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Electroconductance oscillations and quantum interference in ballistic nanostructures
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We report theoretical studies of a quantum-interference phenomenon in ballistic nanometer-size
constrictions analogous to the electrostatic Aharonov-Bohm eR'ect. Modulating an applied-potential
step Uz in one of the branches of a multiply connected system allows the observation of conductance
oscillations, even in the absence of magnetic fields, as they are produced by quantum-interference
between voltage-shifted states in the diferent branches. Electric depopulation of subbands can also
be seen at larger VT. We show that these aperiodic oscillations are strong for realistic structural pa-
rameters, robust against increasing temperature, and compare well with the expected phase changes
in a simple single-channel model.

A number of quantum phase-interference effects in
electronic transport have been studied intensively in re-
cent years. A prime example of these phenomena is
the magnetic Aharanov-Bohm (AB) efFect; a rnanifes-
tation of the phase shifts of electronic wave functions
produced by magnetic vector potentials. This effect
has been studied extensively in solid-state systems in
normal-metal rings and cylinders, and in rings pat-
terned onto high-mobility GaAs-Al Gai As semicon-
ductor heterojunctions. Experimental and theoreti-
cal work has shown that resistance oscillations are ob-
served in the magnetic AB efFect due to quantum in-
terference between two or more inequivalent paths en-
closing a varying magnetic flux. On the other hand,
wave-function phase shifts and the ensuing interference
between two classical paths may also be produced by the
application of a potential difference between the path-
ways (the electrostatic AB efFect ). Variations of elec-
trostatic AB experiments have been proposed by Boyer
and others to exhibit the relationship between a semi-
classical lag effect —due to electrostatic fields acting
on electrons passing along different paths —and the
unique quantum-interference phase shifts induced even
in the absence of force on the electrons. Diffraction ex-
periments have also been performed by Matteucci and
co-workers, who studied electron beams traversing a
bimetallic wire, where the contact potential difference be-
tween the components produced quantum phase-shifting
effects. Quantum-interference "devices" in solids, show-
ing conductance oscillations controlled by external poten-
tials, have been proposed in the literature, 7 and several
structures have been fabricated. Washburn et a/. studied
the effects of transverse electric fields in small (= 1 pm)
metallic loops, de Vegvar et a/. presented results for
rings defined on GaAs-A1~Gai ~As using narrow metal
gates, and Yacoby et a/. used a double-gate geometry
in a high-mobility semiconductor system. These exper-
iments have demonstrated that applied electric fields can
indeed modulate the sample resistance by shifting the
phases of the wave functions, by either a lag or an AB
effect. However, a detailed analysis of the experimental
observations was complicated by remnant impurity scat-

tering and multiple conducting channels, results that
have perhaps discouraged further experiments.

In this paper, we report calculations of conductance os-
cillations in quantum ballistic narrow channels produced
by modulating an applied transverse potential VT along
one of the branches of a multiply connected region. We
show that this geometry —similar to that of Ref. 9,
although fully in the ballistic regime (such that the elas-
tic mean free path and the phase-coherence length are
much larger than the size of the structure i) —allows the
observation of conductance oscillations even in the pres-
ence of multiple conducting channels and the geometrical
backscattering effects fully incorporated in our calcula-
tions. These aperiodic oscillations arise as a quantum-
interference effect between phase-shifted branches of the
wave function in the structure, similar to the lag effects
described by Boyer. We show that the number of con-
ductance oscillations increases with barrier length /, as
expected from simple considerations, and that the mod-
ulation is fairly robust against increasing temperature.
In addition, we show that the applied potential can pro-
duce strong modulation of the conductance for realistic
structural-parameter values, suggesting the possible ob-
servation of this effect in the ballistic multiple-channel
regime, and which we hope would promote experiments
in these systems.

