. , the currents carried by the electron
with a given spin are expressed in terms of Green's func-
tion and nonequilibrium distribution function by

Here

Go(p) = [Go(p) ]' = (e —
ep p~' I2r)—

U= —f dp(e p)vh(p)I—Gm'(p), (13)

where dp =dpdel(2'), —which will be calculated in the
following.

/
\

I 1

(b)
III. SELF-ENERGY

FICi. 1. Self-energy (a) due to impurity scattering
( ———X ———) and (b) due to spin fluctuations (wavy line)
in the presence of disorder renormalized vertex.

For simplicity we consider the scattering of the s elec-
trons by the spin-density fluctuation of the d electrons via
s -d exchange interaction;
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H, e =g g [ak+q)aj, )S+ (q)+aq+qtak)S (q)
q, k

+(&k+qt kt +k+qL+kL)S, (q)) (14)

d electrons (s electrons), respectively. In Eq. (17), a( T) is
the temperature-dependent Stoner parameter. In the
presence of spin Auctuation and disorder, it is given by'

X"(q)= [2N(~)+ I ) [X'(q) —X'(q) ], (16)

where N(w) =(e —1) ' and q = [q, mJ.
The spin-Auctuation propagator in the presence of spin

Auctuation and disorder has been calculated ear-
lier' ' and it is given by

—1

q . N
y"(q)=p~ a(T)+5

~
+imy

k„' gq
for qlz) 1

where a& is the annihilation operator for the s electron
with momentum k and spin a and S+ (q) and S (q) are
the spin raising and lowering operator for the d electron
spin and S,(q) is its z component. In what follows we as-
sume the system to be in the paramagnetic phase, then
the different spin-Auctuation propagator components
obey the relation y+ =y + =2y„=y. The extension
into the ferromagnetic phase is straightforward, where
each component of the spin susceptibility should be con-
sidered separatively. This will not be discussed here in
what follows except for some comments in the discussion
section.

In the self-energy diagram (Fig. 1), the dashed line with
a cross represents the impurity scattering and the wavy
line stands for the spin-Auctuation propagator,

r

x' x'
X 0 a (15)x'

To simplify the calculation we assume that the applied
fields do not affect the d electrons. Therefore, they are at
equilibrium and the Keldysh component of the spin-
Auctuation propagator obey an expression similar to Eq.
(2),

a(T)=ao —
A, (T)—A,~(T), (18)

where the pure spin-ffuctuation contribution A~(T) (Ref.
25) is given by

3

( Up&) dq
3~2 d

0 2y+12y 2

+ (Up&) f dq 3-,
3772 (1+6y)

A. (T)=—

where

[a( T)+q /12 ]2q
772T

and the disorder correction term in a( T) is

3v'3( Up& )
A.q(T) = [1 +2~Tr„—],

(egret )' (20)

d kX'i (e) =N vG. 'J(k),
ImP l (2 )3

(21)

where k —= [k, eJ and i,j =1,2. The collision integral cor-
responding to this self-energy follows immediately from
Eq. (6) and is given by I; [h]=I,' „[h]+I," [h], where

d kI; [h]=2N, u f 3 [h (k) —h (p)]lmGO(k) (22)
(2'�)

for T ((r& and it vanishes otherwise. Equation (18)
should be solved self-consistently to obtain a( T).

Now we calculate the self-energy term explicitly. Fig-
ure 1(a) represents the impurity self-energy

for ql& «1,Dgq
Pa a( T)D&q ico— (17) d kI; [h]=2N;v f [h (k) —h (p)]

(2n. )
where 5= —,', and y= —,

' (for free Fermi gas). In order to
distinguish between s electrons and d electrons here we
use the following notations. pz (p, ), kz ( k, ), and uz ( u, )

are the density of state at Fermi energy ez (e, ), Fermi
momentum, and Fermi velocity of d electrons (s elec-
trons) and Dz (D, ) diff'usion constant with r& (r, ) being
the relaxation time and lz (l, ) being the mean free path of

I

XlmGo (k)X;„(k) . (23)

There is no term in the collision integral which involves
Poisson brackets, i.e. , 5I; [h] =0.

