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Magnetic relaxation in small-particle systems: T 1n(t leo) scaling
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Although most of the experimental work dealing with the magnetic relaxation of systems character-

ized by the existence of an energy-barrier distribution have been analyzed in terms of the so-called loga-

rithmic approximation, this is not a good approximation because obviously it cannot describe the

behavior for the whole range of temperatures and times. An alternative method called T ln(t/70) scaling

is proposed. This scaling method allows one to extrapolate the relaxation behavior at times that are ex-

perimentally completely unaccessible. From this scaling it is also possible to determine the attempt fre-

quency 1/~0, and if a certain distribution of energy barriers is assumed the width o. and the mean energy

barrier is also obtained. The validity of the logarithmic approximation is critically discussed.

I. INTRODUCTION

There is a broad variety of physical systems that show
a time-dependent behavior of some of their physical
properties because of the existence of energy barriers
separating local minima corresponding to different equi-
librium states of the system. Many of the efforts in this
field have been devoted to the study of magnetic relaxa-
tion in systems with different degrees of disorder. For ex-
ample: spin glasses where the distribution of energy bar-
riers is due to the frustration of the competing magnetic
interactions among the individual spins type-II super-
conductors in which vortices are submitted to pinning by
defects and dislocations, and where the application of a
magnetic field creates metastable states in the vortex lat-
tice; ' small-particle systems with a volume distribution
and random orientation of easy axes which show block-
ing phenomena depending on the experimental time win-
dow; ' and thin films and other magnetic materials for
which the existence of energy barriers is a consequence of
the competition between anisotropy and exchange ener-
gies.

However, most of the experimental data available in
this field have been analyzed by using rough approxima-
tions or not well justified semiempirical expressions.
The main reason for this fact is often related to the rela-
tively short interval of time during which relaxation data
are recorded, two or three time decades, in the best situa-
tion. When this is the case, it is very difficult to distin-
guish among different relaxation laws. " Moreover, when
the magnetization evolves slowly with the ellapsed time,
the small curvature of the data in the observation time in-
terval, can erroneously lead one to analyze the data in
terms of oversimplified expressions, as for example, the
so-called logarithmic approximation. There are two pos-
sibilities to avoid this problem. The most obvious solu-
tion is to extend the observation time interval, but this is
almost impossible in most of the experimental setups.
The second alternative is to search for a scaling hy-
pothesis that allows one to bring all the relaxation data,
obtained at different temperatures, in a unique master
curve. By using the last procedure it is possible to cover

a large number of time decades, since in all thermally ac-
tivated problems, any change in the temperature of the
system corresponds to a change in the time scale of the
magnetic relaxation.

The simplest guess for the scaling law of a relaxing sys-
tem governed by thermally activated processes is the so-
called Tin(t/~0) master curve, previously proposed by
Prejean and Souletie' ' and co-workers' and already
used for the study of the magnetic relaxation in spin-glass
systems, which are characterized by the existence of a
broad distribution of energy barriers hierarchically or-
ganized and high degree of magnetic frustration. Recent-
ly, a similar approach has been used by Barbara and
Gunther to describe the magnetic relaxation close to the
logarithmic regime, introducing what they call "barrier
plot. "' In this paper, we want to discuss the validity of
the T ln(t/ro) scaling law for the study of the magnetic
relaxation in a disordered system consisting of an assem-
bly of non- or weakly interacting entities, as is the case in
the majority of single-domain particle systems, where the
disorder is only due to the existence of a distribution of
energy barriers which are blocking the direction of the
magnetization vector of each entity. We also discuss how
it can be used to obtain information about the time
dependent behavior at long times that are usually experi-
mentally unaccessible.

On the other hand, we discuss the validity of the com-
monly used "logarithmic approximation" to characterize
and analyze the time-dependent behavior of systems with
a distribution of relaxing entities. We also show how the
inaccuracy of this method can give place to misunder-
standings and misinterpretations in the analysis of the ex-
perimental data.