The type of structure used in our calculations is shown
schematically in Fig. 1(a), where relevant parameters are
defined. By depositing a rectangular infinite-repulsive
potential obstacle in the center of a narrow constric-
tion (such as those described in Ref. 12, for example),
the wave function of the incident electron is forced to
"split" into two paths before it recombines at the other
end of the channel. The ballistic electron conduction
within the bifurcated channel is locally influenced by a
potential barrier VT along the top branch of the struc-
ture. For simplicity, most of the results presented here
assume that the applied transverse potential barrier VT
has sharp edges at the ends of its length t, although this
has no qualitative effect in what follows [as calculations
with rounded potentials give similar results —see Fig.
3(a) below]. Figure l(b) shows a cross section of the po-
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tential along the x = 0 line in the region of the barrier
(centered at the origin).

ln order to investigate the conductance of such struc-
tures, we describe the wave motion along the struc-
ture (2: direction) by a nearest-neighbor tight-binding
Hamiltonian in a lattice with periodicity a much smaller
than the electronic wavelength A (A &) a —5 A). The
hopping amplitude t between lattice sites is determined
from the effective mass of the carrier in the heterostruc-
ture m = 0.067m, in a s, an is then given y
t = 5 /2ma~. On the other hand, in each region with
straight walls parallel to the x axis, the confinement po-
tential V, (y) in the y direction gives rise to a set of sub-
bands E„such that

FIG. l. (a) Schematic illustration of the geometry stud-
ied. The top branch is modulated by an applied transverse
potential Vz . (b) Cross section through x = 0 showing poten-
tial and energy subbands. Cross-shaded areas are forbidden
for electrons.
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subband m at one reservoir to subband n at the other).
The transverse energy levels on both branches of the

impenetrable central obstacle are obviously degenerate
when VT = 0, but separate linearly with the external
potential [i.e. , E„—+ E„+VT in the top branch, see
Fig. 1(b)]. At a fixed Fermi energy E~, increasing the
barrier voltage leads to the eventual electric depopulation
of subbands on the branch with the barrier (top), as the
subband energy exceeds E~. In what follows, all energies
are normalized with respect to the first subband in the
constriction, Ei = h m /2mW .

The conductance of the structure G(VT), normalized
to Go = G(VT = 0), is shown in Fig. 2 for difFerent scaled
values of the Fermi energy, EF = (Ez/Ei) /2. Curves
are offset vertically for clarity. Conductance oscillations
induced by a changing potential VT = (VT/Ei) / are
clearly seen for all values of E~ displayed, regardless of
the number of current-carrying states in each channel (a
number of evanescent states —typically 25 —are in-
cluded in the calculation to guarantee fully convergent
solutions). At the lowest Ez shown (= 4.1) there is only
one propagating mode in each branch of the structure for
VT = 0. As UT increases, the top branch subband depop-
ulates until it no longer transmits for VT & 3.4. The con-
ductance then drops to its nonoscillating minimum (given
by the still propagating mode in the bottom branch of the
structure), since branch interference is no longer possible.
The rather strong oscillations in t versus VT can then
be seen as the interference of two paths, where V~ in-
duces a phase lag in the top-branch wave function, with
respect to that in the bottom branch. Moreover, as we
discuss below, intersubband scattering and multiple re-
fiections do not severely affect this picture. However, one
would expect these effects to be more important as E~