Figure 1(b) gives the self-energy due to spin ffuctuation
in the presence of disorder renormalized vertex. It can be
written as

and

&;~(p)=ig fdq+ [I;;( —q, e)G' (p —q)I "' (q, e)]

5&' (pJ)=ig'f dq y""' [51,", ( q, e)G' (p——q)I ", (q, e)+I,".,( q, e)G' —(p —q)5I "'.(q, e)}

(24)

+ —I,";(—q, e)[G' (p —q);I "' (q, e)J+ —[I,";(—q, e);G' (p —q)]l (q, e)

+Poisson bracket terms of[I,".; ( —q, e)G'i (p q)I J"'J'(q—,e)] (25)
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where i,j,k = 1,2. Here and in what follows we assumed a summation over the repeated indices. The last expression of
Eq. (25) stands for the terms of the expression given in the bracket which contain the Poisson brackets. I and I are the
disorder renormalized vertex functions corresponding to absorption and emission of spin fluctuation, respectivel . In
the Keldysh technique they are not identical. In the above equations we split the vertex function as f'=f'0+5 and
drop the subscript 0 from the equation as we did in the case of self-energy and collision integrals.

It is dificult to obtain the exact vertex function with respect to disorder. However, it is seen that the most important
contribution comes from the diffusive nature of the vertex function' which arises due to the repeated scattering of the
electron from the impurities (diffusions). In that case the vertex function can be expressed as in Fig. 2, and is given by

d kI',".( q, e)—=y," +N;"v f G" (k)I;. ( q—, e)Gi J(k q)—

and

d k5I,".( q, e—)=N, u f G" (k)5I; '( —
q, e)G (k —q)+ —G" (k) tI; ( —q, e);G (k —q)I

+—
t
G" (k);I; '( —q, e) I G' ~(k q)— (26)

Here y is the vertex function corresponding to the clean
limit and its values are given by y,'J. =[1/&2]5;J. and
y2 = [1/&2]r,'"; where

0 1

first terms represent the pure self-energy and the second
term is the correction to the first one which vanishes in
the limit X,.—+0.

The diffusive nature of the vertex function is seen from
Eq. (27). In the limit ql, (& 1 and cur, ((1,we have

1 0 (1 rj"')=—r, (D, q ice) . — (28)

is the Pauli spin matrix. A similar equation can be writ-
ten for I,"". Solving Eq. (26), we obtain

rk+ ka

1
1 —n"'

(27)
1

i/2 0

where

d k
g P=N, u f Go(k)Go~(k q)—

(2~)'

with a, f3= r, a, k. The solutions for the other components
of the vertex function are given in the Appendix. In the
limit N;~0, the vertex function f' "~y" and 5I "~0.
This means that the vertex function can be written as the
sum of two terms, the first being y, the vertex function
due to the spin-fluctuation scattering in the clean limit,
and the second term comes as a correction to the first one
due to the crossing of impurity lines in the vertex which
vanishes in the limit X,.~O. Considering this fact, the
self-energy can be calculated in a straightforward manner
and separated as 2;„(p)=R,t(p)+2, &; ~(p), where the

In the opposite limit, i.e., q/, ))1, i)"'=1/ql„which is
very small compared to the diffusive region contribution.
In the calculation below in obtaining the disorder correc-
tion term of the self-energy 2,&; (p), the most important
contribution will be the one which is most singular as
co~0, q~0. Considering these facts the self-energy ex-
pressions are given explicitly in the Appendix. Using
these expressions the collision integrals and P, (p) are ob-
tained from Eqs. (6) and (10), respectively, and the con-
ductivity is calculated below.

IV. ELECTRIC AND THERMAL CONDUCTIVITIES

The currents due to the electric and temperature gra-
dient field are calculated from Eq. (13). In order to dis-
cuss various contributions, the total current is written as
J=Jo+J,f+J f' p

and a similar expression for the
thermal current. The first term corresponds to the
current in the absence of spin Auctuations, which is given
by

Jo= —2e J dp vgo(p)lmGO(p)

and

Uo= —2f dp(e —p)vgo(p)ImGO(p) . (29)

In Eq. (29) the factor 2 accounts for the spin degeneracy.
From Eqs. (5) and (9),

FIG. 2. Disorder renormalized vertex function. ~ represents
the free-vertex function.

