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We propose a model to explain recent experimental results concerning the charge trapping in a
system of ultrasmall tunnel junctions. Degradation processes in the system are assumed to generate
the strange single-electron jumps observed. The model predicts many spectacular features of charge
trapping so that it can easily be verified.

Recent advances in nanotechnology allow one to fab-
ricate systems of ultrasmall tunnel junctions exhibiting
a pronounced Coulomb-blockade behavior. The state of
such a system is characterized by the integer numbers
of charges stored at the small metal islands constituting
the system. Depending on the layout and control pa-
rameters some of these charge states may be metastable.
This means that all the single-electron tunneling pro-
cesses that can change the state increase the charging
energy. If only single-electron processes were allowed, at
zero temperature the system would be in this state for-
ever. We refer to such systems as to single-charge traps
(SCT).

More complex tunneling processes involving two or
more electrons get a SCT to the ground state even at
zero temperature. The rate of these cotunneling pro-
cesses is much smaller than the typical single-electron
rates providing long lifetime of the metastable states.
If N electrons have to be involved into the process the
suppression is proportional to (RT/R~), RT being a
typical resistance of the tunnel junction, RK = 2vrh, /e.
Therefore a typical SCT (Ref. 3) (Fig. 1) consists of
the store island and the chain of N junctions connect-
ing the island with the bulk electrode. The larger N
is, the longer the lifetimes are. At small but finite tem-
peratures the system is switched between the possible
metastable states. If we accept the cotunneling mecha-
nism of switching two simple conclusions can be drawn:
(i) Since the system is in thermodynamic equilibrium the
rates of switching must obey the detailed balance rela-
tion. (ii) The cotunneling rates must be strongly sup-

FIG. 1. Single-charge traps.

pressed if the islands are superconductive since the su-
perconducting gap cuts the number of states available for
tunneling.

The SCT with two and four junctions
was investigated. In both experiments the switching
rates observed were in the range 0.1—10 s . Nevertheless
the results seem to disagree with the cotunneling mecha-
nism of switching. First, no quantitative agreement was
obtained. Second, the reported difference between the
rates at the normal and superconductive state is marginal
compared with the theoretical predictions. The third,
and most important point, is the indication on the ab-
sence of detailed balance in SCT.5 This fact implies that
the switching rate is determined by some unknown non-
equilibrium processes which supply the energy required
to switch between metastable states.

There are three ways to bring the energy into the sys-
tem. First, a high-frequency electromagnetic noise could
enter the cooled sample from the room-temperature en-
vironment. A sophisticated system of filters is imple-
mented to attenuate that. The second possibility relates
to the back influence of a measuring device on the sys-
tern measured. " In fact, the SET electrorneter is used for
measuring. It is biased by a finite voltage that could
supply energy larger than kT. In this case the switch-
ing rates would depend strongly on this voltage. That
was not observed experimentally. The remaining possi-
bility is to gain energy from an intrinsic source such as
the degradation and slow relaxation processes going on
in any real system. It is natural to relate these processes
to so-called background charges. s These charges are lo-
cated in the dielectric material of the junctions and are
supposed to jump rarely and stochastically between dis-
crete positions. They induce an extra voltage drop on
the junctions thus influencing the integer charge dynam-
ics. The background charge jump between the neighbor-
ing positions is very similar to a switching of a famous
Anderson two-level systemic (TLS) and in fact can be
described in the same language. The TLS are thought to
be responsible for 1/f noise in many systems including
the systems of small tunnel junctions.

Every TLS is characterized by an energy difference LE
between the levels. Those with AE of the order of T are
jumping back and forth producing 1/f noise. Since the
rates of TLS switching are supposed to be distributed in
a wide range, at any time there are TLS with AE )) T
that did not have time to switch. If there is an interaction
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between the TLS and the SCT, this energy AE may be
used to release a single charge kept in the SCT.

We will describe such an interaction with the following
Hamiltonian:
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G~ being the conductivity of the junction.
The process which we are interested in is as follows.

Initially the TLS is in the excited state whereas the SCT
is in the (meta)stable state. Finally the TLS is in the
ground state. We consider the rate of cotunneling from
the state nq ——1, n2 ——0 to the state nq ——0, n2 ——1 plus
excitations k, j.

The amplitude of transition is given by

1 1
&k+ &k+ +th+ +k

The rate of interest is a sum of rates over j, k. We replace
the summation by integration with making use of (2) and
obtain

bV &( E,h.

