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The fully frustrated triangular lattice of XY spins has nearest-neighbor antiferromagnetic interactions
and a locally ordered state with three spins per unit cell, at 120' to one another. Using mean-field theory
and a fluctuation analysis, we have studied three generalizations, as a function of a parameter g, each of
which reduces to the original model for g= 1. The investigation arose from an attempt to obtain, for the
fully frustrated triangular lattice of XY spins, the same type of generalization that was obtained by Berge
et al. for Villain's "odd" model of fully frustrated XY spins on the square lattice. The three generaliza-
tions are: the "row" model, which has a preferred direction and one spin per unit cell in its Hamiltoni-
an; the "centered honeycomb" model, which has three spins per unit cell in its Hamiltonian; and the
"staggered row" model, which has three spins per unit cell and a preferred direction in its Hamiltonian.
The "staggered row" model is the most complex of the three, with aspects of each of the other models
and an (g, T) phase diagram possessing five ordered phases and two tetracritical points. Its spiral (with
three spins per unit cell) SP3 and its antiferromagnetic (with six spins per unit cell) AF6 phases are much
like the spiral SP and antiferromagnetic AF phases of the row model; its ferrimagnetic (FI) and AF3
phases have the same symmetry as the corresponding phases of the "centered honeycomb" model, and
its noncollinear NC6 phase is related to the NC3 phase of the "centered honeycomb" model. Compar-
ison between the models enables us to distinguish those properties that are due to three spins per unit
cell from those due to the preferred direction. From the phase diagrams, we conclude that the "centered
honeycomb" lattice is the sought-after generalization. An analysis of the various transitions in all three
models is made, to identify Ising-like and XY-like transitions. For the "staggered row" model, a fluctua-
tion analysis that includes phase fluctuations but not amplitude fluctuations is also performed, yielding
insight into the nature of the ordered phases, and the significance of the two tetracritical points. Our
analysis of the phase diagram for the "centered honeycomb" model suggests that RbFeBr3 may, at low
enough temperatures, undergo a phase transition from a collinear to a canted state.

I. INTRODUCTION

Two-dimensional (2D) XY spin systems have recently
been the subject of a review devoted to the possibility of
their experimental realization. ' In some of the theoretical
models, competing interactions play an important role.
Such interactions lead to frustration and make spin
systems exhibit rich phase structure and critical phenom-
ena. The present work is devoted to the study of three re-
lated models of frustrated XY spin systems on a triangu-
lar lattice, with a view to understanding the nature of the
phases that appear and the reasons why certain models
yield commensurate states and others do not. Our results
were largely obtained using mean-field theory and a Auc-
tuation analysis. Because fluctuations in two dimensions
are well known to destroy long-range order in continuous
valued order parameters such as spin orientation, our in-
terest is restricted to the nature of the local order of the
phases and of the phase diagrams.

One of the earliest studied models of frustrated XY
spins in two dimensions is Villain's "odd" model of fully
frustrated XY spins on the square lattice. In this model
each plaquette has three ferromagnetic bonds and one an-
tiferromagnetic nearest-neighbor bond of equal strength.

Berge et al. generalized this model by replacing the anti-
ferromagnetic bonds —J with —gJ, where g=1 gives
the Villain model. Using Monte Carlo simulations, they
then obtained a rich (q, T//) phase diagram with a tetra-
critical point at g=1, T/J=0. 45. Reference 5 studied
this generalized Villain model by mean-field theory, ob-
taining a phase diagram similar to that of the Monte Car-
lo calculations and, because the mean-field theory
identified the local order of each state, provided a physi-
cal explanation for the divergences in the magnetic sus-
ceptibility found in Ref. 4.

For the triangular lattice, there is also a fully frustrated
XY model (which we shall refer to as the FFTR model).
In this case the model involves only nearest-neighbor an-
tiferromagnetic interactions. The FFTR model has been
the subject of much theoretical study. ' One of the
more interesting aspects of this model is the nature of the
phase diagram when a magnetic field is applied, where a
new phase, not anticipated in mean-field theory, appears.
(An analog, for the square lattice, which has similar
properties, involves up to third-neighbor interactions. "
We will not discuss this model further. ) One of the
motivations for the present work was to find analogs for
the FFTR model of the generalization of Berge et aI. for
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the fully frustrated XYmodel on the square lattice.
A number of real systems are related to the FFTR

model. For example, a large class of insulators with the
chemical formula ABX3 crystallize into a hexagonal lat-
tice. ' ' The nearest-neighbor interactions, due to su-
perexchange, are antiferromagnetic. Moreover, the dipo-
lar interactions tend to restrict the magnetic moments to
the ab plane. Thus, within the ab plane there is a tenden-
cy to form the 120' structure characteristic of the ground
state of the FFTR model, and the strong antiferro-
magnetic interplanar interaction causes this order to be
propagated along the c axis with planes of alternating
chirality. One example is CsMnBr3, which has been stud-
ied in Ref. 12. This work shows that at low temperatures
the nearest-neighbor Mn spins indeed are rotated by 120
with respect to one another, consistent with the ground
state of the FFTR model. Kawamura and others have
argued that materials with this structure have critical ex-
ponents that are characterized by a new universality
class. '

In another material, RbMnBr3, a helical spin ordering
with T&=8.8 K is found that is incommensurate with
the underlying triangular lattice. ' It has been argued
that this is due to a uniform distortion of the lattice'
that retains one spin per unit cell, but leads to exchange
bonds described by what we call the "row" model. ' The
130' turn angle corresponds to g =0.78 in the row model.

Another type of structure is found in the system
RbFeBr3. The dominant interactions in this system are
antiferromagnetic along the normal to the triangular
planes. In addition, at low temperatures it undergoes a
structural deformation (one-third of the atoms corre-
sponding to the triangular lattice leave the triangular
plane), giving it a lattice symmetry that, in the plane, cor-
responds to what we shall call the "centered honeycomb"
model. ' ' ' We will see that this model, with three
spins per unit cell, has a phase diagram in g-T space that
is most closely analogous, for the FFTR model, of the
generalization of Berge et al. for the fully frustrated XY
model on the square lattice. Note that the symmetry
found experimentally is compatible with either of two or-
dered states, and that the present work suggests that, at
lower temperatures, the RbFeBr3 system may undergo a
phase transition from a collinear to a canted state. Be-
cause of the strong antiferromagnetic interactions be-
tween the planes, no diverging magnetic susceptibility at
the transition and no net moment in the ordered state
would be observed.