Po(p)= —r, v VT +eE ho(e) .a a
BT B6
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(31)

Considering the temperature dependence of the chemical
potential of the form p(T)=e, (1 m—T. /12e, ), which
arises out of the usual Sommerfeld expansion, we have

e —e, ~~T c}ho(e)ho(e)=—
BT T 6E, BE

L

applying Eqs. (30) and (3 1) in Eq. (29), we obtain the
Drude result for the conductivities o.0=ne ~, /m, and
ico=nr, ~ T/3m, . The Wiedemann-Franz law is obeyed

and the Lorentz number Lo=icolooT=~ /3e .The
corrections to this Drude expression in the presence of
spin fluctuations are discussed below. J,f and J,f' p

cor-
respond to pure spin-fluctuation contribution and the
quantum corrections due to disorder, respectively. In the
following we examine these two terms separately.

First we calculate J,f and U,f, which are obtained using
Eqs. (8), (10), and (13). The expression for J,r is explicitly
given by

J,r= —e f dp vIp&,c(p)lmGO(p)+$0(p)lmG0 ( p)X;(cp, ho( e)) +ho( e)lm Go~( p)[g;p pp 0) +gg;g p, ho( e))]j, (32)

where the P, ,c(p) is obtained from Eq. (10) by taking only
the pure spin-fluctuation collision integrals. The corre-
sponding self-energies are given in the Appendix. We no-
tice that in Eq. (32), the contributions to the current com-
ing from the first term of Eq. (10) and the second term of
Eq. (32) cancel each other. The only nonzero term con-
tributes to the J,f is that coming from the second term of
Eq. (10), which is given as

Jsf —e~, f dp vI,&[h]ImGo(p),

2k
Lb=

q f dq f dcoq Imp (q, co)N(co)

TX q I~(co)— I, (co)
S

+(2k, q)coI&—(co)

where

I„(co)=fde[1 —fo(e)]fo(e —co)(e—p)"

(34)

where

I,&[h]=24g f dq Imp'(q)lmGO(p q)R~, —

with

R ~= [1+N(co)]f(p)[1 f (p —q)]-
N(~)f (p ——q) [1—f (p») l (33)

and c, =Hg /8m. . Following Ziman (page 389, Ref. 20),
these integrations can be done easily to obtain
I 0=co[1 +N(co)], I& =(co /2)[1+N(co)], and
Iz

=
—,
' [ 1+N ( co) ][co +m co T ]. Using these expressions

in Eq. (34), we notice that the integrand of LzE is an odd
function of co. Therefore it vanishes on integration over
~. Electric and thermal conductivity is then obtained us-
ing Eq. (12),

In the collision integral account for the scattering of the
electron from all the spin-fluctuation components has
been taken. Expanding RJ to the linear order in $0(p)
(which correspond to linear order in E and V T) using the
Eq. (8) and performing the p integration, the current J,c is
obtained. A similar procedure is applied for obtaining
U,f. Below we summarize results for the different com-
ponents of the response function coming from J,f and U,f.

2k

Lg~ = — f dq f de q Imp'(q, co)N(co)IO(co),

~sf 4 oog Cp edrsw sf( T)

~icog C~ed~s[~s(T)+~sc(T)],
4m.

where

o.,t(T)= —f dq f dcoq crimp'(q, co)
T 0 oo

XN(co)[1+N(co) j,
l 2ks /k

ic,'r(T)= f dq f dcoqco Imp'(q, co)

(35)

2k

L~z =
z f dq f den q Imp'(q, co)N(co) XN(co) [1+N(co) ]

TX q I)(co)— Io(cps)
S

and

kd
q
6

+(2k, q)BIO(co)— 2

17,t( T) = cr,c( T), (36)

2k

Lzz = — f dq f dao q Imp'(q, co)N(co)I, (co), where g =—gpd and C~=(p, lpd)(kdlk, ) . Reduced units
(q /kd ~q, T/ed ~T, co/ed ~co) are used to express
o.,c( T) and sc,c( T), which are dimensionless quantities that
express the temperature dependence of electrical and
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thermal conductivity. Rewriting the above expression as
resistivities using the relation R,f = —o.,f/O. o and2

W,&= —Ic,r/rco, the results of Ueda and Moriya' are
reproduced. These results show the equivalence of the
present method with the one used by Ueda and Moriya.
The advantage of the present approach over the standard
approach is that it can be extended to include the quan-

turn corrections due to the disorder, as will be discussed
below.

Similar to Eq. (32), the disorder correction term for the
currents J,f p

and U f p
are obtained using Eqs. (8),

(10), and (13) by considering the disorder correction part
of the self-energy 2,&;, which is explicitly given in the
Appendix.

