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We study the ground state of one- and two-dimensional (square-lattice) spin-2 quantum antifer-
romagnets using a numerical real-space renormalization-group (RG) approach. In our RG approach
we consider blocks of various sizes but with an odd number of sites; we retain only the doublet
ground state and we integr'ate out the higher-energy states by means of second-order quasidegener-
ate perturbation theory. That is, we assume that the role of the excited states of a block, in the RG
iteration process, is to renormalize the effective coupling parameters between blocks. We compute
the ground-state energy of a spin- 2 linear chain for various block sizes and find close agreement with
the Bethe-ansatz exact solution. In the case of the spin-2 square-lattice quantum antiferromagnet,
the obtained ground-state energy is in reasonable agreement with the available numerical estimates.

I. INTRODUCTION

In order to understand a wide variety of cooperative
physical phenomena, one needs to resort to various clas-
sical or quantum lattice models that capture certain im-
portant features of the materials where such phenomena
occur. Even though these models describe only certain
aspects of the materials and even though most of the
complexity of the various components of the physical sys-
tem is neglected, one still needs to invent methods to find
exact or approximate, but reliable solutions to them.

Quantum spin models, such as the Heisenberg anti-
ferromagnet on regular lattices or lattices with frustra-
tion and the Hubbard or the t remodels (wh-ich have
been at the center of the theoretical studies during the
last five years), present particular difficulties especially
when they involve lattice fermions. Exact solutions for
these models are only available in some one-dimensional
(1D) or limiting cases. In two or higher dimensions, one
has been, so far, limited to either approximate analyti-
cal and semianalytical treatments (which in most cases
involve uncontrollable approximations) or to numerical
techniques. The main numerical techniques used are
Monte Carlo simulations and exact diagonalizations on
finite lattices. The latter procedures are limited by com-
puter memory and CPU time constraints, and since the
number of states of the Hilbert space increases faster than
exponentially with the lattice size, only calculations on
very-small-size lattices are available. Monte Carlo meth-
ods, on the other hand, have been very useful in cases
of quantum antiferromagnets on nonfrustrated lattices.
However, when one has to take into account fermions,
such as in the case of the t-J or the Hubbard models,

quantum Monte Carlo procedures are seriously hindered
by the well-known "minus"-sign problem and their ap-
plicability is also limited to very-small-size lattices. The
technique is hindered even on pure spin systems if one
cannot change the basis of the Hilbert space in order to
make all the off-diagonal matrix elements of the Hamil-
tonian negative (such as on a triangular lattice).

The renormalization-group (RG) approach has been
successfully applied to the case of classical spin systems
and in field theory. i 2 There have been both analytical
formulations where the P function is calculated in per-
turbation theory and numerical implementations (with
schemes such as real-space block-spin transformation or
Monte Carlo RG transformations). The idea behind this
approach —namely, that, if one is interested in phenom-
ena of a definite energy scale, the higher, nonrelevant
energy degrees of freedom can be integrated out in small
steps (so that the approximations introduce very small
errors) —is very attractive. In the above-mentioned quan-
turn spin and fermion models, one is interested in extract-
ing information at energy scales significantly smaller than
the original energy scales entering in the model. For ex-
ample, one may be interested in low-energy excitations
or in pairing in models such as the t-J or the Hubbard
model. This may occur at an energy scale of a fraction of
the antiferromagnetic coupling and of the hopping energy
scale, and it is much smaller than the Coulomb repulsion
energy scale entering in the Hubbard model. Thus, an
appropriate RG method may be a promising method to
study such low-energy phenomena.

There are previous attempts using real-space (RS)
first-order renormalization-group transformations to
study quantum spin systems. In its simplest level of
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approximation, where only the lowest-energy state is re-
tained in each iteration while the effect of the higher-
energy degrees of freedom are neglected, the approach
does not provide good ground-state energy estimates. s

There is a more sophisticated attempt where these high-
energy degrees of freedom are integrated out by a di-
agonalization procedure, and as can be expected this
procedure gives much better results.