In addition to these models, a third model which we
call the "staggered row" model, has been introduced and
studied. ' Like the centered honeycomb model, it has
three spins per unit cell, but it also has a preferred direc-
tion, one consequence of which is the possibility of spiral
states. Presently it appears to have no known experimen-
tal realizations, but it has properties that are related to
honeycomb model.

We now present the three models in more detail.

A. Row model

For the row model, ' ' all the horizontal bonds possess
a bond strength of —gJ instead of —J. The spin Hamil-
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FIG. 1. (a) Exchange bonds for the row model (the single
bonds are —J; the double bonds are —gP and the spiral phase
for g=2; (b) phase diagram for the row model, with the AF
phase defined in inset.

tonian, nevertheless, still has only one spin per unit cell.
There are two ordered phases. For g)0.5, the system
goes into a spiral phase SP with one spin per unit cell,
which for g=1 is commensurate with the periodicity of
the lattice. See Fig. 1(a), which also defines the bonds in
the system. For g(0.5, the system goes into an antifer-
romagnetic state AF with ferromagnetic rows whose
direction alternates as one moves vertically [see inset in
Fig. 1(b)]. The (g, T/J) phase diagram, including the
thermally disordered state P, is given in Fig. 1(b). Using
the "spiraling" algorithm, a collective Monte Carlo step
that was developed specifically to let the system choose
its own boundary conditions, this system has been studied
using the Monte Carlo method. The Monte Carlo
phase diagram is qualitatively similar to the mean-field
phase diagram.

B. Staggered row model: Commensurate and
three-spins-per-cell solution

For the "staggered row" model, only every third hor-
izontal bond is changed to a strength —qJ instead of —J,
thus leading to a Hamiltonian with three spins (A, B,C)
per unit cell. See Fig. 2. Assuming that the only relevant
states have three spins per cell, Parker, Saslow, and Ga-
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bay obtained the mean-field phase diagram for this sys-
tem. ' For zero external field, the (g, T/J) phase diagram
of Ref. 21, given in Fig. 3, is very similar to that of Ref.
5. In the AF3 state of Fig. 2(a) (the 3 because there are
three spins per unit cell, to distinguish it from the AF
state of the row model, which has two spins per unit cell),
spins 3 and B are opposed and spin C "melts. " (The
AF3 state was called the AF state in Ref. 21.) In the fer-
rimagnetic (FI) state of Fig. 2(b), spins A and B are oppo-
site to C, and the system has a net magnetization. There
is also a noncollinear state NC3, shown in Fig. 2(c),

2.0,

1.5

q
1.0

0.5

0.0

-0.5
0.0 0.5 1.0 20

FIG. 3. Phase diagram for the staggered row model, assum-
ing that the solutions are commensurate with three spins per
unit cell. The states are defined in Fig. 2.

which is not a minimum on expanding the space of solu-
tions to include incommensurate and six-spin —cell solu-
tions. (The NC3 state was called the NC state in Ref.
21.) It was originally thought that the staggered row
model was the sought-after analog for the FFTR model
of the generalization of Berge et al. for the fully frustrat-
ed XY model on the square lattice, because of the similar-
ity of its g-T phase diagram ' to those of Refs. 4 and 5.
As will be seen below, the actual phase diagram is not
that of Fig. 3, so that the staggered row model is not the
desired generalization.

C. Centered honeycomb model

(c)

For the centered honeycomb model, all the bonds
along the honeycomb are —gJ, and all the bonds from
the centers of the honeycombs are —J. The spin Hamil-
tonian has three spins per unit cell. See Fig. 4. The
mean-field theory for this system, assuming commensu-
rate solutions with three spins per unit cell, is analyzed in
Sec. VI, where it is shown to be closely related to the
mean-field theory of the commensurate three-spins-per-
unit-cell solution for the staggered row model. Thus the
NC3, AF3, and FI states of Fig. 2 occur, although the ex-
change bonds are different. The (q, T/J) phase diagram
for the centered honeycomb model is given in Fig. 5.

FIG. 2. Various phases obtained for the staggered row mod-
el, assuming that the solutions are commensurate with three
spins per unit cell. The exchange bonds are drawn on each of
these phases: (a) AF3 phase, (b) FI phase, (c) NC3 phase. The
light bonds are —J; the dark bonds are —gJ.

FIG. 4. Exchange bonds for the centered honeycomb model.
The light bonds are —J; the dark bonds are —qJ.
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Comparison of Fig. 5 to the phase diagrams given in
Refs. 4 and 5 reveals a great similarity and enables us to
conclude that the centered honeycomb model is the
desired generalization. Note that Ref. 17, which con-
sidered only T=O, also obtained the NC3 phase. Refer-
ence 19 is consistent with either the NC3 or AF3 phase.
However, since the phase diagram of Fig. 5 indicates
that, for g ) 1 on cooling, the collinear AF3 phase will be
attained first, it suggests that, on further cooling, the sys-
tem may undergo a phase transition to the canted NC3
state. Note that, because of the strong antiferromagnetic
interaction between planes, there will be no divergence in
the magnetic susceptibility at the transition, and no net
magnetic moment in the canted state.

FIG. 5. Phase diagram for centered honeycomb model. The
states are de6ned in Fig. 2. D. Staggered row model: Incommensurate

and six-spins-per-cell solution

li
Ply

FIG. 6. New phases occurring for the staggered row model
when incommensurate and six-spins-per-unit-cell solutions are
included: (a) SP3, (b) NC6, (c) AF6.

Mean-field phase diagrams are useful preliminaries to
Monte Carlo studies. They give the nature of the local
order and thus indicate which order parameters to com-
pute. As mentioned above, for the row model, the Monte
Carlo studies yielded no major changes in the (g, T/J)
phase diagram from that obtained by mean-field
theory. For the staggered row model, however, Monte
Carlo studies using fixed periodic boundary conditions
yielded a negative spin sti6'ness for g=0. 5 and low tem-
peratures, suggesting that the ground state of this system
is incompatible with periodic boundary conditions, and
hence that incommensurate phases may occur for it.
More careful study of the mean-field theory for the stag-
gered row model thus became necessary; it is given in the
body of the present paper. Our results are as follows.

