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The influence of solute atoms on point-defect properties and defect generation by radiation damage in
alloys is known to be important, and hence it is desirable to understand their effect on the basic mecha-
nisms involved. Most computer modeling of these phenomena has only considered pure metals, but as
part of a project to investigate displacement cascades in alloys, we have simulated dilute solutions of
gold (Au) in copper (Cu), treating this as a “model” for a heavy, oversized solute alloy system. In the
present paper, modified many-body interatomic potentials for the Cu-Au system are described that are
suitable for modeling high-energy atomic collisions. The properties of point defects in pure copper and
the dilute alloy, including solute-defect binding energies, are presented. The oversized solute has a larger
binding energy with an interstitial atom than with a vacancy. The displacement threshold energy, E,, of
a Cu atom and a Au atom in the copper matrix has been investigated as a function of primary recoil
direction, and the difference between the two species is found to be substantial. Furthermore, the pres-
ence of a Au solute has a significant effect on the formation of Frenkel pairs by the replacement-
collision-sequence mechanism. These results are discussed in terms of the mass and size difference of Cu
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and Au atoms.
I. INTRODUCTION

The production and properties of point defects are im-
portant for the changes in material properties that ac-
company radiation damage, and a full understanding of
the mechanisms involved has long been the goal of those
who wish to model and predict material behavior.
Atomic-scale computer simulation is a powerful tech-
nique to assist in achieving these ends, but so far nearly
all research in this area has concentrated on the pure
metals, as indicated in the recent review by Diaz de la
Rubia and Phythian.! With the exception of some recent
modeling of defect production in ordered intermetallics,
e.g., Refs. 2-5, little has been done on alloys, yet for ob-
vious technological reasons these are materials of great
importance, and the defect mechanisms in them are more
complex than in pure metals. The present work
represents part of a wider attempt to address this issue as
regards the role of solute atoms in defect production in
displacement cascades in solid solutions. In this paper,
we present basic results for the properties of point defects
in a dilute binary alloy and the effects of the solute on the
displacement threshold event in such a system. Cascade
processes will be dealt with in a later publication.

We consider a solid solution of gold in a copper matrix,
with the intention of studying the influence of large, over-
sized solutes on defect mechanisms. We have chosen this
as a ‘“model” binary-alloy system for several reasons.
First, there is now a good deal of data on cascades in
pure copper from molecular dynamics (MD) simula-
tions."®~® Second, there is a large mass and size
difference between the two elemental species. (The mass
numbers are 63.5 and 197 and the lattice parameters are
0.3615 and 0.4078 nm for Cu and Au, respectively.)
Third, good interatomic potentials are available for this
alloy system. However, we have had to modify these po-
tentials so that they are suitable for high-energy atomic
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collisions, as described in the next section. In this paper,
we shall consider the limiting case of one single Au solute
in an otherwise pure Cu lattice. We have computed the
formation energy, formation volume, and binding energy
for vacancies and interstitial atoms in pure copper and
copper with a dilute solution of gold. We have also simu-
lated effects at the threshold for atomic displacements,
i.e., at the energy where a recoiling atom has just
sufficient energy to leave its site (or to force a neighbor to
leave its site) and create a stable Frenkel pair, in pure
copper and the alloy. This is an important energy regime
because the displacement threshold energy E,, is a pa-
rameter in many theories of defect production. The
methods and interatomic potentials used are described in
Sec. II. The properties of point defects and threshold dis-
placement energy are presented and discussed in Secs. I11
and IV, respectively.

II. METHOD AND POTENTIALS

A. Computational method

The MD program used here was a modification of the
MOLDY code version 6, initially designed for pure met-
als.” We have extended it to treat alloy systems of up to
three atomic species in solution and to run on an Amdahl
VP1200 processor. It employs a link-cell method for
efficient accounting of neighbor interactions, and uses
periodic boundary conditions with flexible, constant-
pressure boundaries and a variable time-step algorithm.
In order to calculate the static properties of the point de-
fects, the block size was 10X 10X 10 unit cells (=4000
atoms), and after placing the point defect on a suitable
site, the system was relaxed for 250 or 500 time steps, i.e.,
about 2.5 or 5 ps, under zero temperature and pressure to
minimize the potential energy and, hence, determine the
stable defect configuration. The way in which the forma-
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tion energy and volume was defined is dealt with further
in Sec. IIT A.