II. PHENOMENOLOGICAL BACKGROUND
FOR THE T ln( t /Tp) SCALING

The decay of the magnetization of a distribution of
single-domain particles is given by the relaxation law:

M(t)= f dE e ' 'f (E), (l)
0

where f (E) is the distribution function of energy barriers

0163-1829/93/48(14)/10240(7)/$06. 00 10 240 1993 The American Physical Society



MAGNETIC RELAXATION IN SMALL-PARTICLE SYSTEMS: 10 241

that have to be overcome by thermal Auctuations, in or-
der to change the equilibrium magnetization direction of
the particles. The exponential factor is the classical
Boltzmann probability for a particle to change its equilib-
rium magnetization value and r(E) is the relax'ation time
used in Neel's theory' and is given by /e—

F. /k~ 1
~(E)= roe (2)

where 1/ro is an attempt frequency of the order 10 —10'
—Is

Let us introduce the function p ( t,E), which is defined

—(tlro)eXP( —Elk& T)
(3)

Taking into account that p (t, E), for a given time t varies
abruptly from 0 to 1, as the energy barrier E increases,
the usual simplification' consists on approximating
p(t, E) by a step function whose discontinuity E, (t)
moves to higher values of E as time elapses. As a conse-
quence, the integral is "cutoA"' at the lower limit by the
value of E, (t), which is the only time-dependent parame-
ter, and the expression (3) is approximated by

M(t)= I dE f(E) . (4)

E,(t) corresponds to the energy-barrier value for which
the function p(t, E) has the inflection point and is given

E,(t)=ktiT In(t/ro) . (5)

0, E~EI
p(t, E)= r(E), E( ~E&E2

1, E+E2

where we have approximated p (E) by a straight line pass-
ing by the inAection point of this function, which is
placed at an energy E„with p (E, ) =1/e, a constant in-
dependent of time, and with slope equal to the derivative
of p(E) at the inflection point. This straight line has the
following equation:

From Eq. (5) it can be deduced that the remnant magneti-
zation M(t) obtained after integration over the energy
barriers E is a function of the parameter E, (t)
=kt)Tin(t/~o). The existence of this scaling variable
implies that measuring the magnetization as a function of
the temperature at a given time is equivalent to measure
the magnetization as a function of the ln(t) at a fixed tem-
perature. This time-temperature correspondence is
characteristic of activated processes governed by the Ar-
rhenius law.

The approximation ofp (t,E) by a step function cutting
off the integral in (4) can be improved by taking into ac-
count the essential temperature and time dependence of
M(t). It is clear from (3) that the interval of energies for
which p(t, E) differs significantly from 0 and 1, for a
given value of the time, will depend on the temperature.
To have an idea of the influence of this region on M (t) let
us approximate p (t,E) by (see Fig. 1)

EiE, Ep

FIG. 1. The function p(t, E) defined by Eq. (3), at an arbi-
trary time and temperature as a function of the energy barrier.
The straight line represents the approximation described in the
text.

r(E)= — + 1 —ln
1 E t
e ka r ~o

(7)

Only for T=O does Eq. (7) reduce to the cutoff approxi-
mation. Then we can characterize p(t, E) by its width,
A, =Ez —EI =k&Te, which is time independent. Thus,
as time elapses, p (t, E) moves to higher values of the en-

ergy without changing its shape.
It is evident that for a given value of the scaling vari-

able the inflection point of p (t,E) is placed at a constant
energy with respect to the distribution function, but with
a width that increases linearly with the temperature. For
this reason the validity of the scaling hypothesis is only
determined by the validity of the cutoff approximation.
As a result, the scaling will be fulfilled as long as the
width of p(t, E), which is approximately given by k~ Te,
is small as compared to the width of the energy-barrier
distribution function. Even though this condition seems
to be very restrictive, this is the usual situation encoun-
tered in experimental observation of the magnetic relaxa-
tion. For instance, if a normal distribution of energy bar-
riers centered at the reduced value 1 (reduced values
defined as the energy divided by the value of the energy
at the maximum of the distribution) is assumed for
small-particle systems, the characteristic half width of
this distribution ranges approximately from o. =0.2 to
1.0 in real systems. ' ' The experimental observation of
the magnetic relaxation in these systems is usually per-
formed far below the mean blocking temperature of the
particle magnetization, which for dc magnetization mea-
surements is approximately I/25k') if the mean energy
barrier is taken as one. For these temperatures the width
of p (t,E) is much less than e l25, which is small as com-
pared to the total width of the energy distribution
(-2(r)