Here the TLS may either be in the excited (ni ——1)
or in the ground (ni = 0) state. We consider the tran-
sition between some (meta)stable state (n2 = 0) and an
excited state (n2 = 1) with one electron having passed
a certain junction. The switching of the TLS induces
a voltage difference bV at this junction. The operators
aI„b~ describe the microscopic degrees of freedom related
to the corresponding tunneling process. They allow for
the dissipation. In particular, aA, originates an electron-
hole pair with electron and hole placed on opposite sides
of the junction. The origin of b~ depends on the nature
of the TLS. In the simplest case switching corresponds
to the transition of one electron from the localized state
in the insulator to the extended state in the metal. Then
the b~ are just annihilation operators of electrons in these
extended states. Actually we do not have to know much
about a, b because they enter the result only in certain
combinations. For example, if one calculates the rates
without taking into account the interaction between the
systems one obtains:
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Two things simplify (4) greatly. First, we assume that
the AE for different TLS are distributed in a region
which is much larger than the Coulomb energy scale. In
this case eq LE &) E~ allows us to forget about the
energy dependence of I'TLs. Second, we use the fact that
ebV (( Eih. It yields
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where A is a phenomenological constant which may
depend on the junction. It is given by the sum of
I'Ti,s(eb'V)2 over all the TLS in the sample.

In the superconducting state (5) should be modified
taking into account the density of states in the supercon-
ductor. In this case

I"sc(s) = I„(s/e)/e,

I„(V) being the superconductor-superconductor tunnel-

ing characteristic. Since I„(I„„the anomalous rate
is suppressed in the superconducting state. Nevertheless,
if the superconducting gap D is comparable with charg-
ing energy the rate is still of the same order of magni-
tude because the TLS supply enough energy to generate
quasiparticle excitations. This is in contrast to the cotun-
neling rate which is completely suppressed if the energy
difference between the initial and Anal states is less than
2A.

At long time scales, the SCT switches many times be-
tween the different metastable states. The average charge
is determined by the relative populations of the states
and below we concentrate on the evaluation of these
quantities. At low temperatures the anomalous processes
are dominant. The populations are determined by quo-
tients of their rates. In this regime we do not have to
know the constant A in (6) for a quantitative descrip-
tion. At rising temperature the normal tunnel rates be-
come more important and a crossover in the system prop-
erties takes place. The experimental observation of the
crossover allows to us estimate A.

Let the energy difFerence between metastable and non-
metastable states be large compared to kT. Then we can
describe the system in the restricted basis of metastable
states. We introduce effective rates p, y for the switch-

It is worth it to stress the universality of the expression
obtained. In fact it does not depend on the detailed
properties of the TLS. The important dependence on the
parameters of the SCT is incorporated in Et,h. One can
use the following simple phenomenological expression to
desribe concrete experiments:
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ing between them. Transitions from a metastable state
i to a nonmetastable state I lead to higher charging en-
ergy of the system. They happen with anomalous rates

I as described above and with normal tunnel rates
I which are thermally reduced following the detailed

balance relation I', I = I'I,e ( ' ') jr'" The rates
for transitions from the intermediate state I to any other
state are only taken into acccount if the charging en-
ergy is lowered. They determine a probability pI y that
by consecutive (co)tunneling the metastable state f is
reached from I. In these terms the effective rates read

+ (E&—E& ) jj kT

e«0 —E» /
(14)

with
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two energies.
In equilibrium the ratio p = pi 0/pO 1 is equal to the

ratio of the populations Po/P1 of the metastable states.
For p we find
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They allow us to write down the master equation for the
populations P, of the metastable states,

I A,B- I A, B-0
A, B

~A, B 0 + ~A, B 1
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jgi
Its stationary solution allows us to calculate the mean
charge on the store island. This quantity can easily be
observed in experiment because it corresponds to the po-
tential measured by the SET electrometer.

We concentrate on the simplest SCT shown in Fig. 1 .
It consists of two equal tunnel junctions with capaci-
tances C and one capacitor C0 in series with a voltage
source U.

The expression for the electrostatic energy of the sys-
tem is

2

( (1 + rj)Q1' + 2Q. ' + 2Q1Q.2C 1+ 2q
—2gU(Q1 + 2Q2))

with rl = Co/C, Q, the charge on island i divided by e
and U the bias voltage in units e/C.