In simulations of the displacement threshold, the lat-
tice temperature was O K and the computational block
was usually cubic and consisted of up to 12X 12X 12 unit
cells, i.e.,, 6912 atoms. However, for recoils along the
(100) and {110) directions, where focused collisions can
occur, the block was extended along those directions only
and considerable CPU time was saved. A size was chosen
to contain all the replacements of the replacement col-
lision sequences (RCS) generated, and consisted of up to
20X 4X4 unit cells (=1280 atoms) and 28 X28 X6 unit
cells (=18 816 atoms) for the (100) and {110) events,
respectively. The initial MD time step was 10 fs. The
atoms were allowed to evolve for 600 time steps (equal to
approximately 6 ps) from the start of the recoil event;
longer times were usually not necessary since we were
concerned with the creation of Frenkel pairs which did
not recombine ‘“‘spontaneously,” but for directions where
RCS occurred, up to 800 time steps were allowed. If no
stable Frenkel defects remained at the end of that time,
the simulation was restarted with a higher recoil energy.
This process continued until the energy threshold, E,, for
stable Frenkel pair production was established. The in-
crement of energy applied in this procedure was between
0.4 and 9 eV and so E; quoted here is subject to uncer-
tainties of £0.2 to +4.5 eV.

B. Interatomic potentials

In the framework of the many-body approach current-
ly used in studies of defects in metals (e.g., Refs. 10 and
11), the energy of an assembly of N atoms is given by

1
_2' 2 Vij(x;)— ZF pi) s 1)
i#Fj=1 i=1
where V;; is the pairwise interaction potential, usually

repulsive, between atoms / and j at separation x;;, and F;
is the embedding part of the energy and leads to
cohesion. It is a function of the electron density p; asso-
ciated with atom i and, therefore, depends in alloys on
the species of the atom. In the Finnis-Sinclair formalism
used here, F;(p;) equals v/ p;, which is not only computa-
tionally convenient but also justified theoretically within
the second-moment approximation of the tight-binding
theory (Ackland, Finnis, and Vitek!?). Thus, F; has the
form

N 172

2 Qx| (2)
j=1

F,=

where ®(x;;) is a pairwise function.

We have based the interatomic potentials required for
this work on those derived by Ackland and Vitek!? for
the Cu-Au system. These are of the Finnis-Sinclair-type
and were fitted in their derivation to pure metal, alloy,
and some defect properties. However, to provide a better
treatment of atomic interactions inside the normal
nearest-neighbor distance of a,/V'2, where a is the lat-
tice parameter, and to model elastic collisions at recoil
energies = E,;, we have modified the repulsive pair part of
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these many-body potentials to fit the pressure-volume re-
lation for the pure metals and alloys, and to smoothly
join it to the “universal” screened Coulomb potential of
Biersack and Ziegler!# at small interatomic separation.
Since we are only dealing here with the influence of a sin-
gle Au solute on defect properties and production, we do
not need to consider Au-Au interactions in the simula-
tions, but we shall describe the potentials for complete-
ness.

To be specific, if x is the separation of two atoms, then
when x <x; (x;=1.0 A for Cu-Cu or Au-Au homoa-
toms and x;=1.2 A for Cu-Au heteroatoms), we adopt-
ed the pair part,

V(x)=[(Z 4 Zge?) /(4meex)]U (x /a,) , (3a)
with
U(y)=0.1818 exp(—3.2y)+0.5099 exp( —0.9423y)
+0.2802 exp( —0.4029y)
+0.02817 exp(—0.2016p) , (3b)
and
a,=0.88534a, /(Z5B+2Z3%5), 3c)

where U is the universal screening function, a, is the
characteristic screening length, a, is the Bohr radius,
y=x/a,, Z, and Zy are the atomic numbers of the in-
teracting atoms, and e and g, have their usual meaning.
It should be pointed out that the determination of the
knot point x;=1 or 1.2 A is based on the fact that the
universal potential is more accurate than other forms
with a distance of 1 A (Ref. 15) when compared with the
experimental data but it becomes too strong for a dis-
tance of x > 1.5 A (Ref. 17). Furthermore, this choice is
also consistent with that of others,'®!® and, therefore,
any attempt to modify it in this range of interaction is un-
wise and also unnecessary.