At low temperatures, there are two ordered phases,
both of them not appearing in the commensurate three-
spins-per-unit-cell calculation. One is the incommensu-
rate spiral phase with three spins per unit cell (SP3),
given in Fig. 6(a) for g=2 and T/J=o. (Observe that
the SP3 phase of the staggered row model is similar to
the spiral phase of the row model. ) The other is a noncol-
linear commensurate (NC6) phase with six spins per unit
cell, given in Fig. 6(b) for r) =2 and zero temperature. In
the SP3 phase, the system is incommensurate with the
lattice in the horizontal direction, but is periodic in the
vertical direction. The phase transition between these
two phases occurs only as g crosses the value 0 and is
first order. At higher temperature, the SP3 phase goes
continuously into either the AF phase or the FI phase
found in Ref. 21, and the NC6 phase goes continuously
into either the FI phase or another antiferromagnetic
state (AF6), with six spins per unit cell, given in Fig. 6(c)
for q(0 and T/J=O. (Observe that the AF6 phase of
the staggered row model is similar to the AF phase of the
row model. ) The (g, T/J) phase diagram is given in Fig.
7. The staggered row model is much like a combination
of the row model and the centered honeycomb model:
The spiral and AF phases of the row model become SP3
and AF6 in the staggered row model, and the FI and
AF3 phases of the centered honeycomb model become FI
and AF3 in the staggered row model. Only the NC3
phase of the centered honeycomb model does not persist
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FIG. 7. Phase diagram for the staggered row model when in-
commensurate and six-spins-per-unit-cell solutions are included.

into the staggered row model, which nevertheless
possesses the related NC6 phase.

E. Outline

A brief outline of this paper is as follows. In Sec. II,
the ground state of the staggered row model is studied,
and we compare the results with those for the row model.
The mean-field equations are obtained in Sec. III. In Sec.
IV, the solutions to the mean-field equations are obtained,
and the (g, T/J) phase diagram is given. There are five
ordered phases and seven phase transition lines. In Sec.
V, we study the phase-fluctuations of this system at a rel-
atively high temperature, finding the same three transi-
tions to the paramagnetic state as found in the previous
section and finding, at the two tetracritical points, degen-
eracies that enable each of the two zero-temperature
phases to be realized. In Sec. VI the centered honeycomb
model is shown to be simply related to our previously ob-
tained solution to the staggered row model for commens-
urate, three-spins-per-unit-cell solutions. Note that the
centered honeycomb model, unlike the staggered row
model, does not have a preferred direction and does not
have a preferred wave vector and the complications asso-
ciated with spiral phases. A summary is given in Sec.
VII.

—2m/3 rotations as one moves about an elementary pla-
quette. This is known as the chirality of the system.

In the staggered row model, one-third of the horizontal
bonds are different from the rest of the bonds, as shown
in Fig. 2. Spin C has six —J bonds, and spins A and 8
have five —J bonds and one —gJ bond; so the Hamil-
tonian has three spins per unit cell. If g & 0, all the bonds
of the model are antiferromagnetic but with different
strength. If g(0, one-ninth of the bonds are ferromag-
netic, and the rest are antiferromagnetic.

The ground state of the staggered row model should
coincide with that of the FFTR model for g=1. For
g &0 the ground state is an incommensurate spiral SP3
(Sec. II A), and for ri (0 the solution is a commensurate
noncollinear state with six spins per unit cell NC6 (Sec.
II B). Section II C discusses a numerical search for other
solutions. g )0 and g & 0 are treated separately.

A. g )0: Spiral with three spins per cell (SP3)

As indicated in Sec. II C, for g & 0 the system goes into
a spiral state with a basis of three spins, given in Fig. 6(a).
Thus we search for a spiral solution, where the energy of
the system is given in Eq. (2.1).

We take spin i to have a clockwise orientation angle
with respect to x of

8, =8, +b,„(x r, )+b, (y r, ), (2.2)

where x, y are the unit vectors in the x and y directions,
and 5,5 are quantities to be determined by minimizing
the energy. Here, I denotes the sublattice (3, B, or C),
and A„and 5 have the physical meaning of the phase
shift per site along the x and y directions. Introducing
the variables

80= —,'(ea —8~ » U =ec —
—,'(8~+ex»

3
(2.3)

r =cos
V

s =cosU

the energy per unit cell e takes the form

e/J=ilcos(280+6, )+2rcos(2eo —b,„/2)

+2s[cos(eo —6„)+2rcos(80+6,, /2)] . (2.4)

This is minimized by the requirements that
II. GROUND STATE

OF THE STAGGERED ROW MODEL a~/ae„=aE/ae, =a~/ae, =a~/as =0 . (2.5)

The energy of an XY model with nearest-neighbor in-
teractions is given by

E= —g J;,cos(e; —ej),
(ij)

(2.1)

where the sum is over the nearest-neighbor pairs. For the
FFTR model, all the bonds J;. equal —J, and the Hamil-
tonian has only one spin per unit cell. In the FFTR mod-
el ground state, each spin makes an angle of 2~/3 (or—2m. /3) with respect to its nearest neighbors. In addi-
tion to the degeneracy with respect to overall spin space
rotations, this ground state of the FFTR model has a
discrete twofold degeneracy, corresponding to 2m/3 or

r sin 280 ——+s sin(eo —b. ) =0, (2.6)

rl sin(280+6, )+2rs sin eo+ —+r sin 2eo ——=0 .

(2.7)

Clearly, Eq. (2.4) is extremized by r and s each taking
on the values 1 and —1, thus leading us to consider four
subcases. For given values of r and s, the energy minimi-
zation conditions for 80 and b,, (henceforth called b.),
when combined, lead to
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Detailed study shows that there are four inequivalent
solutions to these equations for a given set of values for
(r, s). With four sets of values for (r, s), that would lead to
a total of 16 solutions. However, numerical computation
shows that the same four solutions are obtained for all
four sets of (r, s) by changing the domain of values for b, .
For simplicity, we thus consider only the solutions for
r =s = 1, so that 6 = U =0. Note that U =0 implies that

OQ OQ+ v Oc Og OQ v Og Oc e

In this case, the appropriate solution to Eq. (2.6) is

0 = +-2m

3 2

This leads to

2sin(2~/3+ 6 )+sin(4m /3+ b, /2)
sin(4m. /3+ 2b, )

(2.8)

(2.9)

(2.10)

OC-

Equation (2.10) is periodic in b„with period 4n, and is.
symmetric under the transformation b, ~(2'�/3—b, ).
With Eq. (2.9) and r =s =1, the energy per unit cell of
Eq. (2.4) becomes

3.

