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Kink static properties in a discrete 4 chain with long-range interactions
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We study the discreteness effects on kink static properties in a one-dimensional anharmonic @ chain
with a long-range interaction potential of Kac-Baker type. Using the Dirac s second class constraints,
we show that the discrete kink experiences the periodic Peierls-Nabarro (PN) potential whose barrier de-

pends strongly on the range of interaction. Numerical calculations reveal that the dressing of the kink
profile by the lattice effects lowers the PN potential and considerably increases its barrier. It is seen that
the dressing and its effects tend to disappear when the range of interaction increases.

I. INTRODUCTION

In recent years, considerable efforts have been concen-
trated on the propagation of nonlinear waves in a one-
dimensional anharmonic lattice. Important new features
have been outlined, which the more conventional contin-
uum approach fails to describe adequately; for instance,
the modulation of kink parameters obtained by Ishimori
and Munakata in their perturbation scheme to describe
the discrete sine-Gordon system, ' the damped oscillatory
motion and the lattice pinning effects of short topological
solitons, the adiabatic dressing of kink, and the spontane-
ous emission of phonons. ' In non-Hamiltonian and
inhomogeneous lattices, the discreteness effects give rise
to other interesting phenomena. Peyrard and Kruskal
showed after numerical simulation that the velocity of a
discrete kink driven by a low external force evolves by
steps that is, for a large range of applied forces, the
final velocity remains almost constant and then jumps to
another value where it is again constant for a new range
of the force. Those steps occur at some critical velocities
for which the emission of phonons, due to lattice
discreteness, is absent (e.g. , the quasisteady states). It has
also been shown that in presence of small external field
and damping, a discrete kink moves like a damped-driven
particle in the Peierls-Nabarro potential. ' ' When the
external field increases, it destroys the symmetry of the

substrate potential and a discrete asymmetric kink
moves in a PN potential whose barrier is a decreasing
function of the external field. ' Recent studies reveal that
a kink can be repelled by a point mass impurity in the
discrete lattice, ' ' a phenomenon which is absent in the
continuum limit.

As consequences of these phenomena due to lattice
discreteness, one observes a renormalization of kink
diffusion constant and other thermodynamical properties
of the lattice. ' Interesting results have also been
obtained in the dynamics of the two-component soliton in
a discrete hydrogen-bonded chain.

The efforts and results mentioned above have been lim-
ited to nearest-neighbor atomic interactions. In some
materials, however, such as metals or ferroelectrics,
interatomic forces extend further than the nearest neigh-
bors. In continuum medium interesting properties are

observed in such systems.
Pnevmatikos showed that additional coupling between

second-nearest neighbors causes subsonic solitonlike exci-
tations and mentioned the splitting and blowup of soli-
tons due to competition between the first- and second-
nearest-neighbor coupling. A model of a nonlinear
one-dimensional lattice with a long-range coupling of
Lennard-Jones type was studied by Ishimori. The re-
sults show that the force range parameter contributes to
the dispersion relation. Moreover, the equations ob-
tained from the model are classified into three types: the
Benjamin-Ono equation, the Korteveg —de Vries equation
and a third one whose analytic solution is unknown.
Pokrovsky and Virosztek modified the Frenkel-
Kontorova model by replacing the spatial second deriva-
tive in the sine-Gordon equation by an integral operator
which contains both the short-range (local) and the long-
range (nonlocal) interactions. They came to the con-
clusion that the local theory cannot explain the observed
finite exponent that appears in the density of solitons but,
assuming a long-range (nonlocal) interaction, the theory
can give a finite exponent at zero temperature. Another
long-range potential is the well-known Kac-Baker poten-
tial, ' in which the interaction between the particles
falls off exponentially as the distance between them in-
creases. It has been used by many authors to analyze the
thermodynamics of systems such as the Ising, ' the
Pott, and the 4& (Ref. 34) models. It has also been
used to investigate the effect of the range of interaction
on the properties of solitonlike excitations in a one-
dimensional anharmonic nonmagnetic chain and mag-
netic Heisenberg chain. One should refer to Ref. 26 for
another presentation and analysis of long-range character
of interaction between particles.

