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Logarithmic dispersion relations are shown to be applicable to the determination of the phase of the
structure factor of surface layers probed by neutron and x-ray reflectivity. For certain profiles it is
shown that the phase ®(g) of the structure factor F(q) is determined entirely by the observed reflectivity
R (g) through the modified Hilbert transform <I>(q)=2q/1'rf: In[|F(q")|/|F(q)|1/(qg*—q'*)dgq’, where ¢
is the momentum transfer, and F(gq) is related to R(gq) and the Fresnel reflectivity via

R(q)=Rg(q)|F(g)|%

The use of logarithmic dispersion relations (LDR) in
phase determination in scattering problems has been
around for some time.! A number of applications have
been made to scattering amplitudes in high-energy phys-
ics? as well as various problems in optics.> The theory of
dispersion relations in general has a long and rich histo-
ry,* and in particular LDR theory has been delineated in
a detailed study by Burge et al.’

In this paper we show how the LDR can be applied to
reflectivity measurements involving either neutrons or x
rays. This is a completely new area of applicability. Its
importance cannot be overemphasized as evidenced in re-
cent applications to a variety of thin-film and surface lay-
er structures.’ !0 It is also one in which a physically real-
izable scattering amplitude (structure factor) can be com-
pletely determined from the measured reflectivity alone.
The reason for this is that the reflection amplitude for
certain systems, when continued into the complex
momentum-transfer plane can be shown to have no com-
plex zeros, avoiding a serious complication that has
plagued previous attempts to apply the LDR.

The basic theorem upon which dispersion relations are
based is due to Titchmarsh. It insures that if a function
f(x) is zero on some domain, say f(x)=0 for x <0, then
its Fourier transform is

g(q)= [ " f (x)e'dx (1)

and is said to be a causal transform and is analytic in the
upper half complex g plane.* It immediately follows from
the Cauchy principal value theorem that Reg(q) and
Img (gq) are Hilbert transforms. It is from this mathemat-
ics that all of the rich results of dispersion relations fol-
low. A more complete statement of the Titchmarsh
theorem along with a very lucid and thought lsarovoking
discussion of LDR can be found in Burge et al.
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The reflectivity function of neutron or x-ray scattering
is given, in the Born approximation (BA), by®

R(q)=Rp(q)|F(q)|?, (2a)

where Ry(q) is the Fresnel reflectivity and the structure
factor F(q) is just the Fourier transform of the derivative
of the scattering density profile, i.e.,

F(g)= [ " dze'p'(2) 2b)

and p(z) is the depth profile with, for example, p'(z)=0
for z <0. This condition can always be arranged, of
course, since in any real scattering problem the position
z =0 denotes the demarcation between sample and non-
scattering medium (target and vacuum, for example).
This seemingly innocent condition is important in the
present context because, as stated in the introduction,
given such a condition we can show that F(q) is analytic
in the upper half ¢ plane (UHP). This in turn implies
that ReF(q) and ImF(q) are Hilbert transforms, which
are dispersion relations. Titchmarsh has shown that
InF(q) is also analytic except where F(q)=0. From this
can be derived the logarithmic dispersion relations
(LDR), which are more pertinent in our case. They relate
the phase of F(q)=|F(q)lexp[i®(q)] to In|F(q)| via a
once-subtracted LDR:

+o In[|F(g")|/|F

provided F(q) has no zeros in the UHP or on the real

axii}e next want to eliminate the (—gq) part of the integral

determining ®(q). Since In|F(—gq)|=In|F(q)|, then

In[|F(g")|/|F(q
q2_qr2

=24 [ N,
=21 [ dq’ . @)
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We have performed many tests of Eq. (4) using simulat-
ed as well as real reflectivity data. In the following dis-
cussion we derive conditions under which Eq. (4) is the
sole contribution to the phase.

If a sample has N interfaces we write

N
p'(z)=3 Ap,fulz—2,), (5)

n=1

where f,(z —z,) represents the nth interface derivative
function. We next calculate F(q):

N + o0 .
Fl@=3 Ap, [ “dze®f,(z—2z,), (6)
n=1 -
which also can be written
N iqz © iqg(z—z
F(g)= 3 Ap,e q"f+ dze"" ")f,,(z —z,)
n=1 T
N iqz
=3 Ap,e "g,(q), )

n=1

where g,(gq)= f +°°dze"‘”f,,(z) is the interface form fac-
tor or Fourier transform of the interface density deriva-
tive. We have calculated g (¢) using various models such
as the sharp interface,

The exact phase of F(q) using the simulated profile is

—1ImF(q)
ReF(q) ~

In what follows we will calculate the Hilbert phase [Eq.
(4)] and compare it to the exact model phase in Eq. (9).
In the case where the profile structure factor F(q) has no
zeros in the UHP these should agree. The conditions for
no zeros in these F(g) models are determined next.