When x Zx, (x,=2.0 A for Cu-Cu and Au-Au, and
X,=2.2 A for Cu-Au), the modified versions of Ackland
and Vitek’s!? Cu-Cu, Au-Au, and Cu-Au cross potentials
were used, which are in the form of cubic splines:

VA (x)= 2 alH (rd 1 —x)(rf1—x)*, (4)
k=1
4

VAB(x) 2 kABH(rkAB_x)(rkAB__x )3 , (5)

k=

where A4 and B stand for, respectively, Cu and Au, and
H(x) is the Heaviside unit step function which gives the
cutoff distance of each spline segment. V8 has the same
cublc splme form as V44, with a4 and r;“ replaced by

a8 and rPB, respectively. In the original Ackland and
Vitek pure Cu potential,!> the coefficient a4 =0. This
gives a volume-pressure relation for a smgle crystal that
deviates from experiment at high pressure. In order to
improve this, the volume-pressure curve was fitted to ex-
perimental data®® by adjusting the coefficient a @4 to be
135.0 with r4=0.707a, and leaving all other parameters
unchanged. The parameters in the original three-point
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TABLE I. Potential parameters in Eq. (6) for pure Cu and Au and the Cu-Au alloy, and their valid ranges. These produce ¥ (x) in

units of J.

Co C,(10'%/m) C,(10%°/m?) C,(10*°/m?) x(A) x,(A)
Cu-Cu 5.8376380 3.5449458 —5.848 1472 1.370097 4 1.0 2.0
Cu-Au 6.6413879 1.722509 8 —3.668 6363 0.740 855 02 1.2 22
Au-Au 7.355008 5 3.848 6100 —6.790966 1 1.7416733 1.0 2.0

cubic spline ¥V 48 with a /2 =0 were determined by fitting
to the data Cu-Au alloys, and the extra term with k =4
was added here within the range less than the nearest-
neighbor distance in order to give a better fit to the
volume-pressure relationship for the ordered alloy
CusAu. It wasa,=7.5eV/a} with r,=2.556 19101 A.

To link the universal potentials to the modified
Ackland-Vitek functions, an exponential form for the
pair part of the potential was constructed over the range
x; =x =x, having the form

V(x)=exp(Cy+C;x +Cyx2+Csx3) , (6)

where coefficients Cy, C;, C,, and C; were determined by
equating the values of this potential and its first deriva-
tive to those of Egs. (3a) and (4) or (5) at points x; and
x,, respectively, and are given in Table I. The choice of
X, =2 A is the same as that chosen in Ref. 19. The re-
sulting pair functions for Cu-Cu, Au-Au, and Cu-Au in-
teractions are plotted across the range x <x; and x >x,
in Fig. 1. It can be seen that Au acts as an oversized sub-
stitutional solute in copper.

The choice of the universal potential, the construction
of the exponential potential, and the adjustment of
coefficient aZ4 for pure Cu, and the addition of the
fourth node r ;18 for the Cu-Au cross potential, are totally
determined by the requirement of the problem con-
sidered, i.e., the potential being used must be valid for
high-energy collisions in the range less than the nearest
neighbor distance where the original potentials derived
by Ackland et al.?! and developed further by Ackland
and Vitek!® are unsound. It should be emphasized that
the modifications made here do not affect the fit to the
pure metal and alloy properties used by Ackland and Vi-

tek!® in deriving the original potentials for the Cu-Cu,
Cu-Au, and Au-Au systems. Foreman, English, and
Phythian’ have also developed a potential for damage
simulations of pure Cu by modifying the original Cu-Cu
pair function of Ackland et al.,?! but in a slightly
different way from that described here. The resulting
pair interaction is slightly less hard than the potential
used here, as shown in Fig. 1, but both give a similar
pressure response for the perfect crystal, as can be seen
from Fig. 2, where pressure P is expressed in units of
kT, /Q, and volume per atom ( is in units of Q,; here
Q, is the volume per atom (=a} /4) for a perfect crystal
under zero pressure, k is Boltzmann’s constant, and T,
the equilibrium melting point. (For Cu, kTm =0.117 eV
and kT, /Q,=1.587 GPa.) We also include data for the
unmodified Cu-Cu potential for Ackland and Vitek,'® the
empirical relationship of Rose et al.,?? which is often
used for fitting parameters in embedded-atom potentials,
and experiments on copper. Generally, the modifications
made here are good.

