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A novel energy functional for total-energy and molecular-dynamics calculations is introduced,
and proven to have the Kohn-Sham ground-state energy as its absolute minimum. The use of
this functional within a localized orbital formulation leads to an algorithm for electronic structure
calculations whose computational work load grows linearly with the system size. The foundations
and accuracy of the approach and the performances of the algorithm are first discussed analytically
and then illustrated with several numerical examples,

I. INTRODUCTION

Total-energy calculations and molecular-dynamics
(MD) simulations with forces derived either from first-
principles or tight-binding (TB) Hamiltonians form the
backbone of many studies of materials performed in
condensed-matter physics. However, such investigations
have been limited in scale and scope by the computer
time required by standard algorithms, which grows as the
cube of the system size. This unfavorable scaling has so
far precluded the use of first-principles and of TB Hamil-
tonians for systems involving more than a few hundred
and a few thousand electrons, respectively. Furthermore,
ab initio MD simulations implying times longer than a
few picoseconds are still out of reach.

In this paper we present a method for total-energy and
MD calculations within density-functional theory. Our
scheme is based on an orbital picture and on an en-
ergy functional which is proven to have the Kohn-Sham
ground-state energy as its absolute minimum. When
used within a localized orbital formulation, the method
implies an overall computational cost which scales lin-
early with the system size and can thus be used to tackle
a variety of problems so far inaccessible.

Most methods for total-energy calculations rely on an
orbital picture, e.g. , the Kohn-Sham (KS) formulation
of density-functional theory (DFT). Minimization proce-
dures which consider only the density matrix as a variable
have been proposed in the literature4 5 and successfully
applied to TB Hamiltonians. However, their general-
ization to first-principles local-density functional (I DA)
calculations appears to be very costly since they imply
the knowledge of the full spectrum (occupied and empty
states) of the Hamiltonian matrix (H).

The solution of the single-particle eigenvalues problem
(KS equations) is usually obtained by diagonalizing H,
which is set up according to a chosen basis set for the

electronic orbitals (Pj. When the number M of basis
functions is much larger than the number N of electrons,
iterative diagonalization techniques are drastically more
efBcient than direct diagonalization procedures. How-
ever, the overall scaling as a function of the system size
of both direct and iterative schemes is usually of O(Ns).

Iterative approaches can be divided into two classes:
constrained minimization methods in which the single-
particle wave functions are required to be orthonormal
and unconstrained (UM) methods, s 7 in which the or-
bitals are allowed to overlap. In computations with
plane-wave (PW) basis sets and pseudopotentials —which
are the ones most widely used in, e.g. , erst-principles
MD simulations —the evaluation of (HP} costs O(NM)
operations (where M is proportional to N), if advan-
tage is taken of fast Fourier transform techniques and of
the localized nature of nonlocal pseudopotentials. The
application of orthogonality constraints implies instead
O(N M) operations. When UM are used, the calcula-
tion of the overlap matrix (S) and of its inverse are of
O(N2M) and O(Ns), respectively. It has been shown in
Ref. 3 that the electronic orbitals can be required to be
localized in given regions of space, without any significant
loss of accuracy in the calculation. Appropriate localiza-
tion of orbitals reduces the number of operations needed
for (Htti) to O(N). In order to reduce to O(N) also it-
erative orthogonalization procedures or S inversion, fur-
ther assumptions on the form of the overlap matrix are
necessary. 8

A NEW FUNCTIONAL FOR ELECTRONIC
STRUCTURE CALCULATIONS

We introduce an unconstrained minimization method
in which the inverse of the overlap matrix is replaced by
its series expansion in (I —S) up to an odd order lV,
where I is the identity matrix. We first prove that the
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total-energy functional defined with S approximated in
this way has the Kohn-Sham ground-state energy (Eo) as
its absolute minimum.