Because of the amount of interesting phenomena ap-
pearing in the continuum long-range interaction systems,
it is convenient to investigate the discreteness effects in
such systems. In a recent paper, following earlier work
by Willis, El-Batanouny, and Stancioff on the discrete
sine-Gordon chain, we have used a discrete N chain
with long-range interaction of Kac-Baker type to present
the first results on the subject. An important conclusion
obtained was that the barrier of the Peierls-Nabarro (PN)
potential vanishes as the range of interaction increases.
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In this paper, we complete the previous study by
analyzing the dressing in terms of the interaction parame-
ter. We discuss the dressing effects on the static proper-
ties of the kink in the discrete lattice. The plan of the pa-
per is as follows.

Section II deals with the presentation of the long-range
interaction chain and the resulting kink solution. The de-
tails related to the mathematical formalism and the re-
sults of the preceding paper are given in Sec. III. A ma-
trix equation for the discrete fiuctuations (or dressings)
correcting the kink profile is established. A numerical
analysis is used to evaluate the spatial variation of dress-
ing and to compute its effects on the PN potential. We
present our conclusions in Sec. IV.

II. THE @ CHAIN
WITH LONG-RANGE INTERACTION

AND ITS KINK SOLUTION

The discrete model under consideration consists of a
one-dimensional chain of N ions, each of mass m, with an
equilibrium spacing b between neighboring ions. m and b
are set equal to unity. The ions are assumed to interact
through a long-range interatomic potential of the Kac-
Baker type. Thus, the interaction force between the par-
ticles of the chain falls off exponentially with the separa-
tion. The long-range coupling coefficient has the form

J(1 r)r '—
(2.1)

2r

displacements of all ions (other than the ith ion), is
defined as

J(l —r) r
JWl

Following the recursive relation

(r +r ')L, =L, +, +L,
J(1—r)+ (y,.+&+y, , 2ry—; ),

(2.4)

(2.5)

—(1 r)'(y«—+y' —y) =0 . (2.6)

Equations (2.3) and (2.6) have two phonon solutions: os-
cillations about the top (y =0) of the double well and the
oscillations about the bottom (y =+1) of the well.
For r =0, Eq. (2.6) reduces to the well-known 4 contin-
uum equation.

Neglecting the fourth-order term in limit of the contin-
uum approximation, Eq. (2.6) leads to large amplitude
kink solutions y(x, t) given by the implicit formula

+ x —Vt

1/2

sinh
20

1+o

1/2

we make the continuum approximation y;(t)~y(x, t) and

L; (t)~L(x, t), to obtain the partial differential equation

ry„„+[J(1+r) r]y —+ r(y )

U= —g V,, (y; —
y, )'+ —g(y —1)'1 1

(2.2a)

where J is the elastic constant of the lattice and r defines
the range of interaction, with 0 ~ r &. l. ~i

—j ~

is the dis-
tance between the ions of sites i and j. The virtue of this
particular interaction, commonly encountered in physical
systems such as the Ising or ferrornagnet lattices, is that
the range of interaction can be varied continuously. In
addition, each particle lies in the N substrate potential
so that the total potential energy of the discrete chain is

+(1+3cr )' tanh

where

2 J(l+r) —r —V (1 —r)
(1 r)—

and

1+3o.

1+o.+2oy

' 1/2

(2.7)

(2.8a)

and the Hamiltonian is given by

H= —gy, +U,1

l

(2.2b)

y'; —(1—2J)y;+y =L, , (2.3)

where the auxilliary quantity L,;, a function of the set of

where the summation is over the X particles. y; is the
displacement field of the ith ion from its equilibrium site
X = l.

The prefactor (1 r) in Eq. (2.1) is cho—sen to ensure
that the total potential experienced by one atom due to
all others is finite in the thermodynamic limit (when N
goes to infinitive). This is equal to J. The range of in-
teraction increases with r. For r =0, the model reduces
to a nearest-neighbor problem. The limit r~1, which
should be taken only in the thermodynamic limit, corre-
sponds to the infinite-range problem.

The equation of motion derived from Eq. (2.2) is

(1—r) g
(2.8b)

yz(x, t)= tanh[K(x —Vt)],

where

K = 1

2C (r)

with

(2.9)

(2.10a)

J(1+r) r—C r =
(1 —r)

(2.10b)

y(x, t) is a topological soliton solution with the width
measured by g and that propagates with the constant ve-
locity V in absence of thermal effects or perturbations.
The positive (negative) sign corresponds to kink (an-
tikink).

