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Phase coherence and nonadiabatic transition at a level crossing
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Some aspects of the Landau-Zener-type transition of a periodically driven two-level system with de-

phasing are clarified. Under the condition that the transition is well localized around the level-crossing

region, the transition dynamics for the typical cases is described by simple formulas; namely, by the
transfer-matrix method for the long-range coherence, by the application of the incoherent Landau-Zener

formula for the short-range coherence, and by the strong-dephasing formula in the limit of complete
deco her ence.

The transition dynamics of two-level systems driven by
an externally controlled parameter has long been a sub-
ject of considerable interest. There are many topics that
can be classified in this category: the two-level atoms in
the intense electromagnetic fields, ' the so-called adia-
batic rapid passage in magnetic resonance or its optical
analog, the quantum tunneling in double-well poten-
tials modulated by external fields, ' to name but a few.
Specifically, recent progress in microfabrication tech-
niques has brought about a renewed interest in this issue
in connection with the modulated tunneling in mesoscop-
ic or macroscopic quantum systems. '

One of the central problems in this subject is the non-
adiabatic transition at level crossings. As a prototype
model, consider a two-level system

I
1 ) and I2), the ener-

gies e, (t) and e2(t) of which are driven by some time-
dependent parameter and undergo multiple crossings.
Assume that the two states are coupled with each other
through an off-diagonal coupling constant J( )0). In the
case where the transition is well localized around the
level-crossing region, the adiabaticity is characterized by
the ratio J /fiIuI, where u =t)[e,(t) —e2(t) I /Bt is the ve-
locity of the change of the diabatic energy difference mea-
sured at the crossing. The probability of the transition

I
1 )~ I 2 ) after the crossing is given by the Landau-Zener

formula"

without loss of generality. For the sake of definiteness,
we assume a sinusoidal time dependence e(t)= A costot
for the diabatic energy difference. The two diabatic
states Il) and 2) cross with each other at the time
t„=(n —

—,')vr/to, n =1,2, 3, . . . , with the velocity of the
change of the energy difference

I
u

I

= A to. Hereafter, the
unit A= 1 is adopted. We impose the condition

3/J»1, (3)

which guarantees the assumption that the transition is
well localized around the times t=t„as compared with
the time interval ~/co between the successive crossings,
since the duration of time that the system resides in the
transition region is given by J/Iu I( =J/A co) in the order
of magnitude.

We assume a simple Markof5an dephasing. The transi-
tion dynamics is then described by the equation of
motion for the density matrix:

will be shown below that, under this condition, the transi-
tion dynamics are well described by simple formulas in
some typical cases.

The Hamiltonian is written as

H(t)= —,'~(t)(ll) (1I—I2) (2I)+J(I1) &2I+I2) &1I),

(2)

PLz=l exp( 27rJ /RIuI) p(t)= g p, ,(t)Ii) (j I, (4)
in those cases where the crossing region can be regarded
as being swept with a constant velocity.

In condensed-matter physics, it often occurs that the
system is subject to dephasing (phase relaxation) due to
the stochastic fluctuation of the energy caused by the per-
turbation of the surrounding medium. The effect of the
energy fluctuation and dephasing on the transition proba-
bility at level crossing has been investigated by the
present author for a single crossing. ' ' The purpose of
the present paper is to clarify some aspects of the phase
coherence in the long-time behavior of the two-level sys-
tem that undergoes multiple crossings. We focus our at-
tention to the case where the transition occurs effectively
within a short-time interval around the crossing times. It

i,j =1,2

= [H(t),p]+i I p,.dp
dt

where

Here, I is the phase decay constant and is the inverse of
the dephasing time T2.

Let us calculate the probability P (t) that the system is
in I2) at time t with the initial condition that it starts
from

I
1 ) at time t =0. Under the assumption (3), the
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time dependence of P(t) can be decomposed into two
components; one is the abrupt change due to the transi-
tion at level crossings, and the other is the rapid oscilla-
tion with small amplitude around the stationary point of
e(t) B. y smoothing out this rapid oscillation, we can
define the averaged probability P„ to find the system in
I2) after the nth crossing.

We note that there are three typical regimes according
to the relative length of the three characteristic time
scales, m. /co, J /I ul, and I"

In Fig. 1(a), an example of the numerical calculation of
P(t) is shown for J/co=3, 3/co=45, and I"=0. The
dashed line is the prediction by formula (10). The agree-
ment is fairly good if the rapid oscillation around the sta-
tionary point is smoothed out. Note that the interference
between the two paths

I
1 ) ~12)~ I2) and

I
1)—& I 1)~12) to reach I2) at t=2~/co works destruc-

tively and strongly suppresses P2 for these parameter
values. In general, the sequence IP„] shows a rather

Long-range coherence

In the case I ' ))m/co, the successive crossings are re-
garded essentially as a coherent process. The transition
at a level crossing is described by the transfer matrix I
given by'

1.0

V'q

—&1—qe'&

&I —qe
V'q

0.5—
lL

where q = exp( 2vr5), w—ith 5—:J /lul. The (i,j) element
represents the transition lj )~li ). Note that we have
defined the transition not between the adiabatic states but
between the diabatic states

I
1 ) and I2). The above M

corresponds to the case where I 1) crosses I2) from the
lower-energy side. In the opposite case, M should be re-
placed by its transpose M. The phase factor P is called
the Stokes phase and is given by

P=m/4+argI (1 i5)+—5( ln5 —1),

where I (z) is the I function. The Stokes phase is a
monotonously decreasing function of 5 and takes the fol-
lowing limiting values in the adiabatic (5~ ~) and the
diabatic (5~0) limits: P(5~ ~ ) =0 and P(5~0)=~/4.