where V, (y) = 0, except for the regions defined by hard
walls [where it is infinite, and shown as cross-shaded re-
gions in Fig. 1(a)], and in the region with the finite bar-
rier, where V, (y) = VT for W & 2y & Wi. We have
employed a modular recursive Green's-function method
to couple the transverse modes in the different regions,
which allows the calculation of scattering amplitudes for
this and any geometry. The conductance G is eval-
uated from the Landauer formula for a two-terminal
configuration, G = (2e /h)Tr(ttt) = (2e /h) P„
t ~2, where t is the matrix (with element t„)of trans-
mission probability amplitudes at the Fermi energy (from
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FIG. 2. Conductance ratio G/Gp vs VT = (Vz /E, ) for
difFerent values of E~ = (Ep/Ei), and fixed l Curves are.
vertically offset one unit for clarity. Nonoscillatory traces at
the bottom right reflect total subband depopulation in the top
branch. Solid, dashed, and dotted curves for E~ = 5.8 show
temperature dependence of G for kT/Ei = 0, 0.0l, and 0.02,
respectively (corresponding to 0, 2, and 4 K, approximately).
Smearing of oscillations is appreciable at the highest T, but
negligible at T 1 K.
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increases, since intersubband scattering between multi-
ple current-carrying states is appreciable. Nevertheless,
even for EF = 6.8 and 7.3 (topmost curves in Fig. 2, when
three modes carry current in each branch at Vz = 0), the
oscillations in G are still strong, in between successive
jumps produced by the depopulation of channels. For
other E~ values shown (4.7, 5.3, and 5.8), the conduc-
tance curve has basically the same features, except that
there are two propagating modes in each channel. Conse-
quently, conductance oscillations arising from the second
propagating subband can be seen between VT —1 and
3.5, and are shifted upwards for higher E~.

This phase-lag mechanism explains the conductance
modulations in Fig. 2, as well as the persistence of con-
ductance modulation for smoother potential barriers [if
only with somewhat smaller amplitudes, see Fig. 3(a)]. It
is also clear that it is possible to induce a phase lag with-
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FIG. 3. (a) Barrier length dependence of G/Go vs V~
for E~ ——5.3. Shallower peaks in conductance are shown
as length l decreases (top traces). Dashed and dotted lines:
a smooth potential step (L/l = 1.25) also produces shallower
features (see the text). (h) Predicted [solid lines, Eq. (2)] and
calculated (dots, Fig. 2) phase shifts AO vs VT. R~ = 4.1
for the left curve (e), and E~ = 5.3 for the right curve (o).
L/l=1. 25 is kept fixed. Insets show normalized conductance
curves vs VT measured with respect to the depopulation volt-
age value, Vg.

VTvrl
dC = - 1/2 '

E —E„/E —V
(2)

This single-mode expression clearly neglects intermode
mixing and backscattering effects, typically present in

out a barrier VT if only the width of one of the branches is
modulated. Since the branch width determines the posi-
tion of the energy subbands there, its variation produces
an effective varying barrier for the propagating modes,
which in turn yields conductance oscillations. The addi-
tional experimental challenge in this "simpler" geomet y
is of course the ability to fabricate a gate with separate
"side controls, " examples of which already exist. i2 (Our
theoretical results on this nonbarrier asymmetric geome-
try will be presented elsewhere. )

The features of the electroconductance oscillations
would naturally be expected to depend on the path
length l over which the external potential Vz is applied.
Figure 3(a) demonstrates this length dependence on the
conductance oscillations, showing the conductance ratio
G/Ga at a fixed EJ. = 5.3, as a function of VT and for
diferent l values. As l is varied (while keeping both L
and Li fixed —see Fig. I), both the position and am-
plitude of the conductance peaks change. For smaller t

values [top traces in Fig. 3(a)], consecutive peaks (given
by A4 = 2vrn, where n is an integer) require a larger
change in VT, in accordance with the simple model de-
scribed by Eq. (2) below. Notice also that oscillations
become sharper for larger t values, as the constructive
interference condition is more precariously achieved. We
should also point out that the variation of the obsta-
cle length Li for a fixed l has no noticeable effect on
these oscillations (not shown here), demonstrating that
it is the modulation by VT and not the bifurcation itself
which defines the conductance features. (The situation
changes naturally, however, in the nonbarrier asymmet-
ric geometry discussed above, where the entire branch
length determines the phase lag. ) For smooth potential
edges, electroconductance oscillations due to changes in
VT are also seen [dashed curve in Fig. 3(a)], if only with a
smaller peak-to-valley ratio. Here, the potential barrier
is gradually ramped over 0.1 of its length on each end,

king an effectively shorter step which shows shallower
thefeatures. For an even smoother potential, so that t e

step reaches its highest value of VT only over the cen-
tral one-tenth of its length, the oscillations are basically
smeared out, and only slow depopulation transitions are
seen (dotted line).