J,&; „=—e f dp vjP&,&,. (p)lmGO(p)+$0(p)lmGO (p)X;r; (p, ho(e))

+ho(e)lmGO (p)[X;r; (p, go)+5K,'r; p(p, ho(e))]], (37)

where P, ,„; is the disorder correction term from Eq. (10) by taking only the disorder part of the collision integral. A
similar expression can be written for U,r; . As in the case of J,&, the current coming from the first term of Eq. (10) and
the second term of Eq. (37) cancel each other. DiFerent components of the response function can be calculated easily
and the results are summarized below:

Lzz, r = oog Im f dq dcoq y"(q)A (q, co)[SO(co)+So( —co) —2SO(0)],sf-im

L' ', r = —— crag Im f dq dcoq y"(q)A (q, co) [S,(co)+S, (
—co) —2$, (0)]sf-im

%2T2
[So(co)—So( —co) —2SO(0) ]

Lrz, = o OgeIm f dq dcoq y"(q)A (q, co)[S,(co)+S, (
—co) —2S, (0)+coSO(co)],

3
(38)

LTsr~™r= — eros, g Im f dq dcoq y"(q)A (q, co) [S2(co)+S2(—co) —2S~(0)+coS, (co)]
2e

HATT

~2T2
[S,(co)+S,( —co) —2S, (0)+coSO(co)]

and

Lz'z, '= — crag 'Im f dq dco D, q "g"(q)A'(q, co)[SO(co)—So(0)],sf-imp

7TT

2 2

LzT'b = crog Im f dq dco D, q y'(q)A (q, co) [S&(co)—S&(0)]— [So(co)—So(0)]
e&T

LTz b
— crpe g Im f dq dcoD, q y"(q)A'(q, co)[S,(co) —S,(0)]sf-im

(39)

2 2

LTT, b 2 2 crOE~g Im f dq dco D, q y (q)A (q, co) [S2(co)—Sz(0)+coS&(co)]— [S&(co)—S&(0)]
e 1TT

where S„(co)=fde(e p)"[1 fo—(a+co)]fo(—e)[1—fo(e)], which can be obtained following Ziman (page 389, Ref. 20)
and A(q, co)=(D,q ico) . S„(—co) is an odd (even) function of co depending upon if n is an even (odd) integer. This
immediately implies that the integrand of I-z.z, p and I.TE'bp is an odd function of co and they are identically zero. Since
So(co) is an odd function of co, Lzz, r vanishes, but the corresponding thermal conductivity term LTT', r does not go to
zero. Using Eq. (12), disorder correction to the conductivities are given by

y. sf-imp Im f dq f dcoD, q y"(q)A (q, co) 1+2N(co)+2 N(co)N( —co)— (40)



48 DISORDER EFFECTS IN TRANSPORT PROPERTIES OF WEAK. . . 10 299

a Ls -imp
Ksf-lmp TT, a

3

Im f dq f dcoq g"(q)A (q, co) — N(co)N( —co),
27T3

b g sf-imp
Ksf-imp LTT, b

2KOg'
Im f dq f" dcoD, q y"(q)A (q, co)

X 1+2N(co)+2 N(—co)N( —co)—
T

3
1 co

N(co)N( —co)
7T2 T

(41)

3&so~ 'C, A,
o,r, = — [1—a, +Tr, ],

rr(e„r, )

1
sf-Imp

3v 3s~ Cd A ) 9A2 a~—1 Tr, ,
~(~„r, )' 4A, 2~'

(42)
3&3~pg Cd A,

Ksf-1mp [1—a, +Tr, ],
~(edr, )

with total thermal
1 ~ 2

sf-Imp= sf-imp+ sf-imp.

conductivity correction

ao 1
A, =Im dq

(q i ) [—a( T)(Dd /D, )q i ]—
co q 1

A2 =Im dq
0 q

—
p T Dd D q

a&=
p Vy dy

=25

After doing the integration over q and co we obtain V. DISCUSSION AND CONCLUSION

In the previous section we obtained the expression for
electric and thermal conductivity in the presence of both
disorder and spin fluctuations. In this section we analyze
these results numerically and apply them to explain the
resistivity behavior of some alloys and amorphous sys-
tems. For the sake of simplicity in what follows we do
not differentiate between the s and d electrons, which
means C and Cd are unity in Eq. (36) and Eq. (42), re-
spectively.