It is easy to show that the contribution of the many-
body potential in Eq. (1) to interatomic energy and force
becomes far and away smaller than that from the pair
term as interatomic spacing is reduced below the equilib-
rium nearest-neighbor spacing of a,/Vv'2. Therefore, no
modification is needed for the many-body parts and their
original forms are kept. The numerical values for the pa-
rameters in these functions are to be found in Ref. 13.

III. POINT DEFECTS

A. Definitions of defect formation energies and volumes

There exists considerable ambiguity about the
definition of the energy of defect in alloys, as discussed in

FIG. 1. Variation of the pairwise function

3 V(x) for Cu-Cu, Cu-Au, and Au-Au interac-
tions, as indicated. The Cu-Cu potential

developed by Foreman et al. (Ref. 7) is also
shown for comparison.
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some detail by Ackland.?? This is mainly due to the ques-
tion as to what is the proper reference state to calculate
the energy. Therefore it is necessary to give a clear
definition of the defect energy calculated in simulation
studies such as this. For pure material and dilute alloys,
formation energies for the vacancy and interstitial can be
calculated with a unified formula as follows:

Eéefect :Eﬁock —NAEA —NBSB H )]

where E{ . is the total energy (negative) acquired by
simulating a block of atoms containing the defect, N,
A-type hosts and Nz( <<N ,) B-type guests, with a total
of N(=N, +Nj) atoms; € , is the energy (negative) per
atom in the pure metal, and €, is defined as

NpQp=Vlex —NGQ, , (10)

where these volume terms are defined in the same way as
their energy counterparts above.

Equations (7)—(10) clearly define the defect formation
energies and formation volumes. In particular, when
Ny =0, i.e., the crystal consists of only a single constitu-
ent, they reduce exactly to those for pure material, and,
therefore, they represent a unified set. In fact, the expres-
sions (7) and (9) for defect formation energy and volume
are generally valid, not only for pure or disordered dilute
systems, but also for concentrated or ordered alloy sys-
tems?’ as long as the quantities € 4, Q 4, €5, Q are prop-
erly defined. Merging Egs. (7) and (8) we have a single
expression for the defect formation energy:

0
Npep=Egock —N3€4 (8) 0
NO . Egefectz(EtIXock—Eﬁock)_(NA _Ng )EA ’ (11)
where Ey),. represents the total energy (negative) ac-
quired by simulating a block of N° atoms containing no  and likewise for the defect volume,
defect, N% A type solvent atoms and N B type
. . . 0
substitutional solute atoms. In the dilute case, Vi torr = (Voo = Vo )— (N, —N%Q , . (12)

Ny <<NS%(=N,), and thus, in the present work, where
N%=3999 and Np=1 is much much less than N9,
definition (8) is valid. Likewise the formation volumes for
the vacancy and interstitial can be defined as

Formally, the two expressions do not depend explicitly
on the quantities related to the solute B and only depend
on quantities related to the solvent A, and these comput-

Ve =VY  —N,Q,—NyQ, , ) able block quantities and their physical implication can
defect 7 block 4S04 TTBTOR easily be understood by noting that [N —N°|
with =|N,—NY| =defect number.

TABLE II. Properties of single and divacancies for pure Cu. The experimental data are from the
tabulated review of Ackland et al. (Ref. 21).

Ef v/ E/ (expt.) V{ (expt.)

(eV) Qo) (eV) (Qo)
Present work 1.208 0.80 1.17-1.29 0.75-0.85
Ref. 21 1.191 0.77 1.17-1.29 0.75-0.85

E{, (eV) Binding energy (eV) V4,(Q0)

1/2(110) (100) 1/2(110) (100) 1/2(110) (100)
Present work 2.2514 2.4389 0.1639 —0.0236 1.6339 1.5984
Ref. 21 I s 0.1659 —0.0335 .. e .
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TABLE III. Properties of the SIA in pure Cu.

Formation energy (eV)

Formation volume ()

SIA configuration Present work Ref. 21 Present work Ref. 21
(100) dumbbell 4.009 3.62 1.944
(110) dumbbell 4.253 Unstable 1.792
(110) crowdian 4.265 3.84 1.810
Octahedral Unstable 3.68
Two-nearest neighbor
(100) dumbbells 6.893 3.375

(Binding energy: 1.1253)

B. Pure Cu

In the pure Cu system, the single-vacancy formation
energy, E/, and formation volume, V/, are slightly
different from the original values of Ackland et al.?! (see
Table II) but E/ still lies in the range of experi-
ment.2b?#727  Two nearest-neighbor vacancies attract
each other with a binding energy of 0.164 eV, whereas
two second-neighbor vacancies repel with a binding ener-
gy of —0.024 eV (see Table II).