We consider an energy functional of N/2 orbitals (P)
expanded in a finite basis set, and of the (N/2 x N/2)
matrix A:

iN/2
E[A (4j] = 2 ).A* (&'I ——.'&'I& )+F[p]

I

drp(r) [,

where VKs = jo dA VKs[p(A)] and VKs[p] = &-. The ma-

trix (Q —S i) = —S i(I —S)~+i = —(I —S)~+iS
is negative definite, for odd JV. Given a finite basis
set, one can choose g large enough so that the opera-
tor HKs —il = —~'V + UKs —rl is negative definite; then
also the (N/2 x N/2) matrix (pi ~HKs —il~p, ) is negative
definite and AE is positive since it is equal to the trace
of the product of two negative definite matrices. This
proves that if g satisfies the above requirement, then for
each set of (P)

minE [(vP)] = min E[S,(@)]= Ec.
44)

(2)

Here we define an energy functional of (P),
E[Q[(P)],(P)], by taking A = Q where

where p(r) = p[A, (gj](r) = 2P, ~ A,&gal(r)P, (r), F[p]
is the sum of the Hartree, exchange-correlation, and ex-
ternal potential energy functionals, and q a constant to
be specified. The factor 2 accounts for the electronic oc-
cupation numbers, which are assumed to be all equal.
For simplicity we consider real orbitals. If A,~

= S,
~here S,, = (P, ~P, ), then P[S '] is the single-particle
charge density p(r) and the term multiplying g is zero;
in this case the functional of Eq. (1) is the total en-
ergy of interacting electrons in an external field according
to DFT, written for overlapping orbitals. ' In particu-
lar, if the wave functions are orthonormal (we indicate
with (gj sets of orthonormal orbitals) then A,~

= h,~,
and Eq. (1) gives the total-energy functional of DFT
(E [(Q)]) used in constrained total-energy minimiza-
tions and ab initio MD simulations. The sets (Q) and

(Pj are related by the transformation g, = Q. S,
and then E+ [S ~ P] = E[S i, (P)]. Therefore

where the equality holds only for S,~ = b,~. Prom
Eqs. (2), (4), and (7) it follows that

minE [(gj] = min E[Q, (P)] = min E[S,(P)] = Eo
(~)

and that the minimization of E[Q, (P)] yields orthonor-
mal orbitals.

If the Hamiltonian does not depend on p, a q larger
than the Hamiltonian maximum eigenvalue ensures that
AE & 0. Within LDA, we have HKs[p] & HH[p], where

HH [p] = —2'7 + UH[p] + V,„t, and VH and V,„t are the
Hartree and external potential, respectively. This follows
from the property p[Q](r) & P[S ](r) = p(r), valid for
each point r, and from the explicit LDA expression of the
exchange and correlation energy as a function of p(r).
Within a PW implementation with a finite cutoff, HH
has an upper bound. This ensures the existence of a g
such that AE & 0.

In practice, for g larger than the highest occupied
eigenvalue eiv of HKs [pp], where po is the ground-
state charge density, the set of orbitals which mini-
mizes E [(g)] is a local minimum of E[Q, (P)]. Thus
first-principles MD simulations can be performed with

e~+j, this choice of g allows the use of the same time

min E [(Q)] = min E[Q, (g)] ) min E[Q, (P)],
l&l

(4)

since (@j is a subset of (P).
We now consider the difference between the functionals

E[Q, Q)] and E[S ', (P)], i.e. ,

AE = E[Q, (Pj] —E[S,(P)]
1

and JV is odd. Q is the the truncated series expansion of
S i. We note that if the orbitals are orthonormal (S,z ——

b,~), Q,~
= 6,~ and E[Q, (g)] coincides with E+[(gj].

As a consequence
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where A(A) = A(Q —S ) +S . Using Eq. (1), Eq. (5)
becomes

N/2

aE = 2) (y, ~

—2v'+ UK, —~~y, )(q,, —S;,'),

FIG. 1. Total energy as a function of the number of it-
erations for a steepest descent minimization of 64 Si atoms,
described within LDA with PW basis sets. The solid and dot-
ted lines correpond to the minimization of R[Q] and E (see
text), respectively. Q was defined with A = 1. Kinetic en-
ergy cutouts of 12 and 36 Ry for the wave functions and charge
density, respectively, were used in the calculations; each run
was started from the same set of random numbers.
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step and fictitious mass adopted in standard constrained
dynamics for JV = 1. This can be proved analytically by
expanding E[Q] and E+ around their minima and calcu-
lating the frequencies associated with the electronic de-
grees of freedom. The optimal value of g for total-energy
minimizations depends upon the initial guess used for the
(Pj and is usually larger than e~+i.