In Ref. 37, we have simplified the implicit kink solu-
tion (2.7) by the following hyperbolic tangent wave form
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C(r) is the speed of sound and l., =If ' =&2$
[V«C(r)] defines the spatial extension of kink in the
nonrelativistic regime. It increases indefinitely as the
range of interaction increases (see Fig. 1). Since we are
dealing with a discrete kink (short kink), our calculations
are limited to small values of the range parameter r.

There are two facts which support the validity of the
approximation (2.9). First, the soliton profile given by
Eq. (2.7) suffers slightly because of the approximation.
The slight difference between the two profiles decreases as
r decreases and for long-range interaction with small am-
plitude (the more discrete kink), the profiles are quite
identical. Second, the soliton energy obtained in the con-
tinuum limit from Eq. (2.9) is

2 2V
K (2.11a)

which approximately corresponds to

&.0

E
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FIG. 2. Comparison, with respect to r, between the soliton
energy obtained from the implicit solution (full curve) to that
obtained from the approximated wave form (dashed curve) for
J=1.5.
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(2.11b)

correction of the continuum kink and for phonons radiat-
ed by the kink while propagating in the lattice. That is,
we set

y, =ytt [X(t))+g,(t), (3.1)
derived from the implicit solution (2.7) (see Ref. 34).
However, one can note that the error between the two ex-
pressions increases with an increasing range of interac-
tion. For instance, for r=0. 1, the error is 2.9%', for
r =0.4, it is only 5.5% which is still acceptable. But, for
r =0.5, the error reaches 12.6% which already corre-
sponds to a poor approximation. Fig. 2 shows the plots,
for comparison, of expressions (2.11a) and (2.11b) as func-
tions of the long-range interaction parameter.

III. ANALYSIS OF DRESSINGS
AND THE EFFECTS ON THE PN POTENTIAL

IN A N CHAIN WITH LONG-RANGE INTERACTION

In line with the discrete kink formalism, the displace-
ment field y; is separated into a single kink yx [X(t)] plus
the dressing term 1t; ( t ) which accounts for the discrete

where

y~ [X(t ) ]= tanh t K [i —X ( t ) ] ]

denotes the continuum kink at the discrete lattice point i.
The dynamical variable X ( t ) represents the kink center
position. We remind the reader that in the continuum
limit, X(t) is linearly time dependent [i.e., X(t)= Vt] As.
it has been shown earlier [see Ref. 37 and Eq. (3.4) hereaf-
ter], this is not the case in the discrete limit where X ( t )

possesses a rich dynamical behavior. "' '

Decomposition (3.1) adds two more degrees of freedom
to the system, corresponding to the collective coordinate
X(t) and its conjugate momentum P. Then, in order to
conserve the original number of degrees of freedom, the
system is subjected to two constraints, which give a func-
tional link between the new variables and the field yz.
They are

yyi(1)q p

and (3.2)

75 yy (1)p —p

5.0

2. 5

o.e 0.8

FIG. 1. Kink width L, as function of the long-range interac-
tion parameter for J=1.5.

The subscript (1) stands for the derivative with respect to
X. p; is the conjugate momentum of 1t;.

Constraints C& and C2 tend to rninirnize the Auctua-
tions in the vicinity of the kink's center and allow a
canonical transformation of the original coordinates y;
and y; to new variables X, P, g, , and p, They have been
shown to be second-class constraints in Dirac's terminol-
ogy ' ' since their Poisson brackets do not yield zero,
thus violating the requirem. ent that C& =0 and C2=0.
Because of these constraints, the formalism developed by
Dirac's for constrained dynamical systems has to be ap-



P. WOAFO, T. C. KOFANE, AND A. S. BOKOSAH 48

plied in order to derive the evolution equations of the
variables X, P, f, , and p;.