For the single self-interstitial atom (SIA) there are only
three stable configurations. Among them, the most stable
is the (100) dumbbell, which is consistent with experi-
mental observation by Ehrhart?®* and other studies by
Koehler,? Young,?® and Okuda and Mizubayashi.?’” Un-
like the finding of Ackland et al.,?! the (110) dumbbell
is the second most stable configuration here, while the oc-
tahedral is not stable and relaxes to the (100)
configuration. The least stable configuration is the (110)
crowdian. The (111) dumbbell and tetrahedral defects
are both unstable and evolve to the (100) configuration.
Two nearest-neighbor {( 100) dumbbells attract each oth-
er with a binding energy of 1.125 eV. The values of for-
mation energy and volume for the stable SIA
configurations are shown in Table III.

C. Dilute Cu-Au alloy

As a starting point for understanding the basic proper-
ties of defects, the displacement threshold energy, and
cascade structure in alloy systems, it is necessary to con-
sider the limiting case of one single Au solute in an other-
wise pure Cu lattice. In this case, there are various defect
configurations to consider. First of all, E and V/ ac-
quired by creating a vacancy at the solute site are exactly
the same as those in the pure system, and the same holds
true for the nearest-neighbor Au-Cu divacancy and for
the second-neighbor Au-Cu divacancy. When the Au
atom is introduced into the various interstitial positions
in the Cu matrix, only two configurations are found
to be stable, namely the {110) crowdian and the octahe-
dral. Their respective formation energy and volume are
4.788 and 4.987 eV and 2.21 and 2.45 Q,. All the other
Au interstitial configurations eventually turn on relaxa-
tion into a Au substitutional atom and a Cu interstitial.

Figures 3(a)-3(d) show schematic diagrams of the
configurations we have considered for interaction be-
tween a Au solute and mono and divacancies; they are (a)

the nearest-neighbor vacancy, (b) the second-nearest-
neighbor vacancy, (c) the nearest-neighbor stable diva-
cancy, and (d) the near-neighbor metastable divacancy.
The binding energy and formation volume of these Au
solute-vacancy clusters are presented in Table IV. From
the sign of the binding energies it can be seen that the
solute exerts an attraction to its nearest-neighbor Cu va-
cancy [Fig. 3(a)] and repels its second-neighbor Cu vacan-
cy [Fig. 3(b)]. For the cases of Figs. 3(c) and 3(d), the Au
solute attracts the divacancy (positive binding energy) in
both cases and the formation energies of both are lower
than in pure Cu. Nevertheless, only the nearest-neighbor
divacancy [Fig. 3(c)] has its divacancy binding energy in-
creased over its value of 0.164 eV in pure copper by the
presence of the Au solute.

Figure 4 shows schematically various possible Au
solute—Cu interstitial configurations in near-neighbor po-
sitions. For a {(100) Cu-Cu dumbbell centered on a
nearest-neighbor site to a Au solute [Figs. 4(a) and 4(b)],
the configuration in which the two copper atoms are
symmetrically disposed with respect to the solute [Fig.
4(b)] is the most stable with a binding energy of 0.266 eV;
the other two dumbbell orientations [Fig. 4(a)] are meta-
stable, with a negative binding energy of —0.057 eV, and
rotate by about 7.36° off the precise (100) axis, as illus-
trated in the figure. For the (100) dumbbells centered
on second-neighbor sites to the solute [Figs. 4(c) and
4(d)], all three dumbbell orientations result in attractive
configurations with binding energies of 0.058 eV for the

@ @ . Cu
(a) (b)
®.
E @ Vacancy
7
(7
© (@

FIG. 3. Schematic illustration of the solute-vacancy arrange-
ments considered in Table V.
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TABLE IV. Properties of the vacancy-solute configurations shown in Fig. 3.

