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Logarithmic dispersion relations are shown to be applicable to the determination of the phase of the
structure factor of surface layers probed by neutron and x-ray reAectivity. For certain profiles it is
shown that the phase 4(q) of the structure factor F(q) is determined entirely by the observed refiectivity
R (q) through the modified Hilbert transform N(q) =2qle f ln[ IF(q')I/IF(q)I ]/(q —q' )dq', where q
is the momentum transfer, and F(q) is related to R (q) and the Fresnel reAectivity via
R (q) =RF (q) IF (q) I'.

The use of logarithmic dispersion relations (LDR) in
phase determination in scattering problems has been
around for some time. ' A number of applications have
been made to scattering amplitudes in high-energy phys-
ics as well as various problems in optics. The theory of
dispersion relations in general has a long and rich histo-
ry, and in particular LDR theory has been delineated in
a detailed study by Burge et al.

In this paper we show how the LDR can be applied to
reAectivity measurements involving either neutrons or x
rays. This is a completely new area of applicability. Its
importance cannot be overemphasized as evidenced in re-
cent applications to a variety of thin-film and surface lay-
er structures. ' It is also one in which a physically real-
izable scattering amplitude (structure factor) can be com-
pletely determined from the measured reAectivity alone.
The reason for this is that the reAection amplitude for
certain systems, when continued into the complex
momentum-transfer plane can be shown to have no com-
plex zeros, avoiding a serious complication that has
plagued previous attempts to apply the LDR.

The basic theorem upon which dispersion relations are
based is due to Titchmarsh. It insures that if a function
f (x) is zero on some domain, say f(x)=0 for x (0, then
its Fourier transform is

g(q)= f f (x)e'e"dx
0

and is said to be a causal transform and is analytic in the
upper half complex q plane. It immediately follows from
the Cauchy principal value theorem that Reg(q) and
Img (q) are Hilbert transforms. It is from this mathemat-
ics that all of the rich results of dispersion relations fol-
low. A more complete statement of the Titchmarsh
theorem along with a very lucid and thought provoking
discussion of LDR can be found in Burge et al.

The reAectivity function of neutron or x-ray scattering
is given, in the Born approximation (BA), by

R (q)=Rz(q)IF(q)l (2a)

where RF(q) is the Fresnel reflectivity and the structure
factor F(q) is just the Fourier transform of the derivative
of the scattering density profile, i.e.,

F (q) =f dze'~'p'(z) (2b)

and p(z) is the depth profile with, for example, p'(z)=0
for z (0. This condition can always be arranged, of
course, since in any real scattering problem the position
z =0 denotes the demarcation between sample and non-
scattering medium (target and vacuum, for example).
This seemingly innocent condition is important in the
present context because, as stated in the introduction,
given such a condition we can show that F(q) is analytic
in the upper half q plane (UHP). This in turn implies
that ReF(q) and ImF(q) are Hilbert transforms, which
are dispersion relations. Titchmarsh has shown that
lnF(q) is also analytic except where F(q) =0. From this
can be derived the logarithmic dispersion relations
(LDR), which are more pertinent in our case. They relate
the phase of F(q)= IF(q)lexp[i&(q)] to lnlF(q)l via a
once-subtracted LDR:

+- »[IF(q') I/IF(q) I]
q'(q' —q )

provided F(q) has no zeros in the UHP or on the real
axis.

We next want to eliminate the ( —q) part of the integral
determining N(q). Since lnlF( —q) I =lnlF(q) I, then

1n [ I F ( q ) I / I
F( q ) I ]
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