FIG. 8. b, vs g at T=O for the staggered row model.

4w 2~e/J =eicos +2b, +4cos
3 3 2

+4cos +62m.

3
(2.11)

OQ=~, 6=0 (2.12)

where —m. /6 & b, & m. /3. For 6 =0, the solution given by
Eq. (2.10) gives the FFTR model result that r)=1 and
8~ —8C =2m/3. By continuity, we expect this to be the
correct solution in the vicinity of g= l. [Note that, for
q=0, Eq. (2.10) implies that cos(m/3+9, /4)=1/4, so
that Eq. (2.11) then yields e/J= —4.5, a result that will
be employed in the next section. ] Values of b, outside the
domain ( ~/6, vr/3) yiel—d either a repeating branch of
the above solution or two branches of the other three
solutions, whose energies are higher, for all values of g.
(The highest-energy solution occurs only for g& —3/4;
the second highest-energy solution occurs only for
g & —5/4; the third highest-energy solution occurs only
for g )go, where go=2. 2356.) From Eq. (2.10) it follows
that as g~+ ~, 6—+ —m/6, and in each cell spins 3
and B point in opposite directions. The relation between
g and 6 is shown in Fig. 8. For g&0 the phase shift is
given as zero. Here the system is in the commensurate
NC6 state (5=0), which occurs by a first-order transi-
tion.

For finite temperature, the "lengths" of the spins on
each sublattice change with temperature, as does A. If
the temperature is high enough, the spiral, or helical,
states disappear. We discuss this in the next section.

There are several other, higher-energy, solutions of
Eqs. (2.6) and (2.7), such as

The energy per unit cell for each of these states is
e/J= —4+q. Equation (2.12) describes the FI state, and
Eq. (2.13) describes the AF3 state. These phases appear
at finite temperature. As g —+ —~, the energy difference
between these states and the ground state goes to zero.

If one takes the approach of requiring each spin to
point along the direction of its local field and takes
Laky U =0, the symmetry of the solution guarantees both
that spin C points along its local field and that the condi-
tion for spin B then reduces to that for spin A. It is still
necessary to minimize the energy with respect to the
pitch h.

B. q (0: Commensurate noncollinear state
with six spins per cell (NC6)

As indicated in Sec. II C, for g &0 the system goes into
the commensurate noncollinear state with six spins per
unit cell (NC6) given in Fig. 6(b). For g &0 there is a fer-
romagnetic interaction between spins A and B in the x
direction, which causes spins 3 and 8 to tip together. (If
one considers A and B to act as a single spin, the triangu-
lar lattice reduces to a square lattice with two different
kinds of spins, four spins per unit cell, and a commensu-
rate ground state. )

Let the spins in the odd rows make an angle of OI with
the horizontal axis and the spins in the even rows make
an angle of —

0&, where l may be 3, B, or C. We take
0'~ =0~. Note that O~ is defined counterclockwise with
respect to x, whereas Oc is defined clockwise with respect
to —x. See Fig. 6(b). Either by minimizing the energy or
by requiring that spins B and C point along their local
fields (the condition for 3 is the same as for 8), we obtain

0 2&
Q

2&
3

'
3

(2.13)

sin(8C —8~ ) —2sin(8~ +8C ) —sin(28& ) =0,
sin(8~ —8c ) —2sin(8~+8C) =0 .

Their solution is

(2.14)

(2.15)
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tan8~ = +Q —,',
tan9C =+Q —,', ,

(2.16)

(2.17)

where S;= ~ (S; ) ~
is the "length" of the ith spin, and H;

is the strength of local field at site i The function R (u)
is

with energy per cell

e/J= —4.5+3' . (2.18)

e""' cosO d 0
R(u) =

Q COSOd g

Ii(u)
Io(u)

(3.7)

These solutions are independent of g, and the energy is
a linear function of g. This is because, for g (0, spins 3
and 8 couple together and the spin configuration is decid-
ed by the —Jbonds.

For g=0, the NC6 state has the same energy as the
SP3 state, but a totally different spin configuration.
Thus, if g changes from positive to negative, the system
undergoes a first-order transition.

C. Search for other solutions

III. MEAN-FIELD EQUATIONS FOR FINITE
TEMPERATURE

The partition function is given by

Z = f g (d 8; )exp[ PH(S; )], —
I

(3.1)

where P= T ', and we employ units in which the
Boltzmann constant kz = 1. The free energy is

Because this spin system proved to be rather complex,
to confirm the analytical results we also studied this sys-
tem by purely numerical methods. Assuming that the
ground state is a type of six-spin incommensurate spiral
state, we set six spins per unit cell and varied the bound-
ary condition by adding a phase shift A. For 12, 24, and
36 spins per unit cell, we found that when g) 0 the three
spin spiral state SP3 has the lowest energy and when

g (0 the commensurate noncollinear six-spin state NC6
has the lowest energy.

Note that other methods to find the ground state of
complex systems have also also been employed. We
employ a related method in Sec. V.

The ground state for g) 0 is the incommensurate
spiral state SP3. Near zero temperature, the system
remains in the spiral state. Let S; and 0; be the length
and orientation of the spin at site i'. As for the ground
state, we choose L9; as

8 =9,+h(x r, ) . (3.8)

where I may be one of 3, 8, Cand b is to be determined
by minimizing the free energy. In this case, spins on the
same sublattice have the same lengths but point in
different directions, and spins on different sublattices
have different lengths. Each spin has the same direction
as the local field H;. We rewrite the free energy as

T

F= E ——g—ln f exp(PH;cos8; )d 9;, (3.9)
/3

where E, the average energy of the system, is given by

E= ——gH (S ) = —g J,. S,S cos(8; —9 ) . (3.10)
1

I () "''
Minimizing the free energy with respect to 5, we obtain

aF aE
a~

=
a~ ~ a~

I

(3.11)

which leads to

where I„(u) is a modified Bessel function of order n

R ( u ) has the properties that R ( u )—+ 1 as u —+ ao, and
R (u) ~u /2 as u ~0. As for the ground states, the cases
g )0 and g & 0 are studied separately.