In Ref. 37, we have used this formalism to show that
the kink of the discrete @ chain with long-range interac-
tion is subjected to the potential force

BU/BX=+yz'"[(g, +yz) —(1—2J)(g;+yz) L;—)],

Fourier series

U(X) = Uo+ g cos(2~nX) = Uo+ cos(2vrX)
2 ITn 2~

(3.4)

with

(3.3)

where L, is now associated to g +yP. Neglecting the f;
contribution, we show that U(X) can be reduced to the

I

E„=—

where

6(1 r—)
J(1+r )

—r
n n

I„=8n ~ K sinh '(nor /K)[2(q„+1)/3 —4(q„+ l)(q„+4)/15],
J„=24K vrsinh '(nor /K)[ —54(q„+1)(q„+4)(q„+9)(q„+16)/567+788(q„+1)(q„+4)(q„+9)/315

—142(q„+1)(q„+4)/15+ 8(q„+1)/3 ],

and

q„=(em /K)

The quantity EPN=E, /m is the PN pinning potential
barrier, well known in the theory of crystal dislocations.
It vanishes as the elastic constant J and the range of in-
teraction increase (see Fig. 1 of Ref. 37 and Fig. 5 hereaf-
ter). When the kink width increases, E, vanishes and the
kink potential energy reduces to the X-independent term
Uo. The efFect of the lattice discreteness is characterized
by a shift in the kink rest energy. In the first approxima-
tion, this shift is obtained after a fourth-order Taylor ex-
pansion of the auxilliary quantity L; while deriving the
kink potential energy (see Ref. 40). Uo is then given by
the expression

Ag=F, (3.7a)

where g and F are column matrices respectively defined
by

(3.7b)

tremization of the potential (2.2a) with respect to the
dressing field g; [after substitution of y; by yz(X)+P;].
For a kink centered at the equilibrium position of the
periodic PN potential, one obtains after some algebra the
matrix problem

3
E(o) 21K

15(1—r)
J(1+r) r 1—

3I' 7
(3.5)

where E~ ' is the kink rest energy in the continuum limit.
It therefore appears that the kink rest energy in the
discrete lattice is less than the continuum value. Such
lowering has also been obtained recently by other au-
thor&. ' It should certainly be more pronounced if one
takes into account the dressing contribution while calcu-
lating the kink rest energy (see, for instance, Fig. 4 where
the dressing lowers the level of the PN potential).

In the dynamical regime, the velocity of the kink is
therefore modulated by the PN potential. At small veloc-
ities, the kink may be pinned in the PN well. When this
happens, the kink oscillates about the bottom of the po-
tential with the frequency ~z defined as follows:

co~=(2~E, /M )' (3.6)

where MD=4K/3 is the kink dimensionless mass (see
Ref. 37). cop is also a decreasing function of the long-
range interaction parameter r.

In view of analyzing the dressing amplitude (ignoring
the phonons part) and its effects on the PN potential seen
by a kink, one has to solve the problem obtained after ex-

F= F; (3.7c)

with

F; =r[(yg+')'+(y~ ') ]+[J(1+r) r](y~+'+y~ ')—
—(r +1)(yz)'+[r +1—2J(1+r)]yz

2 is a tridiagonal matrix with elements defined by

(3.7d)

( 2 ) i
= —[3r(yr, +') r+J(1+r) ]5,I—

+[3(r +1)(y&) +2J(1+r)—(r +l)]5, I

—[3r(y~ ) —r+ J(1+r)]5;,I, (3.8)

where 6, I is the Kronecker delta.
In this state, the constraint C 1 is automatically

satisfied in the calculation of g, from eq. (3.7). This fol-
lows the parity of matrix elements and F, . But, for a kink
in nonequilibrium points of the lattice, a Lagrange multi-



DISCRETE C CPERTIES INKININK STATIC P 10 ].5748

aint is requirethe constra'
the

) wic . . . '
s the

h h multiplies
pN force dra

plier ~(
'1'brium point,

' '
done by add-

oneq
This is

Indeed, in
t tic dressing.

ltipjier to
ents a s a

jned mu
the ori inal potet e o

' '
ential.