In the present paper we investigate two directions of
improving the RSRG calculations: First, we study the
convergence of the RSRG approach by increasing the size
of the block in the block-spin transformation; second,
we take into account the excited states within a block
by integrating them out through a second-order quaside-
generate perturbation theorys (QDPT). We shall apply
the procedure to the cases of one- and two-dimensional
(2D) spin-2 quantum antiferromagnets. The solutions
obtained are in good agreement with the exact Bethe-
Hulten ansatz for the 1D system and with reliable nu-
merical estimates for the 2D square-lattice case. 7 The
next section details the renormalization procedure used
in this paper; the results for the ground-state energy are
discussed in Sec. III. In Sec. IV we calculate the spin-
spin correlation function, while conclusions are given in
the last section.

II. METHOD

I et us first start from the Hamiltonian for a Heisenberg
antiferromagnet,

H=Z) S, S, ,

(ij)

where S, is the spin operator for the site i and the sum
is over all nearest-neighbor pairs i,, j. An equivalent rep-
resentation for the case of spin-2 operators can be built
from local singlets:

H = ——g (c,Tc g
—c,ic t)(cite, ) —circ, t),'

&")
(2)

where c,t and c,t are the usual fermion creation and anni-
hilation operators of an up spin on site i. This expression
differs from the former one by a shift of the zero energy
by the energy of the ferromagnetic state.

A. Description of the RG method

First step

The Hamiltonian H("~ has the following form:

The RG method is an iterative procedure where, at
each iteration n, the in'. nite lattice is divided in equiva-
lent nonoverlapping blocks of sites and these blocks are
associated with the "supersites" constituting the lattice
of the next iteration. An efFective Hamiltonian H("+ ),
computed from the knowledge of the Hamiltonian of the
nth iteration H("~, describes the interactions between
these "supersites. "

Assuming that we are at the iteration n+ 1, the renor-
malization procedure consists of constructing the effec-
tive Hamiltonian H(n+ ~ from H("&. This is done in the
following steps.

H" =E" ~& &z
c" c" +&z (f)IH"

I
)T)(c" c"c." c" +c" c"c" c.")

i,s i, s e
s=+1/2 ( j)

+()) IH(n)
I )j)( (~) tc(~) (~) tc(~) + c(~) tc(~)c(~) tc(~))

e

+()) IH(n)l )))( (~) t (~) (~) t (~) + (~) t (~) (~) t (~))
e

In the first iteration H(0) = H, E( ) = 0, and ($f
H' 'I TT) = J/4 (Tl IH' 'I Tl) = —~/4 (Tl IH' 'I lT)
= J/2 in the formulation of the Heisenberg Hamiltonian
given by Eq. (I), while if we use the equivalent Hamilto-
nian given by Eq. (2) these matrix elements are, respec-
tively, 0, —J/2, and J/2. Let us now divide the infinite
lattice into nonoverlapping equivalent blocks of N, sites
(the criteria for the choice of the blocks will be detailed
later). H(") can be rewritten as

H() /()y y ()t ()+ y H(
k i, s i,s

'Ck s=+i/2 (ij)i,~ q k

—(n)
HI H(n)

ij

where the indices k and l now stand for blocks (defined as
previously explained), the first sum being over all blocks
and the second sum being over adjacent blocks,

H (") = ) H(") + ) H(")
k (kt) and

(i,j)igA:, jgl

H( ) ()y IH( )I yy)(c( ) tc( )c( ) tc( ) + c( ) tc( )c( ) tc( )) + (yj IH( )I )j)(c( ) t ( ) ( ) t ( ) + c( ) tc( )c( ) tc( ))'v e iT iT i T i T il il il il e iT iT j l jl il il jT jT

+(Tl IH'"'I lT)(c" c"c" c" +c" c"c" c" ). (7)e iT il jl jT il iT i T il



1030 MARIE-BERNADETTE LEPETIT AND EFSTRATIOS MANOUSAKIS 48

2. Second Step

Next we diagonalize Hk inside the Hilbert subspace
of a block. Let the 2~' eigenvalues and eigenstates of the
block be denoted by e

" and lv
" ). The blocks should be

chosen in such a way that the form of the H(n) Hamil-
tonian is conserved. Therefore, for lattices such as the
1D chain and the square lattice, we shall consider blocks
with an odd number of sites so that the ground state is
a doublet. Thus, we can assign a "superspin" on each
block which takes the values +z in order to represent
the two degenerate components of the ground state of the
block. Namely, we can associate its 8, = 1/2 component
with an up "superspin" and its 9, = —1/2 component
with a down "superspin, " denoted by

I Q& and
I

JJ&. We
define the associated "superparticle" creation and anni-

hilation operators c,-",+ and c,.",+, which by acting on
the vacuum create or destroy a "superparticle" composed
of one of the 1/2 or —1/2 ground-state components, for

instance,
I g&, = cIt+ IO).