A. Mean-field equations for g & 0

1F= ——171Z . (3.2)
aH, aH, aH,

S~ +S~ +Sc =0 . (3.12)

Using the mean-field approximation

s, s, &s, ) s, +s, .&s, ) —(s, ) &s, ),
the free energy F is given by

(3.3)

T

F= —g J;~(S;) (S;)——gin f d9, exp(PH;. S;)

In the present case the symmetry between sublattices
3 and 8 can be used to simplify the problem. We take
S„=Ski=B and Sc=C, and U =0 in Eq. (2.3); so use of
Eq. (2.8) gives 9~ —8C =8c —9~ =80. The mean-field
equations then become

(3.4)

B sin 290——+C sin(80 —b, ) =0,
2

(3.13)

where the local field is written as

H;=g J;.(S ),
(j)

(3.5)

7)B sin(280+5)+2C sin 80+—+B sin 280 ——=0,

(3.14)

and the summation (j ) is over the nearest neighbors of
site i Minimizing . the free energy requires that (S;)
have the same direction as the local field H; and

where Eq. (3.13) arises from Eq. (3.12), and Eq. (3.14)
arises from the condition that spin B point along its local
field. Moreover, by Eq. (3.6)

S; =R(13H; }, (3.6} B=R (PHD }, C =R (PHc ), (3.15)
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Hc/J= i2B cos(8~ —5)+4B cos(8D+5/2)i, (3.17)

Near zero temperature, where P—+ ~, R (PH, ) = 1, and
Eqs. (3.13) and (3.14) reduce Eqs. (2.6) and (2.7) for the
ground state when r =s =1.

B. Mean-field equations for g (0
The ground state for q(0 is the commensurate non-

collinear six-spin state NC6. Near zero temperature, the
system will remain in this state. As in the case of the
ground state, we let spins in one row have angles of O,

'.

and spins in adjacent rows have angles of —
O,', where t

may be 3, B, or C, and we set O~ =O~. As in Sec. II B,
O~ is defined counterclockwise with respect to x, and O&

is defined clockwise with respect to —x. Again, see Fig.
6(b).

Requiring each spin to point along its local field H, ,
the equations for B and C are

C sin(8c —8& ) —2C sin(8ii +8c )
—B sin(28ii ) =0,

(3.18)

sin(8ii —8c )
—2 sin(8ii+8C ) =0 . (3.19)

At zero temperature, B=C = 1, and the above equations
reduce to Eqs. (2.14) and (2.15) for the ground state.
Note that (3.19) is the same as (2.15). Away from zero
temperature, the spin lengths and the spin angles Oz and
8c depend on both il and temperature. Equations (3.18)
and (3.19) can be rewritten as

B sinO& =2C sinO&, (3.20)

tanO& = —3 tanO& . (3.21)

Moreover, by Eq. (3.6),

B =R(pHIi), C R(p=HC), (3.22)

where the local fields Hii and Hc obtained from Eq. (3.5)
are given by

H~ /J =
i Br/+ C cos( 8~ +8c ) + 2—C cos( 8ii —8C )

2B cos(28ii) ~, —

Hc/J= i4B cos(8&+ 8ii )+2B cos(8C —8& )i .

(3.23)

(3.24)

Note that Eq. (3.21) is valid at all temperatures. From
Eqs. (3.13)—(3.17) and Eqs. (3.20) —(3.24), a rich phase di-
agram is obtained, as discussed in the next section.

where the local fields Hli and Hc obtained from Eq. (3.5)
are given by

Hz /J =
i C cos(8&—b, )+2C cos(8&+ b, /2)

+2B cos(28~ —b, /2)+ilB cos(28D+b, )
~

.

(3.16)

IV. PHASE DIAGRAM
FOR THE STAGGERED ROW MODEL

A. g &0: SP3 phase and the SP3-AF3, SP3-FI transitions

For g & 1, the bond —gJ tends to orient 3 and B op-
positely, and gives them mean fields larger than for spin
C. As the temperature is increased, the mean field seen
by spin C is overwhelmed by the thermal energy, and
thus spin C "melts, " and so C —+0. At the same time, 3
and B becomes completely opposed to one another, and
so 8~ ~sr/2, and the system leaves the spiral state, and
so 6~0. The system then enters the antiferromagnetic
state AF3, in which spins 3 and B are opposed.

We now obtain the phase transition line between SP3
and AF3. From the above discussion, near this transition

I C, 6,8' =8~ —m. /2] are small. Only the first-order terms
of Eqs. (3.13)—(3.17) are important. They are

—B 2O' ——+C=O,
2

(4.1)

—i)B(28'+ b, )+2C B28—' ——=0,
2

(4.2)

B=R (/3H~ ), C =R (PHc ) =PHc /2,
H /i' =(2+ ))iB, Hc/J =6B8' .

(4.3)

(4.4)

T, /J = 1+ (SP3-AF3 line),1

2n
(4.5)

where, for g=1, T, /J=1. 5, and as g —++ ~, T,~1.
Expanding Eqs. (3.13)—(3.17) to higher order, one can
show that 6 ~ QT, —T near the SP3-AF3 transition
line.

Numerical results, based on Eqs. (3.13)—(3.17), are
shown in Fig. 9, for r/=2. In Fig. 9(a), the relation be-
tween 6 and temperature is given. 6 is negative for the
special spin configuration we choose. In Fig. 9(b), the re-
lation between O~ and temperature is given. As
T~ T„8r,~m/2, as expected. .

For 0(q(1, the bond —gJ repelling spins 3 and B is
weak. Because of the stronger repulsion of spin C, there
is an effective attraction between spins A and B in the
same cell, and so they tend to tip together and form a
spin pair. In this case, the weakest mean field in the
problem is the transverse component of the fields on spins
2 and B. As the temperature is increased, the thermal
energy overwhelms this mean field, and the system enters
a collinear state where spins 2 and B have equal lengths
and are opposed to spin C. Following Ref. 21, we denote
this state, with a net magnetic moment, as FI.