The outgoing state at the nth crossing and the incom-
ing state at the (n+1)th crossing are connected by the
propagator

1.0

II

0, 5—
CL

I

27T/Q)

27T/4)

477/m

477/u

expl —
(
—1)"ia]

0
0

exp[( —1)"ia] 1.0

when a=2J o~ +Ie(t)/2] +J dt(=A/co). The state
vector x„after the nth crossing is obtained by operating
M, M, and G„successively on the initial state xo ——(o) as
x] =Mxo x2=MG] x& x3 =MG2X2, etc. , aside from an ir-
relevant common phase factor. After some manipulation
of 2 X2 matrices, we find the formula for P„as

0.5—
Q

P2, =qlp2, I
n =1,2, 3, . . . ,

where p„ is defined by the recursive relation

(10)

I

2 7T/(0
I

4 7T'/Cu

/3„+, = 2i I &1—
q sin(a+—P) I/3„+P„

with po=0, p, =1. Probability P, after the first crossing
is given by the Landau-Zener formula (1), but the in-
terference between the paths to reach I2) becomes very
important for multiple crossings.

FIG. 1. (a) The probability P(t) for J/co=3, A/co=45, and
I =0. The dashed line is the value of P„by formula (10). (b)
The same as (a) for J/co=3, 3/co=45, and I /~=0. 7. The
dashed line is the value of P„by formula (12). (c) The same as
(a) for J/co=3, 2 /co=45, and I /co=10. The dashed line is the
value of P„by formula (15).
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complicated behavior for the coherent case. In the case
that I is very small but finite, the coherence is gradually
lost for t ~ I ' and P (t) slowly tends to —,

' for t ~ oo.

Short-range coherence

If the parameter values satisfy- the inequality ~/cu
))I ', the phase memory is lost during the propagation
between the successive crossings. Let the probability of
transition

~
1)—+ ~2 ) for a signal crossing under the

influence of dephasing be PI-. Since only the diagonal
terms of the density matrix p(t) survive during the propa-
gation, the probability P„ is calculated by applying Pz
and 1 Pr —to each incoming state

~
1) and ~2) at the nth

crossing, respectively, and by taking the weighted sum of
the probability to find the system in ~2) after the cross-
ing. By solving a recursion equation, we find
P„=I 1 —(1 2P& )"—

I /2. Most interesting is the case
when the inequality I '))J/~U~ is satisfied in addition
to the one above. Then each crossing event is still re-
garded as a coherent process, as shown in Ref. 13. We
may put Pp —PLz in this case and find

P„=—,
'

I 1 —(1—2PLz)" I (12)

Note that P„ tends to —,
' in the limit n ~ ~ as a monoto-

nously increasing function for 0 & PLz & 0.5, but as an os-
cillating function for 0.5 & PLz

In Fig. 1(b), the numerical value of P(t) is shown by
the solid line for I /~=0. 7, with the same values of J
and A as in Fig. 1(a). The exact value is well reproduced
by formula (12), which is shown by the dashed line. Note
that the interruption of the destructive interference
dramatically increases the value of P(t) at t =2'/to, as
compared with the case I =0 shown in Fig. 1(a).

P(t)= —,
' 1 —exp —4J I f Ie(r) +I I

'dr - . (13)

This is an extension of the well-known formula for the
diffusion limit of the transition robability of the static
two-level system. In the case where the level-crossing re-

Strong decoherence

In the case of strong dephasing J/~U
~

~ I ', the whole
process becomes incoherent. The off-diagonal terms of
p(t) are strongly damped at each moment. Under this
condition, the equation of motion (5), or equivalently the
Bloch equation, can be solved approximately to yield

gion can be regarded as being swept with a constant ve-
locity, we put e(t) =Ut and replace the integral domain by
(
—co, ~) in the above formula. The transition probabili-

ty Pso for a single crossing in the strong-dephasing limit
is then obtained as'

PsD= —,
'

I 1 —exp( —4srJ /~U ~)] (14)
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This formula should be contrasted with P„z. It has been
shown that generally the inequality PLz & P„~PsD holds
for a fixed value of J /~U~. The probability P„ in the
strong-dephasing limit is given by

P„=—,
'

I 1 —exp( 4n irJ—/
~
v

~
) I .

In Fig. 1(c), the calculated P(t) is shown for I /co=10
with the same value of J and A as in Figs. 1(a) and 1(b).
The dashed line is the value by formula (15). See how the
decoherence changes the transition dynamics of the
level-crossing system to the diffusionlike process as I is
increased in the sense that P (t) tends to —,

' for t ~ oo .
In the present work, the effect of dephasing on the

transition dynamics of a periodically driven two-level sys-
tem has been investigated by the most simplified model.
In many cases, homogeneous dephasing is caused by the
random fluctuation of the energy levels due to perturba-
tion by elementary excitations such as phonons. ' The
effect of the dissipative interaction on the level-crossing
system has been a subject of theoretical interest. ' ' ' '
It has been shown that at high temperature and in weak
coupling, the dissipative interaction can be regarded as
mainly causing the fluctuation in energy, while at low
temperature and in strong coupling, the energy relaxation
becomes important. ' The theoretical prediction present-
ed here would be examined experimentally for two-level
systems weakly coupled with the environment. The effect
of dephasing on the nonadiabatic transition has been
studied experimentally for the optical adiabatic rapid
passage in localized centers in solids, and in the gas
phase for a single crossing. More recently, Spreeuw
et al. ' demonstrated that a classical analog of the
Landau-Zener transition can be realized by using an
optical-ring resonator. It will be worthwhile to clarify
such a fundamental quantum-mechanical process in de-
tail by using highly controlled optical techniques.
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