The functional presented here has clear advantages
over standard energy functionals when conjugate and
preconditioned conjugate gradient minimization proce-
dures are used: the complication of imposing orthonor-
mality constraints is avoided, and contrary to ordinary
unconstrained methods an automatic control of the S
matrix is provided, since at the minimum S,~ = b,~.

Finally we note that our formulation can be related to
the density matrix approach adopted in Ref. 5 if the den-
sity matrix is constructed similarly to our density p[Q].s

We have tested numerically the validity of our formu-
lation for TB (Ref. 9) and KS Hamiltonians. As an ex-
ample, in Fig. 1 we show the total energy as a function
of the number of iterations for a steepest descent mini-
mization of 64 Si atoms, described within LDA with PW
basis sets and ordinary pseudopotentials. io The calcula-
tion was started from orbitals set up from random num-
bers, with rl = 3.0 Ry. The rninimizations of E[Q, (pj]
and E+ [(Qj] required the same number of iterations and
lead to the same energy.

LOCALIZED ORBITALS AND AN ALGORITHM
WITH LINEAR SY'STEM-SIZE SCALING

We now turn to the discussion of the present method,
when used with localized orbitals (LO).s Within such
a formulation, each single-particle wave function is con-
strained to be localized in an appropriate region of space
[localization region (LR)], i.e. , free to vary inside and
zero outside the LR. These LR's are centered around
different points, for instance, the atomic positions, and
their extension does not vary with system size. Different
single-particle orbitals can be associated with the same
LR (e.g. , two orbitals per LR for Si, which has four va-
lence electrons). When LO are used all sums entering
the expression of E[Q] and its derivatives extend only to
orbitals belonging to overlapping LR's. It then follows
that our method, which does not imply any orthogonal-
ization or S inversion, leads to an algorithm which scales
linearly with the system size.

For'a given size of the LR, the minimum of E[Q] with
respect to LO (P~ j does not coincide with that of E[S i],
and the LO which minimize E[Q] in general are not
orthonormal. This is easily seen as follows. Whereas
Eqs. (4) and (7) still hold, Eq. (2) is no longer valid.
Indeed the transformation from (gj to (Pj with S
does not preserve the size of the LR (it does not map
functions localized in a given region onto functions local-
ized in the same region). Therefore Eq. (8) does not hold
but is replaced by

min E & min E[Q] ) min E[S i] ) Eo, (9)(~') (~ 7 (~ )

where the LR for the (@ j and (P j are the same. At

We have tested the formulation with LO for TB
Hamiltonians with e, + e„= 0. Table I shows the co-
hesive energy E, of Si in the diamond structure, com-
puted with a 216-atom supercell and simple-cubic peri-
odic boundary conditions; E, has been evaluated with

TABLE I. Cohesive energy of Si computed with a
216-atom supercell, with Q[JV = 1] and Q[JV = 3] [see Eq. (3)]
and for difFerent choices of g (eV) [see Eq. (1)],as a function of
the number of neighbor shells (N, ) included in the definition
of the localization region.

g =3 A'=3

1
2
3
4
5

4.4676
5.3063
5.3402
5.3449
5.4006
5.4440

4.6066
5.3289
5.3644
5.3683
5.4102
5.4440

5,0723
5.3985
5.4179
5.4187
5.4352
5.4440

the minimum S is different from I. However, its devia-
tion from I is limited since the difference E[Q] —E[S ]
increases as the S eigenvalues spread out around 1. The
larger JV, the wider the spread of S eigenvalues. The
variational quality of the results obtained by minimizing
E[Q], i.e. , the difference [min(yi. ) E[Q] —Ep], depends
upon (i) the order JV chosen for the definition of the Q
matrix and (ii) the size of the LR. For S ( 2I we have
E[Q(JV —2)] & E[Q(JV)]. Therefore, by increasing lV
in the definition of Q, one obtains an improvement of
the total energy. This leads as well to an increase of
the number of operations needed in the computation of

[see Eq. (3)]. Alternatively one may choose to in-
crease the radius of the localization region (r',~') to im-
prove the quality of the results. We note that the num-
ber of nonzero elements of S is proportional to ni, RN,
where nLR is the average number of regions overlapping
with a given one. Instead, the number of degrees of free-
dom needed to define the N/2 single particle orbitals is
proportional to mN, where m is the number of points
belonging to a LR, e.g. , the number of points where the
wave function is nonzero. The ratio ni, R/m strongly de-
pends on the basis set chosen to set up the Hamiltonian.
Therefore, the optimal choice of JV and of r,"', e.g. , of
the parameters determining the efficiency and accuracy
of the computation, crucially depends upon the chosen
basis set. s