In order to verify all these assumptions we have calcu-
lated the decay of the magnetization for a small-particle
system with a logarithmic-linear distribution of energy
barriers (which is a more realistic distribution than the
normal one) by numerical integration of expression (1).
With the aim to obtain more general results, we will
define reduced variables as follows: a dimensionless mag-
nitude To as To=Eo/k~, where Eo is the energy corre-
sponding to the peak of the distribution, the reduced tem-
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FIG. 2. The scaling plot of the calculated data by numerical
integration of Eq. (1) with a logarithmic-linear distribution of
energy barriers of dimensionless width, o.=0.2. The reduced
temperatures T/To corresponding to each curve are as follows:
0.001, 0.005, 0.01, 0.02, 0.04, 0.1, 0.2, 0.3, 0.4, and 0.5. The
lowest reduced temperature corresponds to the highest curve.
In the inset, the reduced magnetization as a function of the re-
duced temperature for constant value of the scaling variable E,
is shown. Each curve corresponds to a different value of E„in-

dicated to the right of each curve. The log scale of the T/To
axis has been chosen for better observation of the behavior at
temperatures below the blocking temperature.
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FIG. 3. Same as Fig. 2 but for o.=0.5.

perature of the system as T/To, and the reduced time as
t /'rp The resu. lts of these calculations for three values of
the o. parameter of the logarithmic-linear distribution,
and reduced temperatures ranging from 0.001 to 0.5, are
shown in Figs. 2, 3, and 4. The insets of these figures
show the dependence of the magnetization for a constant
value of the scaling variable E, as a function of the re-
duced temperature. Clearly the scaling is valid in the
range of temperatures for which a constant behavior of
the magnetization is observed in the insets of Figs. 2, 3,
and 4. From these figures, the obvious fact can be
verified that the range of validity of the scaling increases
as the width of the distribution increases. It is important
to note, that in these figures, curves corresponding to

FIG. 4. Same as Fig. 2 but for cr =0.8.

temperatures much above the mean blocking tempera-
ture, which in reduced units is approximately 0.04, have
been included and that at temperatures below or around
the mean blocking temperature scaling is almost fulfilled
in the whole range of the scaling variable T/T0 1n(t!r0)
for the three widths of the studied energy distributions.

III. EXPERIMENTAL VERIFICATION OF THE
T ln(t /~o) SCALING

In order to verify the validity of the Tln(t/w0) scaling
law in real small-particle systems, the magnetic relaxa-
tion data obtained for three different samples were ana-
lyzed within the scope of the scaling hypothesis. The first
two samples are both ferroAuids of Fe304 small particles
dispersed in a hydrocarbon oil. The average particle di-
ameter ranges from 50 to 60 A. Although the degree of
dilution is not large enough to completely remove the in-
teraction among particles, it was estimated to be very
small. ' The third sample consists on FeC small particles
in stable dilution with a hydrocarbon oil that freezes at
19'C. The average diameter of these particles was mea-
sured to be 36 A. ' For this latter sample the results of
the experiments on the magnetic relaxation are published
elsewhere. The procedure to measure the relaxation of
the magnetization was the same for samples 1 and 3. It
consists on cooling down the sample from a temperature
above the blocking temperature, down to the measure-
ment temperature, that is always lower than the blocking
temperature, under an applied field of 10 Oe. Once the
temperature is stabilized, the field was switched off and
magnetization data versus time were recorded. The su-
perconducting quantum interference device magnetome-
ter used for this purpose was a commercial one with a
modified procedure of measurement which is described in
Ref. 24. Sample 2 was zero-field cooled from room tem-
perature down to the measurement temperature. After
stabilizing it, a field of 10 Oe was applied and the values
of the magnetization versus time were recorded. So, in
this latter case, it is not the magnetization decay vs time
that is measured, but the establishment of an equilibrium
magnetization value when a field is applied to a sample
with initial zero magnetization.
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According to the scaling hypothesis discussed in Sec.
II of this paper, for each sample, all the different curves
corresponding to different temperatures, would have to
scale onto one single master curve when plotted as a
function of the scaling variable Tin(tl~o). In order to
verify the validity of this model we try to scale the relaxa-
tion data of the referred samples. The procedure used for
this purpose consists on plotting the relaxation curves in
a M vs In(t) plot and trying to connect each of them con-
tinuously with the adjoining curves corresponding to the
nearest measured temperatures. To do that we shifted
the experimental curves in the T ln(t) axis by an amount
equal to T 1n(ro), where ro is a characteristic time which
governs the relaxation processes on an atomic scale. For
each sample, ~o is the same for all of the measured tem-
peratures and it was chosen to be the best in bringing all
the curves into one. These values are given in Table I.
The values obtained for samples 2 and 3 lie in the range
of expected values in small-particle systems. Moreover,
in the case of sample 2, ~o is within the error limits corre-
sponding to the value reported in Ref. 19, which was ob-
tained by other techniques. However, the value of ~o for
sample 1 is somewhat larger than the expected one. This
fact may be related to the lower degree of dilution of
sample 1 with respect to sample 3, which increases the
strength of the dipolar interactions among particles. In
any case, it is not clear how these interactions would
affect the atomic scale constant ~0 and how the relaxation
law would be modified.