At a given bias voltage there is a certain number of
metastable states IO, Q ) in such a system. The integers
Q lie in the window

AU — & Q & AU+
1 + g + rl

The behavior of p as a function of the applied voltage
is governed by the competition of the II1 0 and the ex-
ponential terms in (14). At T = 0 the exponential terms
become zero and hence p = II1/II2 in contrast to p = oo
if all rates follow detailed balance. In the opposite limit,
for large T, we can neglect II1 0 and And the classical
detailed balance behavior. There is a sharp crossover be-
tween the two limits. It takes place in a narrow interval
around T* which can be estimated as T' E,/ ln(I' jp),
I' and p being the orders of magnitude of the normal and
the anomalous rates.

Figures 2 and 3 illustrate the behavior previously de-
scribed. Figure 2 shows a plot of the equilibrium pop-
ulation of IO, 1) as a function of the applied voltage at
different T. The population is equal to the mean value
of the charge in the trap in units e.

If all participating rates followed detailed balance, at
T = 0, P1 would jump from 0 to 1 at U = 0.5e/C. As
T E, this steplike behavior is washed out.

In our model, on the other hand, we get the sharpest

(0~1 = (f0~A + I'O~A)
p A —+0 + A —+1

I B-1
+(fO B+I'0 B)~B—+0 + B~1

(12)

We consider the case of two metastable states IO, 0) and
0, 1), which is relevant for rl = 1 and U satisfying 0 &

U & e/C. Using (8) we find the effective switching rates
Pi~ f ~
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The indices 0 and 1 denote the states IO) 0) and IO, 1), &
and & denote the two relevant intermediate states I1, 0)
a,nd

I

—1, 1), A stands for the state with the lower of the

FIG. 2. The population Pi of the metastable state IO, 1)
as a function of the bias voltage at difFerent temperatures.
T in units of E: a, 0; 6, 0.02; c, 0.05; d, 0.15. The arrows
indicate increasing temperature. C/Co ——1, p/I' = 10
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switching between 0 and 1 at a finite temperature T'
(curve a, Fig. 2). For higher temperatures we enter the
detailed balance regime and the curve becomes washed
out in the usual way (curve d). For lower temperatures
we enter the anomalous regime (curve b) and approach
the curve for T = 0 (curve a) which again becomes
smoother.

Thus we predict a reentrant temperature behavior. Ex-
perimental evidence for such a behavior would confirm
our model. In Fig. 3 the population Pq is plotted versus
T at different bias voltages. The crossover between the
anomalous and the detailed balance behavior shows up
in the sudden change of Pq in a narrow T region.

In our simple model we considered so far only first-
order electron tunneling. In a more realistic model
the cotunneling rates of direct transitions between the
metastable states will compete with the effective rates
calculated above. As cotunneling follows the detailed bal-
ance relation it tends to restitute the Boltzmann distribu-

Temperature (units of E,)

FIG. 3. Pq as a function of temperature at different bias
voltages. Voltage in units of e/C from below: 0.4, 0.45, 0.48,
0.5, 0.52, 0.55, 0.6.

tion such that it would destroy the described anomalous
behavior. As the anomalous rates p, f scale with the
junction conductance G, whereas the cotunneling rates
scale for two junctions with G, our model becomes cor-
rect for small G.

If we are going to describe more complex SCT, we shall
consider more complex anomalous processes. If the SCT
consists of X )) 1 junctions, the relevant scenario of
switching may be as follows. First we transfer a charge
from the store island to the middle of the chain. This is a
higher-order anomalous process involving N/2 electrons
gaining energy from a TLS switching. Then the charge
jumps down to the bulk electrode completing the SCT
switching.

The anomalous rate can be estimated as I'TLs(e6V/
Ec) (GTR~) ~ . It competes with the rate of a
direct cotunneling process which is of the order of
Ec (GTR~) Thus. the dynamics of switching is always
governed by the anomalous processes in the limit of small
Gz. and large ¹

The minimal switching rates observed are of the order
of inverse seconds. 5 From the estimations given above we
can extract the number of TLS switchings per second
which would provide such a rate. It yields 10 s which
does not seem too high. A highly doped silicon substrate
used in the experiments contains many localized charges
and their migration may give rise to the effect.

In conclusion, we propose a model to explain the un-
usual features observed in the slow dynamics of single-
charge traps. The degradation processes were shown to
generate anomalous charge jumps. Those may govern the
slow dynamics of the system breaking the detailed bal-
ance rules. The universality of the model allows for the
detailed predictions to be checked experimentally. In par-
ticular, an unexpected reentrant temperature behavior
was predicted. In general, the anomalous jumps change
drastically the behavior of single-electron systems at a
long time scale and all the present concepts should be
revised to take this into account.

We are indebted to D. Averin, D. Esteve, and G. Schon
for inspiring discussions.
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