Configuration Ef ., ES, Formation energy Formation volume
[shown in Fig. (3)] (eV) (eV) (eV) (Qy)
3(a) 0.065 1.143 0.727
3(b) —0.026 1.234 0.800
3(c) 0.144 0.178 2.107 1.438
3(d) 0.124 —0.029 2.315 1.455

two ‘“‘transverse” states [Fig. 4(c)] and 0.074 eV for the
“longitudinal” one [Fig. 4(d)]. For a (110) Cu-Cu
dumbbell centered on a nearest-neighbor site to a Au
solute, the configuration of Fig. 4(e), in which the two
copper atoms are symmetrically disposed with respect to
the solute, displays attraction with a binding energy of
0.123 eV, whereas the other [Fig. 4(f)] is repelled and the
dumbbell moves away from its initial position by V'2a,,
as illustrated, before reaching a metastable state with a
binding energy of —0.052 eV. The formation energy and
volume for each Cu interstitial configuration in this sys-
tem are listed in Table V.

D. Discussion

The modifications to the pair part of the many-body
potentials for short-range interactions have a slight
influence on vacancy properties as seen in Table II, but
the value for EJ is still well within the experimental
range, as noted above in Sec. II B. The effect on the SIA
is larger, as expected, since this defect involves smaller
interatomic separations and our modifications have ‘“har-

OV e
ol

.Cu

®-

.—‘ (unrelaxed)

Dumbbell

OO (elaxed)

FIG. 4. Schematic illustration of the solute-SIA arrange-
ments considered in Table VI.

dened” the pairwise repulsion term in the potential ener-
gy. Despite the 10% difference in E,f (Table III), both
sets of potentials predict the (100) dumbbell to be the
most stable SIA, which is consistent with the generally
accepted structure as observed above. Mixed Cu-Au in-
terstitial dumbbells are not found to occur, however, for
the crowdion and octahedral sites are the only stable
configurations for the large Au interstitial.

We have shown that the effect of the substitutional Au
atom on intrinsic point defects in the Cu lattice is com-
plex. This is due to the fact that this solute is oversized
in copper, as can be deduced by the form of the three
curves for the pairwise repulsion V in Fig. 1, and it pro-
duces an outward displacement of 0.0509 A on its 12
nearest-neighbor atoms and an inward one of 0.0072 A
on its 6 second neighbors in the copper lattice. The re-
laxation volume associated with the introduction of the
solute is 0.54 Q,. As a result, the vacancy-solute binding
energy is positive (0.065 eV) for the nearest-neighbor ar-
rangement and negative (—0.026 eV) for the second-
neighbor one. The Cu SIA-Au solute interaction is
influenced by the same effect, and the results described
above can all be explained qualitatively on this basis.
Thus, the binding energy is large and positive (0.266 eV)
for the “transverse” orientation of the stable {100) Cu-
Cu dumbbells at the nearest site to a Au solute and
moderately large (0.123 eV) for the transverse metastable
(110) dumbbell at the same site. The relative magnitude
of the binding energy between a solute atom and either
vacancies or self-interstitials may be important in defect
production and evolution from cascades.

IV. DISPLACEMENT THRESHOLD ENERGY

A. Curecoil in pure copper

The displacement threshold energy E,; has been com-
puted as described in Sec. II A for orientations around

TABLE V. Properties of various Cu interstitial Au solute
configurations.

Configuration Ebau E/ v/
(shown in Fig. 4) (eV) (eV) Q)
4(a) —0.057 4.066 1.878
4(b) 0.266 3.743 1.932
4(c) 0.058 3.951 1.902
4(d) 0.074 3.935 1.925
4(e) 0.123 4.131 1.751
4(f) —0.052 4.305 1.748
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100 -
] ! ! [322]
——O— Cu recoil in Cu matrix at 0 K (311]
80 || —®— Aurecoil in Cu matrix at 0 K

[520]

A

|

FIG. 5. The displacement threshold energy
E,; (in eV) for recoil orientations around the
sides of the unit stereographic triangle for both

110] (131 Cu and Au recoil atoms in a copper matrix at
(441 ; OK.
N T
[100
0
0 20 40 60 80 100 120 140

Angle (deg)

the outside of the unit stereographic triangle and the re-
sults for a Cu primary recoil in copper at 0 K are shown
by open circles in Fig. 5. The vertical bars indicate the
uncertainty in E; as discussed in Sec. I A. It can be seen
that for low-index directions in pure copper, E, is pre-
dicted to be lowest along [100] at 20 eV, followed by
orientations near [110] and then [111] at 33 and 38 eV,
respectively. There is a peak of 65 eV at [520] between
[100] and [110], and a broad range of orientations with
high E; also occurs between [100] and [111], with the
maximum of 96 eV arising at [322].