S. TOM Step

We now need to define the new Hamiltonian H("+ ).
This Hamiltonian operates in the subspace spanned by
the states which are direct products of the above-defined

I Q) and
I $& states for each block. The reduced Hilbert

subspace is spanned by the direct products

l(sf)) = (3 ls~)

where k is the block index and Sf, = +1/2 is the total z
component of the spin of the ground state of that block.
The remaining part of the Hilbert space, which involves
the excited states of the blocks, will be taken into ac-
count by QDPT. Namely, we integrate out all the excited
states and their role is to renorn1alize the coupling be-
tween the previously defined "supersites. " The Hamilto-
nian H( + ) is of the same form as H(n); namely, the op-
erators c,", and c,", should be repiaced by c,",+ and

c, ,+ defined in the previous step; in addition, E("+~)
is the ground-state energy of Hkn, while H, + acts on
a two-"supersites" space only and will be defined below.
Let us call H," the reduction o.f H(") into the space of
two adjacent blocks, say, A: and l,

by means of second-order QDPT, within the model space
8, Hkn + Hl" being the zeroth-order Han1iltonian Ho"
and Hk"l the perturbation operator V("). Therefore one
has

~(n+&) p~(n) p + pV(n) ~(n) ~(n) p (10)

where G(") = Q (E("+i) —Ho" )
' Q.

g. Fourth Step

H "+ E(n+ ), c, ,+, and c,"+ are now known;
f

therefore, by renaming Q to T and JJ, to J, , H("+ ) will
be defined and has the same form as Eq. (3). One can
now go back to step one and iterate the procedure un-
til convergence of the ground-state energy per degree of
freedom of the original lattice, i.e. , E(")/(N, )".

B. Application of the method

~() E()y- y- ()t ()
'Lis Xis

i s=+1/2

+ ()y- y-, ()t,(),()t,()
l)S %is ))S $)S

(ij) $=+1/2

g(~) y (c(~) tc(~) t (~) t (~) t)

We are now going to show that the iterations of the
RG method can be done formally, i.e., that the diago-
nalization of H(") and the computation of the QDPT
second-order corrections need to be done only once, for
the first iteration. From these results, one can get the
results of any other iteration n & 2 by a simple equa-
tion and therefore the energy at convergence of the RG
procedure.

Lemma. Because of the invariance of the original
Hamiltonian under rotations in the spin space, there are
constraints among the matrix elements of H("+ . The
following property is valid at any iteration n:

&TT IH.'"'I
TT&

—(lT IH.'"'I lT) = (Tl IH.'"'I lT& (11)

This identity is shown in the Appendix. Let us define

g'"' = &Tl IH.'"'I lT& and c '"' = (TT IH.'"'I
TT& (12)

We have

Let us call 8 the space spanned by the direct products of
any pair of states of the blocks k and t; 8 is its subspace
composed of direct products of the ground-state compo-
nents of Hk and Hl, namely, the previously defined(n) (n)

"superspin" states. Let us call P the projection operator
on 8, i.e. ,

& =
I &&&&ftil I+ I &&)&&& I+ I &&&&&4 I+ I &&&&&& I,

and Q the projection operator on Q, the complementary
space of 8, i.e. , P + Q = 1. H," is formed from H,"

and

( ) (n) {n)qx&ciT cjl —cil cjT J (13)

(14)

where the constant A(") = E(")N, + n(")Nb (where Nq
is the number of bonds in a block) and

H(~) (n) x- / (~) t (~) t (~) t (~) t)
k ~ g . (ciT cj|, ci|, cjT

(ij) i,jqk

x(ct cg —ci ct ).(n) (n) (n) (n)
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The eigenvectors of H&" have the form

(s,. }
(16)