Let q=gq +ix, then for real Ap, and g,(q)=1, i.e., the
sharp interface, we have

¢(g)=tan 9)

—KZ

F(q)=3Ap,e e " . (10)
In this simplest case
ReF(g)=Ap,cos(gz,)e ",
" (11)

ImF (¢)= 3 Ap,sin(gz,)e " ",
n
and for F(q) to have a zero, both the real and imaginary
parts must be zero. First consider two interfaces (one
layer) with one at z; =0 and the other at z,=d. From
Eq. (11)

ReF(q)=Ap,+Ap,cos(gd)e *¢,

(12)
ImF (q)=Ap,sin(gd)e Twd

pP=248p,0(z—2z,), p'=3A4p,8z~2z,), (8a)
n n ImF (q) can only be zero if gd =nm and then for ReF(q)
and a typical gradual interface, to be zero also, we must have
(z—2z,) Ap;+(£1)"Apye ~*=0, (13)
p=Ap,tanh , ) . . —xd .
" n which, of course, is only true if |Ap;/Ap,| =e ~*%. In this
A (z—2z) (8b)  simplest case we see that for Ap,> Ap, there are no zeros
pP=3 Pn sech? n in the UHP since k>0 and Ap,/Ap, cannot satisfy Eq.
n 9n n (13).
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ture factor defined in Eq. (2). (a) Exact phase
defined in Eq. (9). (b) Hilbert phase defined in
Eq. (4). (c) Profile p(z) depicts scattering den-
sity of layer thickness a. (d) log of the
Y . reflectivity defined in Eq. (2a).
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FIG. 2. Same as Fig. 1 for the profile depict-
ed.
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But if Ap,> Ap,, then a line of zeros exists parallel to
the real axis at ¢ =nw/d and xd =In|Ap,/Ap,| because
|Ap,/Ap,| is now less than one and Eq. (13) is satisfied
for any set of all even or all odd integers depending on
the sign of the ratio.

We next derive a sufficient condition that any sharp in-
terface profile will have a structure factor that has no
zeros in the UHP.

Let the mth interface have the largest value of Ap, i.e.,
|Ap,,| > |Ap,| for all n. Thus, since k>0 for the UHP, a
necessary condition for F(q) to have a zero in the UHP is
ReF (q)=0 for some « > 0. This requires

30

Ap,+ S Ap, cosgz,le " (14)

n¥m

0,

where we have taken z,, =0 and z, >0 for all n. But if we
then choose

|Ap, | > S|Ap,| > S Ap, cos(gz,)e ",
n n

Eq. (14) can never be satisfied. Hence the inequality

|Ap, 1> 3 14p,]

n#m

(15)

is a sufficient condition to ensure that the profile has a
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FIG. 3. Same as Fig. 1 for the profile depict-
ed.
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FIG. 4. Same as Fig. 1 for the profile depict-
ed.
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zero-less structure factor in the UHP. This remarkable
result implies that one should be able to fabricate layered
structures that allow complete phase determination from
measurements of R (q) alone.!!

We have numerically tested this result in a series of
calculations on simulated profiles in Figs. 1-5.

Our final application shows how the theoretical results
presented here also apply to real systems. In Fig. 6
modeled neutron reflectivity data for a 1042 A Ni film on
a float glass substrate are shown. The sharp model
profile is displayed in Fig. 6(c), and Fig. 6(d) shows the
log of the reflectivity. It is seen that this profile satisfies
our condition that |Ap,| >|Ap,|. Thus the phase of the

structure factor should be completely determined by the
Hilbert phase of Eq. (4). In Figs. 6(b) and 6(a) we plot
the model Hilbert phase compared to the exact calculated
phase from the model. The latter, of course, can be cal-
culated exactly from the one-dimensional Schrddinger
equation, i.e., p=tan"![Im(F)/Re(F)] where F is the ex-
act scattering amplitude of the one-dimensional barrier
problem shown, normalized to the Fresnel amplitude for
the Ni interface.!?

Figure 6 shows results for sharp interfaces since the Ni
vacuum and Ni substrate roughnesses are only 10 and 1
A, respectively.® 13

In summary we have shown, using logarithmic disper-

FIG. 5. Same as Fig. 1 for the profile depict-
ed. Note here however that (a) and (b) do not
agree because the condition |Ap,|>|Ap,| is

violated and F(q) will have zeros in the UHP.
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sion relations, that the phase of the reflection amplitude
in reflectivity experiments can be completely and relative-
ly easily recovered, at least for certain profiles. The prob-
lem of zeros in the complex momentum-transfer plane
can be completely avoided in many important physically
realizable cases. The theoretical foundation of these re-

sults is the Titchmarsh theorem for causal transforms.
Remarkably, the finite sample size in x space implies the
analyticity of the scattering amplitude in g space and thus
plays the role of causality in Kramers-Kronig w-¢ disper-
sion relations.
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