We note that in calculations where m && nI, R, the com-
puter time for the S inversion amounts to a small frac-
tion of the total time also for relatively large systems
(e.g. , systems with up to a few thousand electrons in
LDA calculations with PW basis). On the other hand,
for computations with small basis sets, such as those with
TB Hamiltonians, the computer time for the S inversion
constitutes a considerable part of the total time also for
small systems.

NUMERICAL RESULTS
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FIG. 2. Oscillations of the total energy of 64 Si atoms
measured over a MD run of 0.25 ps (see text). The system has
been described with a TB Hamiltonian (Ref. 9). The results
of a Car-Parrinello (CP) MD dynamics using the functional

R[gj with JV = 1, q = 3 eV and LR's defined by N, = 2

(solid line) are compared to those of exact diagonalization of
the Hamiltonian at each atomic position (dotted line), where
no localization of orbitals was imposed. In the CP dynamics
we used a time step equal to 10 a.u. and p, = 300 a.u.

Q[JV = 1] and Q[JV = 3] and for difFerent choices of
il, as a function of the size of the LR. In all cases E[Q]
has been minimized with a conjugate gradient procedure,
starting from random numbers, and only the 1" point has
been included in the supercell Brillouin-zone sampling.
The LR's have been centered around atomic sites and
two orbitals were assigned to each LR. It is seen that E,
converges rapidly as a function of the number of neigh-
bor shells (N, ) included in the definition of the LR, with
both A = 1 and 3. Already with N, = 2 we obtain very
good results, i.e. , E, higher than the exact result by only
2. 1'%%uo and 0.8'%%uo for JV = 1 and 3, respectively.

We have explicitly verified the linear system size scal-
ing of the algorithm by computing E, with 64-, 216-,
and 1000-atom supercells, starting from random atomic
orbitals, with rl = 8 eV, JV = 1 and N, = 2. The CPU
time per step scales linearly with N, the number of iter-
ations needed to converge E, up to the fifth significant
digit does not vary with N and it is equal to 80.

In order to test; the method for MD simulations, we
have performed a MD run for 64 Si atoms, starting from
the diamond lattice equilibrium positions, with random
velocities corresponding to a temperature of about 400
K. Figure 2 shows the oscillations of the total poten-

tial energy measured over 0.25 ps, computed by solv-

ing the coupled equations of motion pP, = — &&~~j and

MIRI = 'V I—E[Q] for the electronic and ionic (RI) de-
grees of freedom, respectively. MI are the ionic masses
and p is the fictitious electronic mass. Q has been de-
fined with A = 1 and the LR with N, =2. The results ob-
tained in such a way (solid line) are compared to those of
exact diagonalization of the Harniltonian at each atomic
position, with no localization of orbitals (dotted line).
The agreement between the two calculations is excellent,
the difference between the two curves of Fig. 2 being of
the order of meV/atom. The same numerical tests pre-
sented for Si were carried out also for C, yielding very
similar results.

CONCLUSIONS

We have presented an energy functional for total-
energy and molecular-dynamics calculations which has
the Kohn-Sham ground-state energy as its absolute min-
imum. A crucial feature of this functional is that its
minimization does not imply either explicit orthogonal-
ization of the orbitals or inversion of an overlap matrix.
The calculation is highly stable from a numerical point
of view with respect to UM procedures, since the over-

lap matrix is kept close to unity and then automati-
cally controlled. The use of this approach within a lo-
calized orbital formulation leads straightforwardly to a
method whose computational work load grows linearly
with the system size. The performances and eKciency of
the method have been illustrated with several numerical
examples for semiconducting systems. In particular we
have presented the first MD simulation with localized or-
bitals which show (i) the feasibility of calculations with
LO for nonsymmetric systems and (ii) that such simula-
tions can be performed with the same parameters (time
step and fictitious electronic mass) as those used in stan-
dard Car-Parrinello-like dynamics. Numerical analysis
for metallic systems are underway.
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