Let us denote by e1 the ground-state energy of H( ),
and following our earlier introduced notation the ground-
state energy E(n+ ) of each block at the n+ 1 iteration
1S

where I(S;)&A; = ISi)1,A;ISz)2, A: ISi'v, &N, , k

S;. ), ~ denotes the two possible ground states
I Q&; t, and

$&, I, of the ith sub-block constituent of the kth block
at the nth iteration. Note that the coefficients C„((S;))
are independent of iteration n and the block index k.
This is so because the eigenstates of the Hamiltonians
Hi(") are independent of the overall scale g("), and thus
for all n and A: the Hamiltonian has the same form. In
addition, if e~" denotes the eigenvalues of H&" and e
the eigenvalues of H&" (in units of g(")), we have

g( ) —E( )N +o( )Ng+g(

E(+) E()N + ()N + ()
Let us recall that

'""' = (~~ IP«"»I ~e&

+(gg I

pv(n) g(n) v(n) p
I gy)

g'"""= (&4 IPv'"'PI 4')
+(QQ IPv(")G(")v(")Pl $f )

where
I Q) and

I
JJ.

&
are the degenerate ground states of

(i,j)i&blockl, j&block2

N, ()&+ ()~~ )

()
i,s i,s j,s j,s

s=+1/2

(n)
(

(n) t (n) t (n) tC(n) t)(C(n)C(n) C(n)C(n)) )

where N~ is the number of bonds between the two blocks
i and j. We find that

(M IPv'"'PI M) = N ~'"'+ g'"'(ilail Ivo'"'I 818

R4,
I

pv(") pl 4fr& = g'") (y4, Iv,'"'I 4y&,

(&& IPv'"'PI»& = g'"'5& lvo" I»&

Equation (19) can be transformed as follows to a more
convenient form

~("+') = N ~(") + ~(') g(n)

(g(i) ]g(O) N )n+1

(0)N, 1

while Eq. (20) is transformed as

and

5& IPv'"'Pl~~& = g'"'(&& lv'"'I»&
(o)

(n) (1)
(22)

(n+1) g(n) g(1) (20)

where

P'" = (M IPvoPI M)+ 8& IPvo&"'v PI ~~).

where at least one out of Ip, &
= lv„" ) and Iv) = lv~" ) is(") (n)

an excited state of H(n). Note that because of the form
of Vc" and Iv

"
) these matrix elements are independent

of the iteration and thus we can suppress the index n
from them. On the other hand, from Eq. (18) we obtain

@(n) (
(n) IH(n) l&(n)) &(n) &(n) (n) (& & )

g(n) (~(0) ~(o) )

From the last three equations we obtain

pV(n) g(n) V(n) p g(np)V g(o) Vp

and therefore

(n+i) N (n) + (n) p(i)

and

From Eqs. (17), (18), (21), and (22) one can derive the
renormalized ground-state energy per site:

( ) (o)Ng, . e, (o) l~g n Ng,

(o) Ng eo (0) 1
N +

N 1 g(i)~g(o)N

+ A (1) Ng 1

Nt N, g (i) /g(o) Nt —1

g(1)
(23)

Thus, with our approach, we only have to carry out the
diagonalization of one block and the second-order QDPT
only for the first iteration. After g(i) and n(i) are deter-
mined, the ground-state energy can be calculated from
Eq. (23).

The main diKculty of the RSRt" approach is associated
with the calculation of the series of the effective Hamil-
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III. RESULTS

In this section we present results for the 1D chain and
the 2D square lattice for several values of N, within first-
and second-order RSRG theory. The spin-2 antiferro-
magnetic Heisenberg Hamiltonian has been used in the
formulation given in Eq. (2).

A. 1D chain

Calculations on the 1D chain have been made with
diferent block sizes: N, = 3, 5, 7, and 9 sites. In our
units the exact Bethe-Hulthen value for the ground-state
energy per site is —ln 2 J.