As we saw in Sec. IV, the disorder corrections o.,f; „
and K,f; „are relevant only in the low-temperature re-
gion, where T((~ '. In this low-temperature regime
the main contribution of the co integration in Eq. (36)
comes from the region where co' ((a' (T), which cor-
responds to T &(a0 . Here the imaginary part of the
spin susceptibility can be approximated as
Imp'( q, co )-neo/2q [a( T)+5q ] and the co and q in-
tegration can be performed easily to obtain

3&3~' T'
~sf 0 Og &F7 v'a(T)

a&= —f dyy N(y)N( —y)=4.46,
0

(43) Ksf 8 V'a( T) 20a( T)
(46)

3/2

md

3/2
d

D,

The total electrical and thermal conductivities are then
given by

and

~ =0+ ~sf+ sf-imp

K —KO+ Ksf+ Ksf Imp (44)

L = I +~,'f( T)+a,'f; ( T),
L0

(45)

which shows that the Wiedemann-Franz law is violated
in the present problem due to the presence of K,'f and

1
sf-imp

respectively. The Lorentz number L =v/o T. The lead-
ing order behavior of the Lorentz number follows from
Eq. (36) and Eq. (42), which is given by

where the first and second term in K,f comes from the
contribution of a,'f(T) and ~,r, respectively. If the system
is very close to the ferromagnetic instability, then cz0 0,
and the first term in Ksf dominates over the second. Then
the thermal conductivity ratio a,r/ap- T /ap . On the
other hand if the system is not very close to the ferromag-
netic instability we can neglect the first term and
IC&f/Kp CT g/CTp.

In the expression for disorder correction Eq. (42), A
&

and A 2 are temperature dependent through a( T) and its
temperature variation for eF~=20, 10, and 8, and
+0=0. 1 are shown in Fig. 3. The temperature variation
of a( T) in the presence of both spin Iluctuation and disor-
der is given by Eq. (18). As the disorder increases, a(T)
reduces sharply from its value calculated within spin-
fluctuation theory and this is reflected in a sharp increase
of 2, and A2 at low temperature for large disorder. In
the absence of the disorder correction in a( T), the tem-
perature dependence of A

&
and A2 are very weak. Thus

to get a self-consistent picture of the disorder corrections
in the conductivities, disorder effects on the spin suscepti-
bility should be included as well, and this will add to the
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FIG. 3. Temperature variation of A& and A& for different
6g7 and Ao =0. 1.

FIG. 4. Electric conductivity (o./o. o) vs temperature (T/eF)
for different e+~ and ao=0. 1.

correction coming from the vertex renormalization [see
Fig. 1(b)].

The disorder correction for both electric and thermal
conductivity has a positive temperature coefficient,
whereas the spin-Auctuation term has a negative tempera-
ture coefficient. This means that as temperature increases
the disorder correction increases, but the spin-fluctuation
term decreases and a maximum is obtained in total elec-
tric conductivity. The total electric and thermal conduc-
tivity for different disorder parameter eF~ are shown in
Figs. 4 and 5, respectively. To emphasize the importance
of disorder we have plotted cr/oo and ~/so versus tem-
perature instead of plotting o. and v. The maximum
occurs at some temperature T at which the conductivity
behavior crosses over from the disorder correction term
to the spin-Auctuation contribution. An estimate of the
value of T can be made in terms of basic parameters of
the system o,o and eF~. Neglecting the temperature
dependence of a(T) we obtain T -(ao/e~r')'~, which
implies that T will be small for the systems close to the
ferromagnetic instability. This rejects the fact that due
to the presence of ao in the expression for conductivities
[Eq. (46)], reduction in conductivities due to spin Auctua-
tion is larger than the increase of disorder correction
term. The temperature coefficient of electric and thermal
conductivity are different due to the presence of sc,'f and
K f p

in the thermal conductivity. This leads to a
different T for o /oo and z/vo. This is due to the fact
that the electron scattering from the spin Auctuation
affects the electrical and thermal conductivity differently,
which is reAected in Lorentz number as discussed below.