The E,; values for pure copper along directions be-
tween [100] and [210] are similar to those deduced from
low-temperature electron irradiations by King, Merkle,
and Meshi,?® but are higher (by about 10 eV) at [110], and
are significantly lower and higher near [111] and [211],
respectively. Hohenstein, Seeger, and Sigle? have argued
that E; for copper is actually lowest (at about 18 eV) near
(110), but our model does not show that. Foreman, En-
glish, and Phythian’ have recently computed E, in the
orientations between [100] and [110] for copper using
their modification of the many-body potential of Ackland
et al.?! mentioned in Sec. I B. From a value of 18 eV at
[100] their E; values rise to 66 eV near [520] and fall to
28 eV at [110]. Spot values in the region of [111] were
found to be 60-80 eV. There is therefore reasonable
agreement between the two sets, and, since the two MD
codes were essentially the same, the differences in E;
must reflect a sensitivity to the precise details of the in-
teratomic potential inside the nearest-neighbor spacing.
In a parallel MD study of E; in pure copper at 0 K,
Chou and Ghoniem!® used a potential based on the
embedded-atom model,!° but modified it at small intera-
tomic separations in a very similar manner to the pro-
cedure used here and in Ref. 18. Their values for E; be-
tween (100) and (110) and between (100) and (111)
are similar to those given here in Fig. 5. However, their
value at {111) of about 70 eV, and even higher values be-
tween (111) and (110), are somewhat larger than our
own. Despite the differences in detail between the results
of these recent simulations, they can be considered to
offer broad agreement, particularly in view of the

differences of the potentials employed. All three sets
differ in one respect to the earlier simulation study by
King and Benedek®® using the Gibson-II nonequilibrium
pair potential for copper. In their work, E; at (111) was
100 eV and even higher peaks with values of 150-170 eV
were found on either side of that orientation. However,
threshold energies of this magnitude have not been ob-
tained with the more realistic potentials, and we conclude
that the data for pure copper obtained here are
sufficiently close to those from experiment, which in any
case is not for 0 K, and other modeling, that they are
meaningful.

The minimum along [100] is achieved by a short se-
quence of only 3 atomic replacements, whereas E; for
[110] is sufficient to produce a RCS of 15 replacements.
The threshold for [111] is achieved when the primary
recoil atom can overcome the repulsion of its three neigh-
bors and form a metastable octahedral SIA at the posi-
tion 1/2[111]. The high E; values between [100] and
[110] and between [100] and [111] arise from the fact that
primary recoils in these directions generate multiple, but
short, {110) RCS, and a stable Frenkel pair is not creat-
ed until sufficient energy is imparted to one of these se-
quences. Generally, we observe that the size of E; is re-
lated to the maximum number of atoms displaced, even if
only temporarily, from their sites by the recoil event, as
found for other crystal structures.’!

B. Au recoil in otherwise pure copper

The variation of E; with recoil orientation for a Au
recoil in otherwise pure copper at O K is shown by filled
circles in Fig. 5. The most notable feature of the results
is that E; for a Au recoil atom in copper is generally
much lower than that of a Cu self-atom and has a much
smaller variation with recoil direction. For this heavy,
oversized solute, E; is marginally lower for [110] than
[100] (11 eV cf. 13 eV), although a peak still exists be-
tween these two minima. The biggest effect of changing
the recoil species, however, is seen to occur between [100]
and [111], for the E; values in this part of stereographic
triangle are not the highest for the Au recoil and the
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high, broad peak around [211] does not exist in the dilute
Cu-Au alloy. As noted in the preceding section, atomic
interactions in the energy range of E; are influenced by
modifications to the pair term in the potential, and since
the potential parameters can only be fitted to physical
properties with firm confidence at near-equilibrium atom-
ic separations, the computed E; values have an element
of uncertainty in their magnitude. However, since we are
mainly concerned here with the effect on E; when the
recoil atom changes from Cu to Au, we believe the effects
found, and particularly that the E; values for a Au pri-
mary recoil atom are uniformly low, are meaningful.
These results illustrate the possible importance of mass
and size effects in alloys. For all the directions con-
sidered here, the Au recoil left its site at the threshold
and occupied another substitutional site by displacing a
Cu atom. As a consequence, the process of recombina-
tion of a newly formed Cu interstitial with the vacancy
was hindered by the immobile, oversized Au solute.
Thus, despite the low efficiency of kinetic-energy transfer
engendered by the large mass difference of the two atomic
species, this blocking mechanism provides a means of
achieving stable Frenkel pairs at low energy. As a conse-
quence, the number of atomic replacements was only 2
and 5 for the [100] and [110] directions, respectively.