Figure 1 gives the energy obtained at convergence of
the renormalization procedure as a function of the num-

Energy per site
—0.50—

—0.55

Exact Diagonalization

First-Order RG

Second-Order RG

—0.60

tonian. Mattis and Pan have used first-order QDPT;s s

i.e. , they took into account only the direct coupling be-
tween blocks, but all processes in which a block can be
in an excited state are ignored. Zivkovic et at. 4 exactly
diagonalize H, and extract the effective Hamiltonian
from the singlet ground state and the lowest triplet ex-
cited state. This method takes into account the processes
where two blocks can excite one another by interacting
with each other. As could be expected, it gives much
better results than the preceding one. However the size
of the matrix to diagonalize is growing as (~'). The
diagonalization is therefore a procedure which requires a
CPU time which scales with the block's size N, as ( ~ *)
and thus suffers from computer time and memory con-
straints. Our method, however, takes into account the
role of the excited states by quasidegenerate perturba-
tion theory up to second order as outlined above. The
CPU time, in our method, scales only as the square of
the number of excited states in a box, i.e. , (~ &2)

fi(N, ) = E +ai/N, +Pi/N, ,

f2(N, ) = E~+ n2/N, + p2/N, +p2/N, .
(25)

Namely, we have assumed that the corrections to the
ground-state energy estimates obtained by a first- or
second-order RG for finite block size N, is a polynomial in
1/N, . The coefficients are different for a first- or second-
order RSRG, while the constant which corresponds to
N, = oo is the same for both methods: If the block size
is infinite, there should be no perturbative corrections.

The remaining error made on Ei(N, ) is then of order
1/Ns, while the error on E2(N, ) is of order 1/N, . The
weighting factors N, and N, in y are there to ensure
that the errors on Eq and E2 as a function of N, are inde-
pendent. The minimization of y2 gives E~ = —0.692785,

—0.1067375, Pi = 0.084772, ng = —0.039098,
P2 = 0.304412, and p2 = —0.3909315 (all these quan-
tities are expressed in units of J).

B. 2D square lattice

ber of sites, N„ in the unit block. Note that the inclusion
of the second-order corrections significantly improves the
results; namely, going from the first order to the second
the error on the estimate of the ground-state energy irn-
proves from 7.48%%uII to —1.79% on the three-site block.
On the nine-site block, the improvement is even better
since the relative error improves from 3.17% to 0.38% by
including the second-order corrections. While the first-
order energy decreases slowly towards the exact value,
the second-order energy approaches the exact solution in
an oscillating way, reaching an error of less than 0.4%%uo by
including five sites only in each block. However, the con-
vergence as a function of N, is very slow and calculations
on boxes of seven or nine sites do not provide significant
improvements.

The following extrapolation of the computed values im-
proves the results significantly and gives a relative error
of 0.052%%uo. The extrapolation is done using a y2 proce-
dure. The minimized y~ function is

) ( Ns[fi(N, ) —Ei(N, )]z
N, =3,5,7,9

+N, [f2(N, ) —Ez(N, )j ), (24)

where Ei (N, ) is the first-order and E2(N, ) is the second-
order renormalized energy and

—0.70
Exact Energy

'I I I I I I I I I I I I I I I I I I I I I I I I I I I

2.5 5 7 5 10 12 5
Number of sites

FIG. 1. Renormalized energy per site of a linear chain as
a function of the number of sites (N, ) in a unit block. The
energy is given in units of J. The exact Bethe-Hulthen value
is —ln2. Zeroth-order RG energy (exact diagonalization of
the unit block) (dotted curve), first-order RG energy (dashed
curve), and second-order RG energy (solid curve).

We have applied both first-order and second-order
renormalization procedures for the square infinite lattice
using a nine-site (3 x 3) unit block. Figure 2 shows the
convergence of the ground-state energy as a function of
the number of RG iterations. One can see that the con-
vergence is fairly fast, the limit being reached in four
or five iterations. The first-order renormalization energy
is Ei = —1.0592 J (see also Refs. 9 and 8), while the
second-order renormalization energy is E'2 ———1.15465
J. The extrapolated estimate obtained from a number of
reliable calculations reviewed in Ref. 7 is —1.1692 J. Note
that while the first-order energy is underestimated, the
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Energy per site
0.8 I I I I I I I I I I I I ! I I I I I I I I I I I

—0.9 irst-Order RG

econd-Order RG

—1.0

0 2.5 5 7.5 10 12 5
Number of iterations

15

second-order energy is within the range of other estima-
tions.