1.2265CI

i(1)U —+ U+a(X) gyz (3.9) u(x)

ntial

34=F a(X—)( r + 1 Yz"), (3.10)

h rovidesasistatic approach, p

keep t eh dressing static.
t '

leads topote
1.22645

(a)
I I » I II I I I

0.00 0.Z5 0.5 0 0.75 1.00

10 fi

20— U(X) vs eth position X inp

des the dressing e e
h„.i..,.... ,.tential is lowere an

where

-20

-30—
I« I I I I « I « I I II« II I I «I I! I I I II I I I I I I I I I I « I

15 20

I I I I I I I I I

-20 -15 -10 -5

3o —(b)

20—

)o3&; 1o-

'", we use

y —I ( I) Tg —«g(1))1 y(1))TED-IF([y(1)]TA
— .a(X)= Y~

bs

(3.1 1)

b su tituting Eq.'n is then obtained by su E .

'
al calculatio, we a e dF

chain of N=

an
'

1 in the obtainedand multiplying
he trans ( of the column ma

Solving Eq. an

C bthe constraint

10 E &0.0
PN

-20—
&.0

I

I » ««11« I I I I I I I II I ««I I I I I I I I I I « II I I I I I I I I I I I I I I I I I I

10 15 20-5 0 5-20 -15 -10
= i-X

f the distancefunction o~" g0;
r elastic cfrom the inr k' k center for

and (b) r =0.1.

II (I « I ««
0.1 00.00 0.05

0(X10 ) as a functiono lotoft e 1

r r. The uppert e - e interaction
or the barrier

g
with dressing anthe barrier wi n

of dressing othe inclusion



10 158 P. WOAFO, T. C. KOFANE, AND A. S. BOKOSAH

2. 5

10 Q
P

2

1.5—

I I

0.05 O. l

ing lowers the level of the PN potential and considerably
increases its amplitude. This is seen in Fig. 4 where we
have calculated for 200 lattice particles the potential U
[see Eq. (2.2a)] using first the kink solution y~(X) (the
upper curve) and second the dressed profile yx. (X)+P;
(the lower curve). The lowering, which has been shown
analytically for the kink rest energy near the continuum
limit, is due to the discrete nature of the lattice.

The PN barrier E, and the PN frequency cop have been
calculated for various values of the range of interaction.
The results are shown in Figs. 5 and 6. In Fig. 5, we have
given a log plot of the PN barrier (with and without
dressing) as a function of the long-range interaction pa-
rameter r. Both Figs. 5 and 6 show the decreasing
behavior of E& and cop when r increases. This result
confirms that presented in Fig. 1 of Ref. 37 from the ana-
lytic expression (3.4).

FIG. 6. The pinning frequency co& (in hundreds) as a function
of r for J=1.5.

middle of the chain in order to avoid the end effects.
Since the dressings are localized around the kink core, we
have truncated the matrix A by attributing the value zero
to g; when i is not contained in the integer domain

[int(5L, ),X—int(5L, )],
where int(5L, ) is the integer obtained from the conver-
sion of real 5L, to the integer type. The parameter L,
being the kink spatial extension.

Figure 3 shows the plot of dressing versus the distance
i —X from the center of kink. It follows that the con-
straint C2 is satisfied since the product yx'"g; is an odd
function. We also see that the amplitude of the dressing
decreases when the range of interaction increases [com-
pare Figs. 3(a) and 3(b)].

When P; is added to yx. , one obtains around the kink
center a small deviation from the zeroth-order kink
profile. Although the deviation is small, even for a kink
width equal to the lattice spacing, it has considerable
effect on the PN potential. Indeed, the inclusion of dress-

IV. CONCLUSION

In this paper, we have studied the strongly anharmonic
lattice complicated by the addition of the long-range

interatomic coupling in the case where the discreteness
effects cannot be neglected. The virtue of the specific in-
teraction potential chosen, the Kac-Baker type, is that
the range of interaction can be varied continuously.

We have shown that the lattice generalized potential
depends strongly on the long-range interaction parameter
r. As the range of interaction increases, the pinning and
trapping processes tend to disappear since the PN barrier
decreases rapidly. We have also shown that the dressing
lowers the PN potential and increases the PN barrier.
The dressing amplitude tends to disappear when the
range of interaction increases.

The studies similar to those considered here have been
carried out for the sine-Gordon model with the Kac-
Baker long-range interaction potential. The closed-form
(implicitly) kink solutions have already been obtained. ~"

Extensions should also concern other laws of long-range
interparticle interactions such as the power laws (i.e., the
Coulomb repulsion or the dipole-dipole interaction of
charges particles) where interesting results have already
been obtained for the Frenkel-Kontorova model.
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