To obtain the transition line between SP3 and FI, we
note that to get the FI state from the SP3 state, we may
take b, ~0 and 8a~ir in Eqs. (3.13)—(3.17). Then Eqs.
(3.13) and (3.14) combine to yield an equation that holds
only along the SP3-FI line:

The transition line is found by solving four of the above
equations [only the last half of Eqs. (4.3) and (4.4) are
needed], leading to
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In addition, Eqs. (3.13)—(3.17) combine to yield

B=R [3/3JC (2—+ri)PJB] (FI phase),

C =R (6PJB ) (FI phase),

(4.7)

(4.8)

which hold throughout the FI phase. The SP3 to FI
phase transition line must be obtained numerically from
the above three equations. If g=l, then C/B=2 and
T, /J=1. 5, consistent with the FFTR model. Note that
the SP3-AF3 and AF3-FI lines come together at
q= 1, T, /J=1. 5. For r1=0.5 the relation between the
phase shift b, and temperature is given in Fig. 10(a),

—=—(g+ 3/2)+ —'(/(g+ 3/2) —4q (SP3-FI line) .C 1 1 2

B 2 2

(4.6)

where 6 is positive. Near the transition line,
b, ~+T, —T, and so 6~0, as expected. The phase
transition from SP3 to FI is of second order. For g=O. 5
the relation between the angle Oo and temperature is
given in Fig. 10(b). Near the transition line go~n, as ex-
pected.

B. g )0: AF3 phase and the AF3-P transition

In the AF3 phase, spin C melts, spins 3 and B have
equal length and they are in opposite directions, as shown
in Fig. 2(a), and, so the system has an antiferromagnetic
ordering. With C =0, b, =0, and 8o = a /2, Eq. (2.4)
yields

Hz=(2+r))B, B=R(PH~) (AF3 phase) . (4.9)

OC 0.3

g=0.50

0.2'

0.1 ~

g=2.00

0.0 0.3 0.6 O.Q
0.0

0.0 0.3 0.8 0.9

3.5

g=2.00
3.2»

= 0.50

2.9

1.7»

2.5

2.3

1.50.0 o.h 0.9 0.02.0 0.3 o.e 0.9

FIG. 9. (a) 6 vs T, (b) Ho vs T. FIG. 10. (a) 5 vs T, (b) Oo vs T.
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From the AF3 state, if the temperature goes still higher,
the spins on all sites will melt. Near the transition line of
AF3 to P, B is small, and so

B =R (PH~ )~PHD /2 (AF3-P line) . (4.10)

From Eqs. (4.9) and (4.10) the AF3 Ptr-ansition line is
given by

T, /J = 1+ (AF3-P line) . (4. 1 1)

For ii=1, T, /J=1. 5. Thus the AF3 Plin-e meets the
SP3-AF3 and SP3-FI lines at g=1, T, /J=1. 5. For
g~ ~, T, ~ g/2. This phase transition is second order.

M= —y(S, ) =1 (2B —C)
3

(4.12)

Approaching the FI-P transition temperature from
below, the spin lengths approach zero, and so Eq. (3.5)
yields

B=R (P,Hii )~P,H~ /2, C =R (P,HC )~P,HC /2 .

(4.13)

With Eq. (4.13), Eqs. (4.7) and (4.8) yield

T, /J= —,'[+(2+g) +72 —(2+q)] (FI Pline) . (-4. 14)

T, /J= l. 5 if g=1, as expected. Thus the FI-P line meets
the SP3-FI and AF3-P lines at g=1, T, /J=1. 5. The
phase transition between the FI state and paramagnetic
state is of second order. Note that (4.14) also holds for
g&0, and that T, /J=2 for g= —1.5.

D. g & 0: NC6 phase and the NC6-FI, NC6-AF6 transitions

The six-spin noncollinear state NC6 is a commensurate
state, described by Eqs. (3.20) —(3.24). In this state, spins
A and B are always coupled together, and the system has
a net magnetization

2B cosO~ —C cosO&

3
(4.15)

Using Eqs. (3.20) and (3.21), we have

B cosOg

6
(4.16)

Because the spin configurations of the NC6 and SP3
phases do not go into one another continuously, the
NC6-SP3 phase transition is first order. Using Eq. (3.9),
the free energy has been evaluated numerically. For
g) 0, the SP3 state has the lower free energy; for g &0,
the NC6 state has the lower free energy. Despite its
first-order character (in the sense of a change in symme-

C. FI phase and the FI-P transition

In the FI state, spins A and B are in the same direc-
tion, and point oppositely to C. The system is described
by Eqs. (4.7) and (4.8). The system has a net magnetiza-
tion

try), there seems to be no hysteresis. See Fig. 7 for the
phase transition line.

In the NC6 state, two kinds of interaction compete
with one other. One is between the nearest spin pair AB,
and the other is between the pair AB and its neighbor,
spin C.

For 0)g) —1.5, the local field of spin C is much
stronger than that of spin A and spin B. In that case the
interaction between spin C and the nearest AB pairs
dominates, and the AB pairs point opposite to spin C.
The system thus goes from the NC state to the FI state.
Near the phase transition from the NC6 state to the FI
state, 8~ ~0 and Hc —+ m in Eqs. (3.20) —(3.24). The
NC6-FI phase transition line is found by solving Eqs.
(4.7) and (4.8) for the FI state, along with the condition
that

3B =2C (NC6-FI line), (4.17)

which follows from Eqs. (3.20) and (3.21). The NC6-FI
line is shown in Fig. 7. This phase transition is of second
order. Note that letting B,C —+0 gives a solution for
rI= —1.5, T, /J=2.

For g« —1, due to the strong bond —gJ, the local
field of spin A and spin B is much stronger than that of
spin C, and so the length of spin A and spin B is greater
than that of spin C, and the AB pair interaction dom-
inates. As the temperature increases, the system enters
the AF6 state, where nearest spin pairs point in the oppo-
site direction. This spin configuration is given in Fig.
6(c), where all the spins in each row point in one direc-
tion and all the spins in the next row point in the oppo-
site direction. Near the phase transition from the NC6
state to the AF6 state, 0~ —+m. /2, 0&~~/2, and so by Eq.
(3.20),

B~2C (NC6-AF6 line) . (4.18)

C R(P=H&) =R (2PJB ) (AF6 phase), (4.20)

which follow from Eqs. (3.22) and (3.24), and hold
throughout the AF6 phase. The NC6-AF6 line is shown
in Fig. 7. This phase transition is of second order.
Note that letting B,C~0 gives a solution for
g = —1.5, T, / J=2.