The Wiedemann-Franz law is violated because of the
presence of ~,'f and ~,'f; „in the thermal conductivity Eqs.
(36) and (42). This is due to the fact that when an elec-
tron scatters from the spin Auctuations, it can lose or

0.99

3.985

0.98
0-002 0.004 0.OOe

FIG. 5. Thermal conductivity (~/~0) vs temperature (T/eF)
for different eF~ and F0=0.1.

gain heat energy and it can change from a hot electron
to a cold electron or vice versa. This process substantial-
ly reduces the heat conduction, while affecting the charge
conduction very little. This implies that the thermal con-
ductivity is suppressed more than the electrical conduc-
tivity due to the scattering of electrons from the spin Auc-
tuations. The Lorentz number becomes temperature
dependent as shown in Fig. 6. As disorder increases the
Lorentz number approaches unity. This is due to the fact
that the Drude term dominates over the spin-Auctuation
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FIG. 6. Lorentz number (L/Lo) vs temperature (T/ez) for
different eF~ and o.o=0. 1.

FIG. 7. (a) Electric resistivity of amorphous Ni75P16B6A13
system as a function of temperature and (b) same low-
temperature data as a function of &T. Data (~ ) are from Ref.
30.

scattering as disorder increases.
The above results can be applied to various alloys and

amorphous systems. In our earlier paper' we explained
the &T behavior seen in the paramagnetic spin suscepti-
bility of Ni3Ga and Ni3A1 in terms of disorder effect. Ap-
plying the present result to these systems, for example to
Ni73Ga27 which has o,'0=0.058 and @~~=25, predicts the
value of T about 1 —2 K. Measurements on resistivity
of these systems at low temperatures, say up to few mK
will be relevant in this context. Measuring the magneti-
zation of amorphous Ni-Fe-based alloys, Schneider
et al. , have suggested that amorphous Ni-rich (Fe„
Ni, )soP, OB,0 alloys are weak itinerant ferromagnets.
This system shows a ferromagnetic instability as x in-
creases above some critical value x, close to zero. For
x & x, these systems can be considered nearly ferromag-
netic. A similar conclusion can be drawn for the amor-
phous system (Fe„Ni, )75P,6B6A13. In these systems
the transition temperature drops to zero in the range
0&x &0.2." Since the amorphous systems are highly
disordered, it is not clear whether we can apply the
present perturbative results to these systems. Neverthe-
less, the magnetization measurement on amorphous Ni-
Fe-based alloys near the critical concentration x, (Ref.
26) shows a similarity in their magnetic properties with
the weak itinerant ferromagnetic alloys. Motivated by
these observations we assume Ni75P, 6B6A13 to be a highly
paramagnetic system and apply our results to this system.
The resistivity of Ni75P&686A13 is given in Fig. 7. It shows
a minimum around 13 K. Above this minimum, the
resistivity rises as aT with a =0.00012 and below the
minimum, it can be fitted as b&T with b=0.07. A
theoretical estimate of a and b can be obtained from Eqs.
(46) and (42), respectively. To eliminate the s-d coupling

constant g, we compare the ratio between a and b. Ex-
perimental value shows b/a =5.8X10 . Assuming the
system has no=0. 1, eF =1 eV and eF~=15, we obtain
b/a =5X10 and T —10 K, which reasonably agree
with the experimental values. Measurement on the
paramagnetic spin susceptibility of this system is highly
desirable in order to clarify this point and con6rm wheth-
er spin susceptibility at low temperature shows &T
behavior.

There have been several attempts to explain the origin
of resistivity minimum in amorphous metallic systems
over the 1ast twenty years. ' Out of these, the Kondo
model and the two-level-system model predict a ln(T)
variation of resistivity below a certain temperature, and
adding to it the contribution from scattering with pho-
nons gives minimum in the resistivity. In the present
model the resistivity in the entire low-temperature region
is due to spin Auctuation which is fully electronic in ori-
gin. The resistivity minimum occurs at a temperature at
which the crossover takes place between disorder correc-
tion and the pure spin-fluctuation contribution. In our
earlier paper' we have seen that a similar kind of effect
happens in various properties such as paramagnetic spin
susceptibility, magnetization, NMR relaxation time,
thermal expansion, etc. To understand the importance of
the disorder quantum corrections in the amorphous sys-
tems more clearly, it will be of great relevance to measure
the low-temperature behavior of above-mentioned prop-
erties in these systems. Since the Ni-rich amorphous Fe-
Ni-based alloys near to the critical concentration x, is a
weak ferromagnet, it is a good system with which to
carry out such investigations.