Due to the inaccuracy in the determination of the ini-
tial value of the magnetization (for each temperature, the
value of M at t =0), it was also necessary to normalize
the experimental data dividing them by an arbitrary
reference magnetization value Mo.

In Figs. 5, 6, and 7 the results of this scaling for the
three samples are shown. One of the most interesting as-
pects of these results is that, in fact, measuring the relax-
ation at a given temperature is completely equivalent to
measure it at a different temperature but shifting the ob-
servation time window according to the law Tin(tlro)
In this sense, the method enables us to obtain the relaxa-
tion curve at a certain temperature, in a time range that
is not experimentally accessible, by simply dividing the
T ln(t /~0) axis by this temperature. For instance, in the
case of sample 3, we can obtain the relaxation curve at
the lowest measured temperature of 1.8 K at times as
large as 10" s, which is obviously an experimentally
inaccessible time. For sample 1, where the highest tem-
perature that we have measured was 37 K, we are observ-
ing the relaxation curve corresponding to 2 K at times as
large as 10' s.

1.0—

0 ' 5

0.0
0

I I

400
T ln (t./~, )

I

800

FIG. 5. The resulting scaling for a ferroAuid sample com-
posed of Fe304 small particles is shown. The figure shows the
reduced magnetization as a function of the scaling variable.
Open and full circles correspond alternatively to adjoining tem-
peratures, that are indicated above the corresponding interval.
The solid line is the theoretical curve calculated by using Eq. (1)
and the values of the fitting parameters indicated in Table I.

1.0

One way to test the validity of these scaling plots con-
sists in trying to reproduce the experimental curves
shown in Figs. 5, 6, and 7 by using a reasonable model for
the magnetic relaxation of these systems. As was done in
Sec. II, we can assume that the evolution toward equilib-
rium of a system consisting of an assembly of randomly
oriented particles is governed by the Arrhenius law with
a given distribution of energy barriers. The particular
mathematical form of this distribution is not very impor-
tant as far as it agrees with some reasonable conditions,
and usually a logarithmic-linear distribution is assumed.
Consequently we have fitted the experimental master
curves of Figs. 5, 6, and 7 to the theoretical one calculat-
ed from Eq. (1) at an intermediate temperature and using
a logarithmic-linear distribution of energy barriers. The
free parameters for the fitting were o. and To, which have
the same meaning as in Sec. II, and the obtained values
are summarized in Table I, while solid lines in Figs. 5, 6,
and 7 represent the corresponding theoretical curves. In

TABLE I. Values of the parameters obtained by fitting the

experimental scaled curves to Eq. (1) with a logarithmic-linear
distribution of energy barriers.

2
1.8

Sample

(4.7+5) X 10
(9.4+5) X 10
(3.5+5) X 10

0.85+0.05
1.02+0.05
0.44+0.05

245+50
627+80
287+50

0.0
0

I t I

i60
T ln (t/~, )

I

320

FIG-. 6. Same as Fig. 5 for the case of sample 2.
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realistic. This large value of o. can be justified taking into
account that, in this case, we are not measuring the decay
of the magnetization at zero magnetic field but the estab-
lishment of a new equilibrium when a field is applied after
zero-field cooling the sample. The presence of this
nonzero magnetic field, while relaxation data are record-
ed, modifies the shape of the energy-barrier distribution
in a complicated manner, decreasing the height of those
barriers that correspond to particles for which the easy
direction of magnetization forms an angle close to 45 de-
grees with the magnetic-field vector. If one tries to fit
this distorted distribution to a logarithmic-linear function
a larger value of the distribution width than the corre-
sponding particle size distribution value is obtained.