One may use simple considerations to analyze the
phase changes suffered by the electron traversing the
obstacle region. The "electrostatic" phase difference
A4 between the two paths induced by VT is given by
Q@ = VT z/Q = mVT l/5 k~, i 4 s where ~ is the traver-
sal time through the barrier region, and k is the elec-
tronic wave number in this region along the x direction,
k = [2m(E~ —E„—VT)/5 ] Here, E„+V. T is the
subband energy in the top branch of the structure closest
to E~ from below. The phase shift LC between the two
contiguous paths can then be written as
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the structure (and included in the calculations of Fig. 2).
The phase shifts in Eq. (2) for the different modes would
superimpose and mix with others to produce oscillations
in the real conductance curves. However, if only one
mode is assumed to produce the interference peaks in G,
one can examine the different features and compare with
Eq. (2), as follows.

By examining the peak separation of the electrocon-
ductance oscillations for different Fermi energies, we con-
firm that the quantum-interference phase shifts modu-
lated by UT produce the oscillations in the conductance.
Figure 3(b) shows the comparison between the predicted
phase changes in Eq. (2) (solid lines) and the calculated
peak positions in Fig. 2 (circles), indicating constructive
interference between two alternative paths. The solid
curves in Fig. 3(b) fit the calculated phase shifts within
5% over the range of VT = 2—5. Notice that in this range,
for both EF values shown, there is only one populated
subband in the top branch of the structure, to facilitate
the comparison with the simple one-channel model. This
good agreement indicates that backscattering and inter-
channel mixing effects are not considerable, as they ac-
count for only the small deviations in Fig. 3(b). The
agreement for higher E~ values slowly deteriorates, as
expected for the multiple-channel regime.

Figure 3(b) also shows plots of the plateau conduc-
tances versus the barrier height, but measured from the
"depletion" value at which the given transverse mode
in the barrier region is depopulated. The conductance
peaks then appear nearly periodic in terms of this "effec-
tive kinetic wave number" variable, as discussed before
by Yacoby et al. for the one-mode case. Notice here,
however, that this near-periodicity is also observed for
high values of the Fermi energy, when several transverse
modes are involved.

Finally, the low-temperature dependence of the elec-
troconductance oscillations may be estimated from the

T = 0 behavior using the relation G(Ep, VT, T)
J G(E, VT, O) ( df—/dE)dE. This expression takes into
account only the broadening of the Fermi function f(E).
Inelastic-scattering effects are neglected here due to the
typical low temperatures of ballistic experiments. Sam-
ple results for difFerent temperatures, kT/E&~ ——0.01 and
0.02, are shown in Fig. 2 as dashed and dotted curves,
respectively, for E~ ——5.8. The oscillations in the electro-
conductance are suppressed at higher temperatures, al-
though they persist fairly strong up to kT —0.01Ey 2
K without much change. This is also a promising result
for possible experimental observations. We should point
out that our calculations predict large peak-to-valley ra-
tios, as shown in Figs. 2 and 3 here (= 2 to 1 with about
three populated channels), using realistic values for the
different lengths and energies in the problem.

In conclusion, we have studied quantum-interference
efFects in transport, analogous to the electrostatic AB ef-
fect, in ballistic nanoconstrictions. Distinct features of
the electroconductance oscillations include a strong de-
pendence on the applied transverse potential UT and bar-
rier length l. The good agreement between the calculated
phase shifts for the conductance oscillations and a simple
one-channel model is evidence of quantum interference
with voltage-shifted states without much strong-channel
mixing being apparent. This effect should be observ-
able in high-mobility semiconductor heterostructures in
the ballistic regime. The observation of this phenomenon
should be a challenge for experimentalists, and be an in-
teresting complement to experiments reported to date in
other systems.
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