This work can be easily extended to the ferromagnetic
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phase also. There the spin waves will contribute to the
resistivity as well as the spin fluctuations. For the clean
limit it has been done earlier by Ueda and Moriya, '

where they found that the electric resistivity vary as T
at low temperatures and as T near to both sides of the
transition temperature T, . As we saw in previous sec-
tions, the disorder correction term comes basically from
the modification of electron-spin-fluctuation vertex. This
means that the disorder correction for conductivity in the
ferromagnetic phase will have the same temperature vari-
ation as in the paramagnetic phase. So the disorder
correction for electric conductivity for ferromagnetic sys-
tems vary as &T for T((r ' and the thermal conduc-
tivity as T

APPENDIX

In this Appendix expressions for different components
of self-energies and vertex functions are given. Equation
(26) is solved to obtain different component of the vertex
function and f' ' is given by Eq. (27). Other components
of the vertex function are given below:

1

&2(1—g'")

+ar+ +rk rk+ kk+ ka ak

1 —g"'
ak

where

~=N;U f Go(k q)G~~—(k) .d k
(2m )

The 5f' part of the vertex function [Eq. (26)] contrib-
utes only to 5R, which contain Poisson brackets. Since
the Poisson bracket is already proportional to electric
field and temperature gradient, we approximate
h (p) =ho(co) in this expression. Then the solution for 5f'
becomes simple and the nonvanishing components are
given by

and an expression for I can be written with the following
substitution,

I '( q, e') = f' (
—q, e ) i

(A2)
I (q, E) =f' '( —q, e)~

ar'„= —(5r '„)*

d kN. U'f [Go(k) I ho(e) ho(e ~—);Go(k —q) j
2 2( 1 —g"') ( 2n)

+ I GD(k);ho(e) —ho(e —co) j Go(k —q)] (A3)

and

5I =(5I ,')*
d k

N „ f [po(p ~)Go(k) I ho(e);Go(k —q) ]+ho(e)GO(k) Iho(e —co);Go(k —q) j
2a2(

i
1 —g"'i ) (2' )

+ho(e —co)G0(k —q) Iho(e); Go(k) j +ho(e)GO(k —q) [ho(e —co);Go(k) j ] . (A4)

Using the above expressions for the vertex functions in Eqs. (24) and (25), the self-energies are obtained. The total
self-energy is the sum of the spin-fluctuation part (2,&+52,f) and the disorder correction term (R,z; +52,z; ). The
explicit expression for each of these self-energies is given below.

2;gp) = g f d—q [y'(q)h (p —q) [Go(p —q) —Go(p —q) ]+y"(q)G "(p —q) j,
X,"f(p)= g fdq—[[g"(q)GO(p —q)+y"(q)h(p —q)GD(p —q)]+(H. c)j,
5&;Pp) = — g' f —de'(q) t G(p —q)+G'(p q);h (e c—o)j, —1

5X,"f(p) = ——g f dq [g"(q) I GO(p —q);ho(e —co) j
—(H. c)] .1

The disorder correction term of the self-energy is given by

g'(q)GO(p —q)
X, ; — g fdq — (q, +q, ),

(1—g'")

X"(q)Go(p —q)
g f dq[ 2 [(~i"+ni')ni'j+(H c)],

1

where g, is obtained from q ~ neglecting the Poisson bracket term from Eq. (3).

(A6)
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The disorder correction term, which contains the Poisson brackets, has three terms. Writing
5X,t; =5X&+5Xz+5X3 with a=r, a, k, each of these terms are explicitly given below. We keep only the most singu-
lar terms as co~0, q ~0. hX& comes from the last expression of Eq. (25) and is given by

5X& = f dq N, v f [Go(k){GO(k —q);ho(e —co)]+ {Go(k);ho(e)]G&(k —q)],g', d'k X'(q)Go(P —q)

(2m )' (1—g'")

g f f dk X qGop
4 (2m ) (1—g"')

X [([Go(k){Go(k —q);ho(e —co)] + {Go(k);ho(e)] Go(k —q)]ho(e)

+ {Go(k);ho(e)] Go(k —q)[ho(e) —ho(e —co)])—(H. c)] .

The self-energy contribution coming from the third and fourth terms of Eq. (25) are expressed by 5Xz and given byg', d'k X'(q)Go(p —q)
Xz(p)= — f dq N;u f {Go(p —q);[ho(e —co) —ho(e)]],

g f ~f d3k X qGop
4 (2' ) (1—g"')

X [([ho(e) ho(e —co) ] {G—o(p —q); ho(e) ]

(A7)

+ {[ho(e) —ho(e —co));Go(p —q) ]ho(e)) —(H. c)], (A8)

and the term coming from the fir'st two expressions are given by 523, where
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