FIG. 7. Same as Fig. 5 for the FeC small-particle sample.

all the cases, reasonably good agreement is achieved and
the only significant departures between theoretical and
experimental data are observed for small values of the
scaling variable which for a given temperature corre-
sponds to short times. In our case, this small discrepancy
could indicate that the logarithmic-linear distribution is
not very realistic for the lowest energy barriers (which
are overcome at shortest times) and underestimates their
contribution to the total relaxation process of the system.
Recently, some authors ' have also suggested that
below a certain crossover temperature, nonthermal pro-
cesses (quantum tunneling) dominate the evolution of the
magnetization towards equilibrium in zero-dimensional
systems with high or moderate degree of anisotropy as is
the case of the small-particle systems studied in this pa-
per. The main effect of this quantum contribution is to
increase the rate of variation of the magnetization below
the crossover temperature, with respect to the thermal
value. This fact could explain the small discrepancies ob-
served for small values of the scaling variable, taking into
account that this interval of the master curve corre-
sponds to the relaxation curves measured at the lowest
temperatures.

Samples 1 and 3 were measured in the same way, with
no applied field while recording the data, so that what
one is measuring is the decay of the magnetization after
field cooling the sample and removing the field. So in
these two cases the existence of a distribution of energy
barriers is only due to the distribution of particle sizes,
which usually can be well approximated by a
logarithmic-linear distribution. As a consequence, the
fitting values for the parameter o. can be compared with
those obtained by other more direct granularimetric
methods. For instance, in the case of sample 3, o. was
also determined to be 0.45+0.03 from the distribution of
blocking temperatures, ' which is in very good agreement
with that deduced by the scaling procedure. From the
values of the anisotropy constant and the mean size of the
particles, reported in Ref. 19, one can evaluate the value
of the parameter To for the FeC particles to be 320+70
K, which also compares well with the corresponding
value reported in Table I. For sample 2, on the contrary,
we deduce a very large value of o. which may seem un-

IV. ON THE LOGARITHMIC APPROXIMATION

Iff (E) is nearly constant in the interval of energy bar-
riers which can be overcome during the observation time,
then Eq. (4) can be approximated by

M (t) = k~ Tf (E, )ln(t /ro),

ln
To

and to the end at

t2 E2
ln

k~T
(10)

Given that we have approximated p (E), in the range
[E*, ,Ez ], by a straight line (see Sec. II), we can estimate
the widths A, , =E, E', and A,2=Ez —E, ofp(t, E) to —be

X, =k~T; A,2=k' T(e —1) .

The logarithmic law will be only valid when the whole
p(t, E) curve is inside the region [E„E2]; i.e., in the
range of times

E +X, ] E,—X,(ln —(
k~T k~T

(12)

Then the logarithmic law is valid for the whole range of
times only in the case of an uniform and infinite distribu-
tion of energy barriers, ' which of course, is absolutely

which is the so-called logarithmic approximation.
For a better understanding of the limits of validity of

this logarithmic approximation, let us consider the simple
case of a fiat distribution of energy barriers: f (E)= I /rr
for E, ~E ~Ez with cr =E2 E, and —f (E)=0, other-
wise, and let us look more carefully at the function
p (t,E).

At least, for a uniform distribution of energy barriers,
the range of validity of the logarithmic decay of the mag-
netization, at a fixed temperature, is given by the instants
of time at which the function p(t, E) crosses the begin-
ning E, and end E2 of the distribution function of ener-
gies. At every instant of time t the center of p (t, E) is at
E,(t) =ks T ln(t/ro), and this means that it will arrive at
the beginning of the distribution E

&
at an instant of time
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nonphysical.
If the width of the energy distribution 0. is much larger

than that of p (t,E) 1, at a given temperature, the loga-
rithmic approximation is valid in a wide range of times.
In the opposite case, when A, ((o., the range of validity
can be very small (the logarithmic approximation could
be no longer valid), not only because p(t, E) does never
really lie completely inside the peak of the distribution,
but also because the approximation of p(E) by a straight
line is poor. It is worth noting at this point that, even in
the case of the uniform energy-barrier distribution, which
is the most favorable candidate for a logarithmic law, the
validity of the logarithmic approximation depends cru-
cially on the temperature of the system, and not only on
the width or the shape of the distribution.