IV. SPIN-SPIN CORRELATIONS

The existence of long-range order in spin systems can
be established by calculating the spin-spin correlation

FIG. 2. Energy per site of a square lattice as a function
of the RG iterations. The energy is given in units of J. First-
order RG energy (dashed curve) and second-order RG energy
(solid curve).

function in the limit of infinite distance. In this section
we shall evaluate the correlation function (S, S~) using
the RG procedure. The most natural way to do so is to
compute at each iteration (vi" IS; S~ Ivi" ). Let us first
note that this expression corresponds to the correlation
function of the first-order RSRG procedure. The second-
order RSRG method whould give the following expression
for the spin-spin correlation function: (vi" IS, S~AlvI" ),
where 0 is the second-order QDPT wave operator.

As we have shown both the first- and second-order
RSRG approaches preserve the form of the Hamiltonian
and the coefficients C„((S;))of the wave function are
the same as long as the configuration (8;,i = 1, N, ) of
a set of N, blocks of the nth iteration and of a set of N,
"superblocks" of the next iteration are the same.

We wish to calculate the correlation function between
the sites i and j. Let lV~ be the number of the iterations
needed such that the sites i and j of the original lattice
are included in the same block, for the first time. De-
pending on the relative values of JV~ and n, three cases
appear.

(1) n ( JV,~. The sites i and j belong to difFerent
blocks k and l. Therefore, they are not yet correlated.

(2) n = JV~. Let us suppose that k and l are the blocks
to which sites i and j belong at the n —1 iteration. Let the
two ground-state components be denoted by Ivi ) and(n)

I6I")), which are, respectively, characterized by values
1/2 and —1/2 of the total z component of the spin. We
find that

(n) Is s
I

(n)) 4( (n) lgzgzl (n)) (
(n —1)lgzl (n —1))( (n —1) gzl (n —1))

+1( (n)lg+g —
I

( ))( (n —
1)lg~+Ie(

—1))(-(n—1)lg—
lv(

—1))

(26)

where S& is the z component of the spin operator acting on the supersite A: at the n —1 iteration, i.e. , 2S&
(n —Z) t (n —i) (n —S) t (n —1) (n —1) t (n —1)

ckt cA. t.
—cI,& cI,&

. Similarly, Sk is the spin raising operator of the supersite A:, j..e. , Sk = cj,t ck&
(n —i) t (n —i)and Si —c~l cA,

T

(3) n ) JV~. Now both sites i and j belong to the same block tr of the preceding iteration; therefore S, S~ is an
operator acting only on a "supersite" of iteration n. We obtain

(vi"'IS*.Spiv'"') =(vi"'Ic'" "'c'" "+c'" "'c'l "lvi"')(vi" "IS' Sglvi" ")
(

(n —1)
IS S

I

(n —1))

Thus, the correlation function at any n )A;~ remains the same with the one at the iteration n = JV,~.
In addition, if k is the block to which the site i belongs at the n —1 iteration, we note that

(vi"'IÃlvi"') =(vi"'ICT "C ' —C "cg 'Ivi"')(v'" "l~;lvi" ")
= ~, (vi("-"IS;Iv'"-") (28)

(
( lg+I-( )) (

( )I
— f —

I )( ( —1)lg+I-( —1))

(
(n —1)

I~pl
(n 1))—



1034 MARIE-BERNADETTE LEPETIT AND EFSTRATIOS MANOUSAKIS 48

(ei"'l~, l~i"') = (ei"'IC "egg 'l~i"')(ei" "l~, l~i" "&

where A, and A+ are independent of n and of absolute
value smaller than 1. Therefore

(~'"'l~;l~'"') = (1/2) (& )"
(„(n)lg+I6(n)& (g(n)lg —

I

(n)) (), )n

and (S, S~& tends to zero when JV,~ tends to infinity.

V. DISCUSSION

The results of the previous section regarding the long-
range order are intrinsic to this RG method and indepen-
dent of the lattice dimension or the specific shape of the
lattice under consideration; since the 2D square lattice
as well as other lattices allow for antiferromagnetic long-
range order within the nearest-neighbor spin-1/2 Heisen-

berg model, this is an important drawback of the method;
namely, it does not reproduce the correct long-range be-
havior of the spin-spin correlation function. One could
ask if using a more sophisticated wave function, such as
taking into account the first-order corrections to the wave
function at each iteration, would change the evaluation
of spin-spin correlations qualitatively.