E. g (0: AF6 phase and the AF6-P transition

In the AF6 state, spins in the same row have the same
direction, and each unit cell has six spins. At higher tem-
peratures, the AF6 state is not stable, and the system
enters the paramagnetic (P) state. This phase transition is
of second order. By the previous subsection, the AF6
state is described by Eqs. (4.19) and (4.20). As the sys-
tem enters the P state, B,C~O, and so with R(x) =x/2
for small x, Eqs. (4.19) and (4.20) give the AF6 Pphase-
transition line as

The NC6-AF6 phase transition line is found by employ-
ing Eq. (4.18) in solving

B =R (PH& ) =R IPJ[C+(2 r))B]] (A—F6 phase),

(4.19)
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T, /J= —,'[(2—g)+'t/(2 —q) +8] (AF6 P-line) .

(4.21)

For g= —1.5, this gives T, /J =2. As a consequence, the
AF6-P and FI-P lines meet at this point. This is a tetra-
critical point because, from our earlier discussion, the
NC6 phase also meets at this point.

Note that, as rI~ —~, T, /J ~—q/2.

V. FLUCTUATION ANALYSIS
AT FINITE TEMPERATURE

It is well known that fluctuations play an important
role in two dimensions. In particular, they tend to siz-
ably depress the value of the critical temperature deduced
from mean-field theory. This feature allows, in addition
to the treatment given above, an approximate treatment
known as the phase-only approach: The amplitude of the
order parameter is fixed, and only fIuctuations of the
phase about the mean-field solution are taken into ac-
count. The starting point of this procedure consists in
identifying the critical modes in the (q, T/J) phase dia-
gram. For ri&1, the periodicity in the horizontal direc-
tion is changed, making the unit cell 3 times as large, re-
sulting in a new Brillouin zone that is one-third as large.
Both old and new Brillooin zones are shown in Fig. 11.
It defines the manifold of wave vectors q used to con-
struct a Landau-Ginzburg-Wilson expansion derived
from the Hamiltonian [Eq. (2.1)]. Following a standard
procedure (Refs. 21 and 29), one can show that, near cri-
ticality, the functional free energy F, which includes a
factor P so that it is dimensionless, is given in terms of
the exchange matrix d and the critical mode fluctuations
%by

FIT I =Fo+ —gV [[Pa~ ]
' —(1/2) 1].%*+0(% )

2

(5.1)

where

(@A qpB AC)
q q~ q~ q

(5.2)

and 4 is a two-dimensional vector in spin space, propor-
tional to S„"(q)+iS (q). Here, 8q is the q space repre-
sentation of the exchange matrix coupling these sublat-
tices, explicitly given by

0 a b*

8q= —J a* 0 b

b b* 0
(5.3)

with

a =rI exp(iq, )+2exp( iq„ —/2)c os(q~&3 /2), (5.4)

b =exp(iq, )+2exp( iq —/2)cos(q~v'3/2) .

The critical lines T, (rl) separating the paramagnetic
state from the ordered phases are obtained by demanding
that the largest eigenvalue of Ipaq]

' —(1/2). 1 equal
zero. In addition to yielding T„this approach also deter-
mines the real-space configuration of the system, by
Fourier transform.

As we show below, two situations are encountered: Ei-
ther the critical modes lead to configurations with equal
spin amplitudes on the three sublattices and the solutions
are acceptable at all temperature (this occurs only for
g = 1 and g = —1.5), or the amplitudes are unequal,
which implies additional transitions at lower tempera-
tures, since the ground state must have equal amplitudes
on all sites. This is indeed the case, as seen from Fig. 7
and Ref. 21.

There are three regimes: g ) 1, —1.5 & g & 1, and
g & —1.5. We analyze each of these cases, and then con-
sider the special points q = 1 and g = —1.5.

A. q ) 1 (AF3-P transition)

For q) 1, the largest eigenvalue of P,J,„(q), occurs
at q=0, with

T, =J,„(0)/2=(1+rI/2)J . (5.6)

This corresponds to Eq. (4.11), which describes the AF3-
P phase transition. The corresponding eigenvector, from
Eq. (5.2), is V, =(—1, 1,0), which indeed corresponds to
AF3 order. The critical mode is given in real space by

= —2 expiO, 'tII = 2 expiO, + =0, (5.7)

FIG. 11. Brillouin zones for the row model (larger hexagon)
and for the staggered row model (smaller hexagon). The points
o, and A have coordinates (4~/3, 0) and (2m/3, 0), respectively,
where the nearest-neighbor distance has been set to unity.

where 0 refIects the overall rotational invariance.
Because ~% ~W~%"

~

=~% ~, this solution cannot de-
scribe the ground state at T=O, where all the spins must
take the same (unit) length.

B. —1.5(g(1 (FI-P transition)

Once again J,„(q) occurs at q=0, with
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(2+g) +72 —(2+g)
c max 4

(5.8)

As in the previous case, this solution cannot represent the
T=O configuration of the system.

C. g & —1.5 (AF6-P transition)

In this case, J,„(q) occurs at q=qo=(2~/3, 0) (see
Fig. 11), with

T, =—,
' [(2—g)+ V(2 —g) +8]J . (5.10)

This is the same as Eq. (4.21), which describes the AF6 P-
transition. The corresponding eigenvector, from Eq.
(5.2), is V, =( l, exp i 2m. /—3, y'expi2m. /3), with
y' =

—,
' [+(2—q ) + 8 —(2—q) ]. Once again, this solution

cannot represent the T=O configuration of the system.
From the standpoint of critical fluctuations, the above

three cases, each involving only a single wave vector, are
all in the same universality class as the ferromagnetic XF
mode in 2D. There is only a single wave vector in the
last case because qo and —

qo are equivalent in the new
Brillouin zone (2qo is one of the reciprocal-lattice vectors
of the new Brillouin zone) and because the "star" of wave
vectors equivalent to qo only contains qo for q&1 (rota-
tional invariance has been broken). See Fig. 11.

D. Special point g=1

In this case, the eigenvectors V, =( —1, 1,0) and
Vz=( —1, —1,2) become degenerate, with common ei-
genvalue J,„=3J, and so T, =J,„/2=1.5J. Thus we

may construct the linear combination

. 2w 1 . 2m 1 . 2m
expi +—exp —i V, + —exp —i V2

3 2 3 ' 2 3

2K 2&
l, expi, exp —i (5.11)

leading to

2m= A expiH, 4 = 3 exp& 0+
3

=A expi 0—C

3

(5.12)

This form has equal amplitude for each spin and thus,
with the amplitude growing from zero to unity as one
moves from the tetracritical point to T=O, one has a
solution acceptable even at T=O. Indeed, it is precisely
the spiral solution SP3 of our previous analysis.