For the case of a general distribution of energy bar-
riers, such as a logarithmic-linear or similar distributions
found in real systems, the logarithmic approximation is,
strictly speaking, nowhere valid, and it is possible to
choose other laws for M (t) (such as potential or stretched
exponential laws common in the literature, or even a sin-
gle exponential" ) that fit experimental data with equal or
similar success compared to the logarithmic law, which
assumes a uniform distribution of energies. The only re-
gion for which a logarithmic law is a reasonable approxi-
mation is the range of times corresponding to energy bar-
riers near the maximum of the distribution function, as
long as it can be considered uniform around this value.
So we can estimate the range of times for which logarith-
mic approximation will be approximately accomplished
simply substituting EI and E2 in Eq. (12) by the position
of the inAection points of the energy-barrier distribution.
For instance, in the case of a normal distribution these
positions are Ep —o. and Ep+o. , where o. is the standard
deviation of the distribution and Ep is the position of the
maximum. If a logarithmic-linear distribution is assumed
the inAection points are located at

E„E2=EDexp[ —1.5o. ++0.25o +o. j, (13)

where o. is the dimensionless width of the logarithmic-
linear distribution.

As an example, if we take the values of the parameters
o and TD obtained in the analysis of the FeC system (see
Table I), the region where logarithmic decay is a reason-
able approximation in the master curve, from Eqs. (13)
and (12), to be 140&in(tlr0) &340, which is in good
agreement with the data shown in Fig. 7. This last result
has very important experimental implications. If mag-
netic relaxation data are recorded at different tempera-
tures only in a few time decades (for example, from 10 to
10 s) many of the obtained curves may seem logarithmic,
due to the limited extension of the experimental time
window. In the case of the FeC particles almost all the
relaxation curves corresponding to the range of tempera-
tures between 1.8 and 18 K follow approximately linear
behavior when they are plotted altogether in a logarith-
mic scale of time, even though only those corresponding
to temperatures ranging between 6—10 K follow approxi-
mately true logarithmic decay in the experimental time

window, as can be demonstrated from the scaling plot
(Fig. 7). Of course, all of these considerations can be ap-
plied to the rest of samples studied in the preceding sec-
tion and, as far as we are concerned, to many of the re-
sults published in the literature. So, in conclusion, the
logarithmic decay is only an accurate approximation in a
time window whose extension is temperature dependent.
For a given sample the extension and position of this time
window can be estimated from the mean height of the en-
ergy barriers and the width of the energy distribution by
using Eq. (12). Attempting to fit experimental data to a
logarithmic law outside this region will clearly result in
fitting parameters that have no physical sense at all, as
has been previously remarked by other authors. "

V. CONCLUSIONS

The so-called Tin(tlra) scaling, previously used in
describing the magnetic relaxation in spin-glass systems,
has been applied in the case of systems composed of an
assembly of noninteracting or weakly interacting entities
characterized by the existence of an energy-barrier distri-
bution separating local minima. One of the most impor-
tant benefits of this method is that as a consequence of
the existence of the scaling variable E„measuring the
magnetization as a function of the temperature at a given
time is completely equivalent to measuring the magneti-
zation as a function of ln(t) at a given temperature.
Therefore, this method enables one to extrapolate the re-
laxation behavior of the system towards equilibrium at
times completely inaccessible from the experimental
point of view and also it gives the value of the attempt
frequency 1/7p and if a certain distribution of energy
barriers is assumed, the values of Tp and the width o. are
also obtained.

The validity of the logarithmic approximation has been
also discussed as a function of observation time window,
temperature, and the shape of the energy-barrier distribu-
tion. A phenomenological criterion has been proposed to
estimate the range in which the approximation is accu-
rate enough. In any case, the information obtained by us-
ing the logarithmic approximation is poorer than that ob-
tained from the scaling hypothesis because from the
former only the value of the distribution at E, can be
determined. Moreover, one must always bear in mind,
that the logarithmic law only characterizes the part of
the system with energy barriers lying in the experimental
time window and it is not characterizing the time-
dependent behavior of the whole system of relaxing enti-
ties. In this way, systems with very different distribution
functions but with similar shape around the values of the
energy barriers, which are relaxing at a given observation
time, may be characterized by the same parameters of the
relaxation function, despite the fact that the structure of
the barriers is very different, the only thing in common
between them being the behavior in the time window
where the logarithmic law is valid for every one of them.