Nevertheless, the second-order RG procedure predicts
ground-state energies in good agreement with other cal-
culations at the price of a simple diagonalization and a
second-order perturbation theory calculation on a small-
size finite lattice. Another advantage of the method is

that its generalization to more sophisticated Hamiltoni-
ans, such as the t-J model, is easy and not much more
computationally costly. Simple quantum Monte Carlo

(QMC) techniques when applied to the Hubbard or tJ-
model are seriously hindered by the well-known "minus"-

sign problem. Improved QMC techniques to deal with
this problem, such as the Green's function Monte Carlo
(GI' MC) method, are very promising and have provided
useful results for the t-J model. The GFMC method,
however, is a much more sophisticated stochastic tech-
nique, and it requires significantly larger computational
time scales. Thus, it will be interesting to apply the
present RSRG technique to the t-J model with holes and
such work is in progress. In addition, it is desirable to ob-
tain results with more than one method, for the infinite-
size limit regarding questions such as pairing and phase
separation in the t-J model.

When our work on the 1D antiferromagnetic Heisen-

berg model was completed and we started applying this
method to the 2D case we became aware of the work of
Ref. 11 where a new RSRG approach was proposed and
applied to the 1D tight-binding model, an extremely sim-

ple and solvable model. In the above paper the authors
suggest that the failure of the zeroth-order RSRG ap-
proach is due to the boundary conditions (BC's) applied.
Thus, in zeroth-order RSRG, the ground-state wave func-
tion is constructed out of two pieces in which each is

forced to obey the fixed BC's in the sub-block, and thus
going to the next-size block the wave function has almost
a node in the rniddle of the larger block (in the 1D exam-
ple). They allow for mixed BC's and they have obtained
very accurate results. In the approach proposed in our
work, the ground state of the new "superblock" is eor-
reeted by the inclusion of the other states via perturba-
tion theory. We have checked that after the inclusion of
first-order perturbative corrections in the wave function
of the larger block, the corrected wave function is close
to the exact one for the tight-binding model considered
in Ref. 11. Thus, with our approach one can systemati-
cally improve the estimates for the energy of a model by
including higher-order corrections.
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APPENDIX

Let us First consider a two-spin operator 0 having the
following symmetry properties (which are satisfied by
Hn).

(TT I&I TT&
—(lT I&I lT) = (Tl I&I lT) (A1)

Let us call u the single-spin rotation operator by an
angle 0 around the x axis. Then

al T) = cosel T) + sinol l&

~
I l& = —»n ~

I T& + cos ~
I l&

and 0 = u (3 u is the pair-spin rotation operator by the
same angle. If the property (Al) is true, we obtain

&~l TT& =a Icos t)
I

TT&+ sin ~
I ll&

+ cos ~ »n 8 (I Tl) + I lT&))

=~(
I TT&)

and

(A2)

&I TT) =ill TT),

(-)I ll) = ril ll),
(-)

I Tl& = Pl Tl& + vl lT&,

&I lT) = vl Tl) + Pl lT).

We shall show that the invariance under spin rotations is
equivalent to the property
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&~l Tl) =P «»»n~(l ll& —
I
TT))+«s'~l Tl) —»n'~l lT&

+& «se»»(l ll) —
I TT)) —»n'~l Tl)+«s'el lT)

=~(PI Tl&+el lT&)

which is equivalent to

AO = 00.
The reverse proposition is also true, since if u is such
that it transforms the z axis into the x one, we obtain

~l TT& = (I Tl&+ I LT&)/v 2

and so

&TT l~'&~l TT& =( cr+P+p)/ 2= cr,

from which it follows that cr = P+p, which is the identity
(A1).

Note that H& ) and H, are both invariant under spin

rotations. Let us suppose that this is also true for H( )

and H,". Therefore H&" and Hk& are also invariant
under spin rotations. We have then

H,"+' n = iv"in+ iv"|.""V"in
= APV"P + APV" G'"V"P
=AH"+ .e

Inserting this in Eq. (3) we obtain

H~"+') n = n H("+')

Thus, we conclude that for all n

&TT IH." TT) —
&1T IH."I lT) = &Tl IH."I lT).
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