This is the same as Eq. (4.15), which describes
the FI-P phase transition. The corresponding eigen-
vector, from Eq. (5.2), is V2=( —1, —l, y), with

y =
—,
' [+(2+g ) +72+ (2+g ) ], and the critical mode is

given in real space by

= —3 expi8, O' = —A expiO, %' =yA expio .

(5.9)

E. Special point g= —1.5

In this case, the eigenvectors V2 and V3, which corre-
spond to different wave vectors, become degenerate, with
common eigenvalue J,„=4J, and so T, =J,„/2=2J.
This degeneracy at different wave vectors is exactly what
happens for g=1 in the generalized Villain model. ' In
the present case, the unit cell of the mode is doubled (to
six spins per cell) relative to the unit cell of the Hamil-
tonian, and it is therefore easier to enlarge the space of
the modes accordingly:

(A(A qy8 @C yA~ qgB~ @C~ )q q~ q~ q~ q ~ q ~ q
(5.13)

This amounts to a further decrease in the size of the Bril-
louin zone. In this space, we find that J,„(0)=4J is as-
sociated with the two independent, nonorthogonal
eigenvectors Wi=(2, 2, —3, 2, 2, —3) and
W2=( —2, —2, —1,2, 2, 1). Thus we may construct the
linear combination

VI. CENTERED HONEYCOMB MODEL

Our treatment will be brief, since the results can be ob-
tained by analogy to the staggered row model, which has
already been treated.

Just as in the staggered row model, for the centered
honeycomb model there are three spins per unit cell in
the Hamiltonian. For each of the solutions with three
spins per unit cell, one can map from the staggered row
model to the centered honeycomb model. For the stag-
gered row model, each A spin has one g bond and two
ordinary bonds to the B spins, and for the centered
honeycomb model, each A spin has three g bonds to the
B spins. Hence, on replacing (I+2g) by 3g, one can go
from the three-spins-per-cell solutions for the staggered
row model, to the solutions for the centered honeycomb
model. In terms of the phase diagram, this means a sim-
ple rescaling of the vertical axis in Fig. 3, yielding Fig. 5.
The centered honeycomb model, unlike the staggered row
model, does not have a preferred direction, and does not

—19+i /15 —5 —3i V 15
32 32

(5.14)

As with Eq. (5.2), applicable to g= 1, Eq. (5.14) has equal
amplitude for each spin. Thus, with the amplitude grow-
ing from zero to unity as one moves from the tetracritical
point to T=O, one has a solution acceptable even at
T=O. Indeed, it is precisely the solution NC6 of our pre-
vious analysis.

For both g=1 and g= —1.5, two modes are degen-
erate. (For g= —1.5, only two modes are degenerate be-
cause rotational invariance is broken for all gW 1.)
Therefore the phase-only analysis of Auctuations for g = 1

and g= —1.5 will lead to the same critical behavior,
namely, a mixture of Ising and XF character. Choi and
Doniach obtained a similar situation for a flux per pla-
quette of rr and m /2. For the present case, we note that,
for g & 0, only 2/3 of the plaquettes are frustrated, so that
systems with Aux per plaquette of m and 2m/3 belong to
the same universality class.
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have a preferred wave vector and the complications asso-
ciated with spiral phases. (Note that we have performed
both a T =0 analysis and a finite-temperature Auctuation
analysis, in search of lower-energy solutions with more
than three spins per unit cell. None were found. )

To be specific, scaling from the results of Ref. 21 for
the three-spins-per-cell solutions of the staggered row
model gives that, for the centered honeycomb model, the
AF3 Plin-e is given by T, /J=(3 /2) r), the NC3-AF3
line is given by T/J=(3/ 2g), and the FI-P line is
given by T, /J=(3/4)(+ il +8—il). The NC3-FI line is
obtained by numerical methods. First, one solves
for x in 2ri=R(6x)/R(3ilx ). Then one employs
T, /J=(3')R(3ilx)/x. Note that, for ii~1/2, x —+co,
and so T, /J~O for g~1/2.

As mentioned earlier, Ref. 19 is consistent with either
the NC3 or the AF3 phase. On the basis of the mean-
field phase diagram, Fig. 5, this argues for a value g) 1.
In that case, there should be two phase transitions. Only
one seems to be observed. If the signature of the lower
transition is subtle (which may well be the case here,
since it is not associated with the development of an obvi-
ous order parameter, such as the magnetization), it might
have been missed. (Although mean-field theory is not by
any means exact, it is likely to be qualitatively correct, as
long as the system is thermodynamically stable. ) On the
other hand, the real system is likely to be more complex
than the simple model that we have discussed, and so the
present discussion may have only limited applicability.

VII. SUMMARY AND CONCLUSIONS

Three generalizations of the fully frustrated triangular
lattice of XY spins have been studied: the row model, the

staggered rom model, and the centered honeycomb mod-
el. The staggered row model, with five ordered phases
and two tetracritical points, was found to be by far the
most complex of the three and has aspects of both of the
other two. This may be attributed to the fact that, like
the row model, it has a preferred direction and, like the
centered honeycomb model, it has three spins per unit
cell. Besides the usual mean-field analysis, a phase-
Auctuation analysis was performed. In particular, the
latter helped provide insight into the nature of the tetra-
critical points and their relationship to the ground-state
solutions. Although a Monte Carlo study indicated that
the original analysis (assuming commensurate solutions
with three spins per unit cell) was oversimplified and led
to the more complete mean-field and fluctuation analyses,
a full Monte Carlo study of the staggered row model, in-
cluding incommensurate boundary conditions, has not
yet been performed.

To answer one of the questions that motivated our
original considerations, of the three models we have stud-
ied the centered honeycomb model, with three spins per
unit cell, seems to be most closely analogous, for the
FFTR model, to the generalization of Berge et al. of
Villain's "odd" model of fully frustrated XY spins on the
square lattice. Moreover, this model is the most relevant
from an experimental viewpoint. This is because the or-
der within the planes of the system RbFeBr3 seems to be
described by this model. ' ' Since the mean-field phase
diagram (Fig, 5) indicates that for 71) l, on cooling, the
collinear AF3 phase will be attained first, it suggests that,
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