10 246 A. LABARTA, O. IGLESIAS, Ll. BALCELLS, AND F. BADIA

M. Mezard, G. Parisi, and M. A. Virasoro, Spin-Glass Theory
and Beyond, Lecture Notes in Physics Vol. 9 {World
Scientific, Singapore, 1987).

~R. V. Chamberlin and F. Holtzberg, Phys. Rev. Lett. 67, 1606
(1991).

~C. W. Hagen and R. Griessen, Phys. Rev. Lett. 62, 2857 (1989).
4Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202

(1988).
~H. Pfeiffer, Phys. Status Solidi A 118, 295 (1990); 120, 233

(1990).
K. O' Grady, A. Bradbury, J. Popplewell, S. W. Charles, and R.

W. Chantrell, J. Magn. Magn. Mater. 49, 106 (1985);A. M. de
Witte, O' Grady, G. N. Coverdale, and R. W. Chantrell, ibid.
88, 183 (1990); M. El-Hilo, K. O' Grady, and R. W. Chantrell,
ibid. 109, L164 (1992};for a review see R. W. Chantrell, ibid.
95, 365 (1991).

~R. V. Chamberlin, J. Appl. Phys. 57, 3377 (1985); R. V.
Chamberlin, G. Mozurkewich, and R. Orbach, Phys. Rev.
Lett. 52, 867 (1984).

~J. L. van Hemmenn and A. Suto, Z. Phys. B 61, 263 (1985).
~R. M. Kloepper, B. Finkelstein, and D. P. Braunstein, IEEE

Trans. Magn. MAG-20, 757 (1984).
T. Nattermann and I. Vilfan, Phys. Rev. Lett. 64, 223 (1988).
A. Aharony, Phys. Rev. B 46, 5434 (1992).
J. J. Prejean and J. Souletie, J. Phys. (Paris) 41, 1335 (1980).
R. Omari, J. J. Prejean, and J. Souletie, J. Phys. (Paris) 45,
1809 (1984).

&4B. Castaign and J. Souletie, J. Phys. (France) I 1, 403 (1991).
~~B. Barbara and L. Gunther, J. Magn. Magn. Mater. (to be

published); L. Gunther (unpublished).

L. Neel, Ann. Geophys. 5, 99 (]949).
R. Street and J. C. Wooley, Proc. Phys. Soc. (London) Sect. A
62, 562 (1949).

~A. T. Cayless, S. R. Hoon, B.K. Tanner, R. W. Chantrell, and
M. Kilner, J. Magn. Magn. Mater. 30, 303 (1983);M. El-Hilo,
K. O' Grady, and R. W. Chantrell, ibid. 117, 21 (1992).
S. Linderoth, Ll. Balcells, A. Labarta, J. Tejada, P. V. Hendri-
chsen, and S. A. Sethi, J. Magn. Magn. Mater. 124, 269
(1993).
S. W. Charles and R. E. Rosensweig, J. Magn. Magn. Mater.
39, 190 (1983).
W. Lou, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig,
Phys. Rev. Lett. 67, 2721 (1991).
J. van Wontherghem, S. Morup, S. W. Charles, and J. Villad-
sen, Phys. Rev. Lett. 55, 410 (1985).
Ll. Balcells, J. L. Tholance, S. Linderoth, B. Barbara, and J.
Tejada, Z. Phys. B 89, 209 (1992).

~~A. Labarta, R. Rodriguez, Ll. Balcells, J. Tejada, X. Obra-
dors, and F. J. Berry, Phys. Rev. B 44, 691 (1991).
W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963); L. Bessais, L.
Ben Jaffen, and J. L. Dormann, Phys. Rev. B 45, 7805 (1992).
M. Uehara and B.Barbara, J. Phys. (Paris) 47, 235 (1986).

~X. X. Zhang, Ll. Balcells, J. M. Ruiz, O. Iglesias, and J. Teja-
da, Phys. Lett. A 163, 130 (1992); Ll. Balcells, X. X. Zhang,
F. Badia, J. M. Ruiz, C. Ferrate, and J. Tejada, J. Magn.
Magn. Mater. 109, L159 (1992).
E. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661
(1988).
P. Gaunt, Philos. Mag. 34, 775 (1976).