C. Discussion

It is well known, and was commented upon in Sec.
II A, that focused collision sequences are a feature of
low-energy collisions in directions of closely packed
atomic rows in metals, and at the displacement threshold,
the RCS process can result in stable Frenkel pair produc-
tion by depositing the SIA well away from the vacant
site. RCS have a part to play in separating SIA from va-
cancies in displacement cascades, but it is not clear what
effects solutes have on this process in general. We have
seen above that in changing from a Cu to a Au primary
recoil in copper, the threshold RCS is reduced from 15 to
5 replacements for {110}, with an approximately propor-
tional reduction in E;. This effect arises from the first re-
placement step in the sequence when the Au primary re-
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places a Cu atom, a change that is difficult to undo as the
atoms in the chain recoil in the reverse direction. It is of
interest, therefore, to investigate the influence of a single
Au solute on RCS events in its vicinity, even when the
primary recoil is a Cu atom.

We have done this by simulating {110) and (100) col-
lision chains in copper with a Au solute substituted for a
Cu atom either along the chain or in an adjacent atomic
row on the same {001} plane. As before, E; was deter-
mined from the recoil energy that produced a stable
Frenkel pair. The results are shown in Fig. 6, where E,
is plotted as a function of the distance (in replacement
lengths) of the Au solute from the primary Cu site pro-
jected onto the (100) or {110) axis in question. Row O
indicates that the solute is in the same atomic row as the
collision sequence, and Row 1 or Row 2 indicate that it is
in the nearest or second-nearest atomic row to the se-
quence. The data points show that recoil energies at
which stable Frenkel pairs were produced, and the points
at the bottom of the uncertainty bars are the highest en-
ergy at which stable pairs were not produced.

For the (110) events, for which 15 replacements were
produced by the threshold RCS at 35 eV in pure copper,
it can be seen that E; is unchanged when the Au atom is
at site 12 for Row O, but as the separation between the
primary Cu atom and the Au site is reduced, E; is
affected in a substantial manner by the same replacement
and blocking mechanism described above. The effect is
less pronounced for Row 1, although there is still a siz-
able reduction in E,;. In this case, it is brought about not
by a displacement of the solute but by the obstructive
effect it has on the return of the replacement chain in the
adjacent (110) row.

For the (100) recoil, the influence of the Au solute is
much shorter in range and more complex, presumably be-
cause energy propagation is less focused for this direc-
tion. It can be seen that when the Au solute lies on the
(100) RCS row at sites 1 and 2, E, is increased well
above the pure copper value of 20 eV because of the
difficulty the primary Cu recoil has in displacing the
oversized atom from its site. At and beyond the RCS
range in pure copper (three replacements), the solute has
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no effect. When the Au atom lies in the adjacent {100)
row, the effect on E,; is smaller, but the increase in E,
seen for two of the Au sites arises because this oversized
atom disrupts the (100) collision chain and makes it
more difficult to propagate. We have only considered one
site for the Au atom in the second-neighbor {100) row,
and here, there is a significant increase in E;. This is be-
cause the large outward displacements of the nearest-
neighbor atoms to the solute tend to close the (100)
channel of the collision chain, and hence, increase the en-
ergy required to produce a stable Frenkel pair in this
direction.

It can be seen, therefore, that the influence of solute
atoms on the threshold displacement process is complex.
As a primary recoil atom, the heavy, oversized species
considered here results in a reduction in the energy for
defect production, but the presence of these solutes in the
vicinity of solvent recoil atoms affects the threshold in
different ways. For the RCS mechanism along the close-
packed (110) direction, the solutes reduce both the ener-
gy and length of the threshold event. We have not yet
treated other species of substitutional solute, but would
expect mass to be less important than size for the defect
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properties considered here. For this reason, the replace-
ment and blocking process described above may not be
quite so important for undersized solutes, since the ener-
gy required to move them from site to site in a collision
chain may be less. These points require further study.
The main aim of our research is to investigate the role of
solute atoms in defect production in displacement cas-
cades. We are using the Cu-Au system as a model alloy
for this, and have presented preliminary results on cas-
cades of up to 0.5 keV in Ref. 32. We have more recently
extended this work to cascade energies of up to 2 keV,
and the results of these simulations will be presented in
due course.
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